
Biophysical Journal, Volume 118
Supplemental Information
Dynamic Crowding Regulates Transcription

Anne R. Shim, Rikkert J. Nap, Kai Huang, Luay M. Almassalha, Hiroaki Matusda, Vadim
Backman, and Igal Szleifer



 
 

1 
 

Supporting Material 
 

Dynamic crowding regulates transcription 
Anne R. Shim1,2, Rikkert J. Nap1,2, Kai Huang1,2, Luay M. Almassalha1, Hiroaki Matusda1, Vadim Backman1,2, Igal 

Szleifer1,2,3 
 

1Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA; 2Chemistry of Life Processes Institute, 
Northwestern University, Evanston, IL, 60208, USA; 3Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA 
 
Steady-state Crowding and Volume Fractions 
Cellular kinetics are halted above 𝜙 ≈	0.5 (1, 2); therefore, we consider crowding volume fractions within the range of 𝜙=0-
0.5. We begin all calculations with a time period of constant crowder volume fraction, 𝜙 = 0.3, to verify that our results 
are due to crowding kinetics, not steady-state crowding. As relative mRNA production is constant during this time interval, 
we can assume that all subsequent changes in mRNA production are the result of crowding kinetics.  
 
Copy number to gene concentration derivation: 
The concentration of gene(s) is calculated as ()*+	,-./01

(022	3)2-.0
. 

To convert to nM,  

[𝐶] =
𝐶𝑜𝑝𝑦	𝑁𝑢𝑚𝑏𝑒𝑟

𝐶𝑒𝑙𝑙	𝑉𝑜𝑙𝑢𝑚𝑒	𝑥	𝐴𝑣𝑜𝑔𝑎𝑑𝑟𝑜H𝑠	𝑛𝑢𝑚𝑏𝑒𝑟	𝑥	10L	𝑛𝑎𝑛𝑜𝑚𝑜𝑙𝑒𝑠	𝑝𝑒𝑟	𝑚𝑜𝑙𝑒
. 

 
The lowest copy number is that of a single gene with 1 copy per chromosome, or a copy number of 2. The highest copy 
number we consider is the entire population of genes. There is some debate over the total number of genes in the human 
genome; however, the number of protein coding genes have been estimated as roughly 20,000 (3). Each of these genes have 
between 2 and 100s of copies. Therefore, we estimate total gene copy number to be on the order of magnitude of 104 or 105. 
Likewise, there is a large range in nuclear volume, depending on cell type, disease state, etc. Typical cells have diameters 
between 2-10 𝜇m, or volumes of 4.19-523.6 𝜇m3. Therefore, we consider [C] less than 1 and up to 51. 
 
Reaction Rate Equations and Coefficients Explained 
Each reaction rate equation (explained below in Section 3) is modified by the nuclear nanoenvironment by two competing, 
crowding-induced effects. Crowding alters the diffusion of proteins and contributes to the free energy of the nucleus, which 
determines the likelihood of protein binding. These effects were quantified and calculated by simulations, described below 
in Section 1 and Section 2, respectively. 
 

1. Brownian Dynamics Simulations of Diffusion Coefficients: Diffusion coefficients were calculated for 
transcriptional elements (Table S1) using Brownian Dynamics (BD) simulations. These simulations are carried out 
using GROMACS version 2016.4. Each simulation was comprised of one spherical tracer particle (representing one 
of the transcriptional elements from Table S1) diffusing through an environment of spherical crowders (r = 3 nm). 
Complex sizes were determined theoretically, as explained in Section 3, and all other transcriptional element sizes 
were determined from literature. The results of BD simulated diffusion for spherical tracer particles of r=2-6 nm 
were previously published in Matsuda et. al (1). These results, along with the data for particles of r = 18.38 nm are 
shown in Figure S9. 

 
Table S1. Size of transcriptional elements 

Particle Radius 
Transcription Factor 4 nm (4) 
RNA Polymerase 5.4 nm (4) 
Small Nuclear Ribonucleic Particle 6.25 nm (5) 
Complex 3 7.25 nm 
Complex 2 10.4 nm 
mRNA 18.8 nm (6) 



 
 

2 
 

The number of crowders in each simulation ranged from 30 to 1140 in steps of 30 in a simulation box of (63 nm)3. 
Spherical tracer particles freely diffused throughout the crowders and the mean-square displacement was calculated 
from t = 5 ns to t = 20 ns. The average slope of the mean-square displacement was calculated and the diffusion 
coefficient was determined to be one sixth of the average slope. The diffusion coefficients were fit by a cubic 
polynomial and normalized to diffusion at zero crowding. This cubic polynomial is: 
 

N(P)
N(R)

= 1 + 𝛼𝜙 + 𝛽𝜙V + 𝛾𝜙X, 
 
with the coefficients for previously unpublished tracer particles given in Table S3. 
 

 

Table S2. Coefficients for a cubic fit of diffusion by particle radius 
Particle Radius 𝛼 𝛽 𝛾 
mRNA 18.8 nm -5.114 9.7329 -5.239 

 

 
Fig S1. The diffusion coefficient of a tracer molecule is decreased by the presence of higher volume fractions of crowders 
(r = 3 nm). Previously published results (red–purple top to bottom represent r = 2-6 nm) represent protein diffusion. Black 
line and data points are r = 18.8 nm, which represents mRNA. 
 

2. Monte Carlo Simulations of Binding Free Energy Contributions: The crowding-induced contributions to free 
energy were calculated with Monte Carlo (MC) simulations, written in C. MC simulations calculated ∆𝐹[1)\](𝜙), 
the free energy released during binding, and	∆𝐹/^11_01(𝜙), the free energy barrier to association. Simulations were 
comprised of a spherical protein, a row of 50 overlapping spheres to represent DNA (r = 1 nm, spaced 1 nm apart), 
and crowders (r = 3 nm) in a (50 nm)3 simulation box. Spherical proteins were the same size as those used in BD 
simulations (Table S2). MC moves were small, random translations of randomly selected crowders. Every 10 MC 
moves, a test move was considered, which both increases and decreases the distance between the protein and the 
DNA by 0.1 nm. The move is rejected if it causes an overlap between any species in the system and is accepted 
otherwise. Over the course of millions of MC moves, the probability of accepting a move that increases the distance 
between proteins, pforward, or decreases the distance between proteins, pbackward, is calculated. This allows us to 
calculate the free energy change: 
 

𝛽Δ𝐹[1)\](𝑥 → 𝑥 + Δ𝑥) = ln	[*defgheij
*kliheij

], 

 
where 𝛽 = 1/𝑘o𝑇. 𝛽Δ𝐹[1)\]	is fit to a polynomial. To calculate ∆𝐹/^11_01(𝜙), the potential of mean force (PMF) 
is mapped between Dx and free energy. The PMF reaches a plateau value, which is the free energy required to 
separate the protein from the DNA against the depletion force caused by the crowders. This is equivalent to the 
negative contribution of crowding to the free energy of binding. ∆𝐹/^11_01(𝜙) is calculated by subtracting this 
plateau value from the maximum of the PMF. A representative PMF is shown for species in Figures S7-S9 below. 
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𝑒qrsfilhj and 𝑒qrsdeiitui are input into the dynamical model. The free energy change was calculated for CII, CIII, 
and snRNP (Figures S10-S12). Each MC simulation was repeated 3 times and averaged. The average change in free 
energy over these simulations was fit to a polynomial. 
 

 
Fig S2. Crowding induced free energy barrier (left) and crowding induced change in free energy (right) associated with CII 
complex formation or dissociation. Black symbols show the results of Monte Carlo simulations and red symbols are the 
average of the Monte Carlo simulation results. The solid line is the polynomial fit.  
 

                   
Fig S3. Crowding induced free energy barrier (left) and crowding induced change in free energy (right) associated with CIII 
complex formation or dissociation. Black symbols show the results of Monte Carlo simulations and red symbols are the 
average of the Monte Carlo simulation results. The solid line is the polynomial fit. 
 
 

 
Fig S4. Crowding induced free energy barrier (left) and crowding induced change in free energy (right) associated with 
snRNP complex formation or dissociation. Black symbols show the results of Monte Carlo simulations and red symbols are 
the average of the Monte Carlo simulation results. The solid line is the polynomial fit. 
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3. Reaction Rate Equations and Coefficients Explained: The transcription cascade is described by reaction rate 
equations, whose coefficients describe their dependence on the physical environment (crowding). Also included in 
the coefficients are microscopic details, such as molecular geometries, interactions, and diffusion coefficients. All 
reaction rate coefficients are described after their respective equations. The following are true for all coefficients: 

• Crowding induced effects are based on the following geometries: RNA polymerase r = 5.4 nm, transcription 
factor r = 4 nm, DNA r = 1 nm, crowders r = 3 nm, with average molecular weight 67.7 kDa and specific 
volume 0.73 mL/g. 

• Based on Brownian Dynamics simulations (Section 1), the diffusion coefficient is reduced by 𝑓(𝜙, 𝑟) ≡
N(P,1)
N(R,1)

 and will be represented in equations as 𝑓ys(𝜙), 𝑓z,{|(𝜙), 𝑓}~z,�(𝜙), 𝑜𝑟	𝑓.z,{(𝜙).  

• Based on Monte Carlo simulations (Section 2), the crowding-induced contribution to the binding free 
energy leads to ∆𝐹 = ∆𝐹P�R + ∆𝐹[1)\](𝜙), which influences the dissociation constant, 𝐾N by: 𝐾N(𝜙) =
𝐾N,P�R𝑒q∆sfilhj(P). 

 
 

Reaction rate equations adapted from Matsuda et. al (1). 
 

Reversible reactions 
Nonspecific reactions: For the rate of association of TF to DNA (𝑘�~}) and RNAp to DNA (𝑘�~}), crowding affects 
the diffusion of the transcriptional proteins and the kinetic barrier to association between proteins and DNA: 

𝑘�~}(𝜙) = 𝑘�,R~} ∙ 𝑓ys(𝜙) ∙ 𝑒�q∆sdeiitui,��(P), 
𝑘�~}(𝜙) = 𝑘�,R~} ∙ 𝑓z,{|(𝜙) ∙ 𝑒

�q∆sdeiitui,���|(P). 
 
The rate of dissociation of transcriptional proteins and DNA is equal to the rate of association multiplied by the 
dissociation constant. The dissociation constant depends on the change in free energy that occurs during 
dissociation:  

𝐾N,ys~} (𝜙) = 𝐾N,ys,P�R~} ∙ 𝑒�q∆sfilhj,��∙���(P), 
𝐾N,z,{|
~} (𝜙) = 𝐾N,z,{|,P�R

~} ∙ 𝑒�q∆sfilhj,���|∙���(P). 
 

Therefore, the rate of nonspecific dissociation is given by: 
𝑘)~}(𝜙) = 𝑘),R~} ∙ 𝑓ys(𝜙) ∙ 𝑒�q∆sfilhj,��∙���(P) ∙ 𝑒�q∆sdeiitui,��(P), 
𝑘/~}(𝜙) = 𝑘/,R~} ∙ 𝑓z,{|(𝜙) ∙ 𝑒

�q∆sdeiitui,���|(P) ∙ 𝑒�q∆sfilhj,���|∙���(P). 
 
Specific reactions: The rate of specific association is due to facilitated diffusion, adapted from Berg et. al (7). 

Specific association depends on: 𝑘� = 𝑉 �N�,��∙�l���
�
�	

�
, where 

V = volume of the nucleus 
 𝐷�,ys= one dimensional diffusion coefficient 

𝑘)~} = nonspecific dissociation 
L = half of the total length of DNA. 
 

Based on this relation, specific association is proportional to 𝑓ys (both 𝐷�,ys and 𝑘)~} are proportional to 𝑓ys and 
are each taken to the ½ power) and proportional to the free energy barrier to association by a factor of 𝑒�/V	. 
Therefore, the forward rates of specific association are: 

𝑘�(𝜙) = 𝑘�,R ∙ 𝑓ys(𝜙) ∙ 𝑒
�
Vq∆sfilhj,��∙���(P) ∙ 𝑒�

�
Vq∆sdeiitui,��(P), 

𝑘�(𝜙) = 𝑘�,R ∙ 𝑓z,{|(𝜙) ∙ 𝑒
��Vq∆sdeiitui,���|(P) ∙ 𝑒

�
Vq∆sfilhj,���|∙���(P) ∙ 𝑒�q∆sdeiitui,���|

��tju (P). 

𝑒�q∆sdeiitui,���|
��tju (P) is the entropic gain in free energy due to CII formation.  
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The rate of specific dissociation is given by:  

�jt�
�e�

= [𝐷]�)�	𝑥	
��
��
�� . 

Here, [𝐷]�)�	𝑥	
��
��
�� becomes 𝐾]_},R and the rate of specific dissociation becomes: 

𝑘)(𝜙) = 𝑘),R ∙ 𝑓ys(𝜙) ∙ 𝑒
�
Vq∆sfilhj,��∙���(P) ∙ 𝑒�

�
Vq∆sdeiitui,��(P), 

𝑘/(𝜙) = 𝑘/,R ∙ 𝑓z,{|(𝜙) ∙ 𝑒
��Vq∆sdeiitui,���|(P) ∙ 𝑒q∆sfilhj,���|∙��

��tju (P) ∙ 𝑒�q∆sdeiitui,���|
��tju (P). 

𝑒q∆sfilhj,���|∙��
��tju (P)	is the crowding-induced free energy change due to RNAp and TF contact.  

 
Reaction Rate Coefficients at Zero Crowding 
The original reaction rate coefficients (i.e. kt,0

ns, kt,0, etc.) were determined by the relations developed by Berg et. al 
(7) and take into account geometric information such as the length of one base pair, the distance between DNA 
strands, the radius of DNA etc. The original values of these reaction rates are explained in Matsuda et. al (1).  
 
These rate coefficients do not incorporate crowding effects for the rates of irreversible reactions. With the addition 
of crowding effects into these reactions, the rate coefficients are now non-static and become a range of values, 
dependent on the volume fraction of crowders. Therefore, we set the reaction rate coefficients from Matsuda et. al 
as the average reaction rate coefficient of the crowding-dependent coefficient from f=0-0.5. Each initial reaction 
rate coefficient for the irreversible reactions is determined by the relations:  

𝑘.,R = 𝑘.,.^�}-]^V /( �
R.��R

∗ ∫ 𝑘.,.^�}-]^ ∗ 𝑒�q∆sdeiitui,��𝑑𝜙
R.�
R ) , 

𝑘�,R = 𝑘�,.^�}-]^V /( �
R.��R

∗ ∫ 𝑘�,.^�}-]^ ∗ 𝑒�q∆sdeiitui,�����𝑑𝜙
R.�
R ),  

𝑘�H,R = 𝑘�H,.^�}-]^V /( �
R.��R

∗ ∫ 𝑘�H,.^�}-]^ ∗ 𝑒�q∆sdeiitui,����𝑑𝜙
R.�
R ),  

𝛾R = 𝛾R,.^�}-]^V /( �
R.��R

∗ ∫ 𝛾R,.^�}-]^ ∗ 𝑓.z,{	𝑑𝜙
R.�
R ). 

 
 

Reaction Rate Equations Not Adapted from Matsuda et. al (1). 
 
Irreversible Reactions 
The rate of transcription (km) is influenced by the barrier to dissociation of CII: 

𝑘.(𝜙) = 𝑘.,R ∙ 𝑒�q∆sdeiitui,���
(P). 

 
Subsequently, pre-mRNA processing occurs in two steps. First, the association of snRNP and pre-mRNA (𝑘�) 
depends on the diffusion of snRNP, as well as the barrier of association between snRNP and pre-mRNA: 

𝑘�(𝜙) = 𝑘�,R ∙ 𝑓}~z,�(𝜙) ∙ 𝑒�q∆sdeiitui,�����(P). 
 
After association, processing of pre-mRNA to mRNA (kM’) depends on the barrier to dissociation of CIII: 

𝑘�H(𝜙) = 𝑘�H,R ∙ 𝑒�q∆sdeiitui,����
(P). 

 
As the final step, mRNA in the nucleus diffuses to the cytoplasm (𝛾), which depends only on the crowding effects 
on diffusion of mRNA: 

𝛾(𝜙) = 𝛾R ∙ 𝑓.z,{(𝜙). 
 

Reaction Rate Coefficients at Zero Crowding 
The original reaction rate coefficients were determined by the relations developed by Berg et. al (7) and take into 
account the following geometries: 
Complex 2: CII is a complex of DNA (r=1 nm), RNA polymerase (r=5.4nm), and a transcription factor (r=4nm). 

Therefore, this complex would have an average radius of 10.4 nm. 
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Small Nuclear Ribonucleic Particle: There are many types of snRNPs, so we based our study on the U1 snRNP, 
which is well characterized (5). The U1 snRNP is a complex with a radius of roughly 6.25 nm. Data for 
r=6nm was used to represent snRNPs. 

Complex 3: CIII is a complex of a small nuclear ribonucleic particle (r=6.25 nm) and mRNA (r=1 nm for linear 
mRNA). Therefore, this complex would have an average radius of 7.25 nm. 

mRNA: mRNA transcripts vary in size. The radius of gyration of mRNA can be as low as 16.8-20.8 nm; therefore, 
we used r=18.8nm as an average radius for mRNA in solution. 

 
Table S3: Numerical values of model parameters 

Parameter Description Value (with f=0) 
𝒌𝒕𝒏𝒔  Association rate constant for nonspecific TF-DNA binding 4.9 x 104 mM-1s-1 
𝒌𝒇𝒏𝒔  Association rate constant for nonspecific RNAp-DNA binding 3.6 x 104 mM-1s-1 
𝒌𝒐𝒏𝒔  TF-DNA nonspecific dissociation rate 4.9 x 104 s-1 
𝒌𝒃𝒏𝒔  RNAp-DNA nonspecific dissociation rate 3.6 x 104 s-1 
𝑲𝑫,𝑻𝑭
𝒏𝒔   Dissociation constant for nonspecific TF-DNA binding 1 mM 

𝑲𝑫,𝑹𝑵𝑨𝒑
𝒏𝒔   Dissociation constant for nonspecific RNAp-DNA binding 1 mM 

𝑲𝑫,𝑻𝑭  Dissociation constant for specific TF-DNA binding 1.0 x 10-6 mM 
𝑲𝑫,𝑹𝑵𝑨𝒑  Dissociation constant for specific RNAp-DNA binding 1.0 x 10-6 mM 
𝒌𝒕  Association rate constant for TF-promoter (O) binding 5.0 x 10-4 mM-1s-1 
𝒌𝒇  Association rate constant for RNAp-Complex I binding 3.0 x 10-4 mM-1s-1 
𝒌𝒐  TF-promoter (O) dissociation rate 1.0 s-1 
𝒌𝒃  RNAp-Complex I dissociation rate 0.6 s-1 
𝑲𝑫,𝑻𝑭  Dissociation constant for TF-O (promoter) binding 1.0 x 10-6 mM 
𝑲𝑫,𝑹𝑵𝑨𝒑  Dissociation constant for RNAp-O (promoter) binding 1.0 x 10-6 mM 
𝒌𝒎  Rate of pre-mRNA production 0.02 s-1 
𝒌𝑴  Intron splicing rate 64.5 mM-1s-1 
𝒌𝑴H  mRNA creation in the nucleus .004 s-1 
g Nuclear exportation rate of mRNA 2 x 10-3 s-1 
n mRNA degradation rate 3 x 10-4 s-1 
[𝑫𝑵𝑨]  Concentration of DNA 20 mM 
[𝑹𝑵𝑨𝒑]  Concentration of RNA polymerases 3.0 x 10-6 mM 
[𝑶]  Concentration of promoters 3.0 x 10-6 mM 
[𝑻𝑭]  Concentration of transcription factors 3.0 x 10-6 mM 
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Supporting Figures 

  

Fig S5. Genes with higher concentrations have more overall expression than genes with lower concentrations. As gene 
concentration increases, genes become relatively less sensitive to crowding; the high expression at 𝝓 = 𝟎 causes relatively 
lower response in expression relative to 𝝓 = 𝟎.  
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Fig. S6. Changing the initial rate coefficients of the chemical reactions confirms that the reaction rates kM, kM’, and 𝛾, the 
intermediate, irreversible, crowding-dependent reaction rates, do not affect the level of expression at oscillating stability. 
For example, changing kM alters the short-term expression during the transition state (A). This independence from kM, kM’, 
and 𝛾 was analytically determined under steady-state conditions. At steady-state, 𝜐´𝑚𝑅𝑁𝐴[+�)¶ = 𝛾[𝑚𝑅𝑁𝐴~-[] =
𝑘�H[𝐶···] = 𝑘�[𝑠𝑛𝑅𝑁𝑃][𝑝𝑚] = 𝑘.[𝐶··]. Therefore, ́ 𝑚𝑅𝑁𝐴[+�)¶ =

�¹
º
[𝐶··] and kM, kM’, and 𝛾 do not affect ´𝑚𝑅𝑁𝐴[+�)¶. 

However, no such analytical solution exists when not at steady state. Conversely, mRNA expression at oscillating stability 
is determined by the remaining, crowding-dependent reaction rates. For example, kb changes the expression level at 
oscillating stability by up to 30%, but has a much less dramatic effect on short-term expression (B).  
 
  

A

B
0 2 4 6

Time (sec) #104

0.6

0.7

0.8

0.9

1

1.1

m
R

N
A[
?

(t)
]/m

R
N

A(
?

0)

?(t) = 0:3 + 0:2 $ sin( 2:
2$60 t)

[C]tot = 30nM

kM,0=6.45*10-6 s-1

kM,0=6.45*10-5 s-1

kM,0=6.45*10-4 s-1

0 2 4 6
Time (sec) #104

0.5
0.6
0.7
0.8
0.9

1
1.1

m
R

N
A[
?

(t)
]/m

R
N

A(
?

0)
?(t) = 0:3 + 0:2 $ sin( 2:

2$60 t)

[C]tot = 30nM

kb,0=6*10-2 s-1

kb,0=6*10-1 s-1

kb,0=6*101 s-1



 
 

9 
 

 

 
 

Fig. S7: The force of extravasation (A=0.2, 𝜙R = 0.3)	causes universal downregulation of gene expression, for all types of 
genes and lengths of extravasation (A, B). However, as extravasation time increases, the percent change in mRNA becomes 
less sensitive to lengthening the extravasation time (B). This is independent of gene concentration, as all gene concentrations 
have approximately the same change in mRNA at each extravasation time. The time between maximum compression and 
minimal expression (peak-to-peak) is also insensitive to gene concentration for short extravasations (C). However, the peak-
to-peak distance for genes with high concentration deviates at extravasation times greater than one hour. In contrast, the 
recovery time (the time from the end of extravasation to the return of expression to within 99% of the original expression 
level) is highly sensitive to gene concentration (D). Genes with low concentration require up to two-fold higher recovery 
times than genes with high concentration.  
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