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1 Supporting Information

1.1 Description of the MELON model for studying chromatin reorganization at
nuclear scales

Here we explain in greater detail the physical set up and numerical implementation of the MELON framework
to model the drosophila nucleus. In this framework, the state of the nucleus is resolved using several order
parameters describing the local state of chromatin within a physical domain Ω. The nucleus is defined through
the phase-field variable ϕ0(r, t) which takes 0 inside the nucleus and 1 outside with a smooth variation in-between
the regions. The variable r is the spatial position and t is time. The nuclear envelope (membrane) is represented
by a diffuse interfacial layer of the nucleus with a small thickness. The N chromosomal territories inside the
nucleus are described by individual phase-field variables ({φi(r, t)}; i = 1, · · · , N). The chromatin types A and
B which form the euchromatin-heterochromatin territories are resolved by defining a field variable ψ(r, t) which
quantifies the epigenetic state of the chromosomal region. Each order parameter takes a constant value in its
respective two coexisting phases such that it is 1 within its domain, 0 within all the other domains while varying
smoothly between interfacial regions. The nucleus interface position is defined through an iso-contour given by
Γϕ0

(t) = {r ∈ Ω, ϕ0(r, t) = 1/2}. For chromosome and heterochromatin interfaces positions are given by the
iso-contours Γφi,ψ(t) = {r ∈ Ω, φi(r, t) = 1/2 and ψ(r, t) = 1/2}.

To investigate the micron scale fluid dynamics and pattern formation of epigenetically colored nuclear chro-
matin, we need to construct the local free energy functional based on different physical features of the system:
phase separation, surface tension, volume constraints and specific interactions between different chromatin types.
We start by introducing the fundamental Ginzburg-Landau free energy functional which describes the phase sep-
aration and the overall shape of multi-phase field variables:

FB [ϕ0, {φi}i=1,...,N , ψ] =

∫
Ω

dΩ

[
fcoex(ϕ0) +

ε2ϕ0

2
(∇ϕ0)

2

]
+

N∑
i=1

∫
Ω

dΩ

[
fcoex(φi) +

ε2φ
2

(∇φi)2

]

+

∫
Ω

dΩ

[
fcoex(ψ) +

ε2ψ
2

(∇ψ)
2

]
(1)

where fcoex is the coexisting bulk free energy density and the gradient term represent a contribution to the surface
energy of the bulk phases interface. The gradient parameters εϕ0

, εφ and εψ are controlling the thickness of
the interfacial region as defined by the variables ϕ0, φi and ψ respectively, and are taken to be small compared
to the length-scale of the nucleus. The bulk free energy density has two minima centered at 0 and 1 each of
which corresponds to equilibrium bulk phase. We choose the standard double-well potential to describe the
coexisting bulk phases: fcoex(ϕ0) = ϕ2

0(1 − ϕ0)2/4. The form of the coexistence function allows connecting the
free energy profile of two bulk phases for each phase variable and makes finite contribution only to the interfacial
energy. With this expression, the overall shape of the interfaces is governed only by the interfacial energies which
penalize the movement of the interfaces. The coexistence function guarantees the attainment of stable diffuse
interfaces separating the coexisting bulk phases. The minimization of the FB gives the profile of the interface:
1/2

[
1− tanh

(
r/2
√

2ε.
)]

with thickness parameter ε. defined above for different interfaces. The motion of interfaces
is governed not only by interfacial energy but also by local bulk driving force of the phase transition ∆fbulk(·),
with fbulk(·) = fcoex(·) + · · · . We now turn to describing the energetic terms representing the bulk driving forces
of the phase separation.

To generate the state of a nucleus which is fully occupied by chromosomal domains it is important to allow
chromosomal territories to expand and contract in response to nuclear volume changes in a way a dense polymeric
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solution would respond. In order to account for the constraints imposed by the nuclear volume we introduce a
”growth” term of the global free energy functional FG as follows:

FG[ϕ0, {φi}i=1,...,N , ψ] = αNeq
[
V N − VN (t)

]2
+ αN

[
VN (t)−

N∑
i=1

Vi(t)

]2

+

+αV

N∑
i=1

[
Vi(t)− V i(t)

]2
+ αv

N∑
i=1

[vi(t)− vi(t)]2
(2)

where VN is the nuclear volume, αNeq, αN , αV and αv are positive coefficients. The first term accounts for the
changes of nuclear volume during nuclear reorganization (growth or inversion) stage during which the nucleus
evolves towards a new steady-state volume V N . The harmonic terms acting on volumes of chromosomal domains
ensures that all the chromosomes fill the nuclear volume entirely VN , with an additional volume constraints ensuring
the proper ratio of heterochromatin to chromosome domains vi and V i respectively. Notice that the coefficients
αNeq, αN , αV and αv control the kinetics of growth of different domains to reach the prescribed volumes because
their respective driving forces are proportional to these parameters.

The volume of each chromosome denoted by Vi and their corresponding heterochromatin domain volume vi
are defined as the spatial integral of their interface profile described by the variables φi and ψ. This usual
approximation of the volume will change the minima of fbulk which corresponds to the equilibrium bulk phases.
We thus adopt an interpolation function h to approximate the volumes for different compartments while keeping
the positions of minima of fbulk function at 0 and 1. The most frequently adopted polynomial function for
calculations using diffuse interface methods [1] is: h(ϕ0) = ϕ3

0(10 − 15ϕ0 + 6ϕ2
0). Therefore, we approximate the

volumes for nucleus VN , chromosomes Vi and heterochromatin domains vi by:

VN (t) =

∫
Ω

dΩ [1− h(ϕ0)] ; Vi(t) =

∫
Ω

dΩh(φi); vi(t) =

∫
Ω

dΩh(φi)h(ψ)

At this point, the free energy functional sketched above describes only the growth and shrinkage of chromosomal
domains. To ensure that changes in volumes of chromosomes are coupled to each other we introduce additional
energetic terms which penalize the overlap between chromatin domains during the process of nuclear volume
change:

FR[ϕ0, {φi}i=1,...,N , ψ] = 4β0

N∑
i=1

∫
Ω

dΩh(ϕ0) (1− h(ϕ0))h(φi)+

βψ

∫
Ω

dΩ

[
1−

N∑
i=1

h(φi)

]
h(ψ) + βφ

N∑
i 6=j

∫
Ω

dΩh(φi)h(φj)

(3)

Coefficients β0, βψ and βφ are all positive constants in the model. The first term represents an energetic belt which
surrounds the nucleus by restricting the movement of all chromosome territories within the nuclear envelope. In
fact, this energy increases when the chromosome territories are near the nuclear envelope and thus penalize strongly
the movement of at the peripheral regions of the nucleus. The second and third terms account for the excluded
volume interactions between chromosome-chromosome territories and chromatin-heterochromatin domains. Thus,
the chromosome territories cannot overlap and maintain their prescribed volume defined previously in FG. The
interaction between the heterochromatin and the lamina located at the nuclear envelope plays a crucial role
in the nuclear organization and restructuring through the adhesion/desperation processes happening during the
cell development. To account for the affinity of heterochromatin towards nuclear envelope, several formulations of
adhesion could be developed as a function of corresponding phase-fields variables ψ and ϕ0. Some of the commonly
used formulations for adhesive interaction have used polynomial [2, 3] and exponential [3] forms. The adhesion
energy depends on the distance of heterochromatin interface from the nuclear envelope. The form of interaction
potential between heterochromatin and the nuclear envelope that we have used is the same one which was also
used in many prior works of phase-field models [4, 5]:

FI [ϕ0, ψ] = γ

∫
Ω

dΩ∇h(ϕ0) · ∇h(ψ) (4)

This form of the potential ensures that the adhesion energy is negative in the region of overlapping of the nuclear
envelope and heterochromatin interfacial layer and zero elsewhere. Here the γ is a positive coefficient which
quantifies the binding affinity of heterochromatin domains to nuclear Lamina.

The total free energy of the system that accounting all effect considered for the nature of intra-nuclear chromatin
is expressed then as:

F [ϕ0, {φi}i=1,...,N , ψ] = FB + FG + FR + FI (5)
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The dynamics of chromatin is described through the temporal evolution of the non-conserved order parameters
following the Allen-Cahn kinetic equation [6] which is derived through minimization of the free energy functional
[5]:

∂ϕ0

∂t
= −Lϕ0

δF

δϕ0
;

∂φi
∂t

= −Lφi

δF

δφi

∣∣∣∣
(i=1,...,N)

;
∂ψ

∂t
= −Lψ

δF

δψ
+ ηψ(r, t) (6)

where noise terms are defined via fluctuation-dissipation condition 〈ηψ(r, t) ηψ(r′, t′)〉 = 2kbTLψδ(r− r′) δ(t− t′)
with terms Lϕ0 , Lφi and Lψ being the mobility coefficients associated with their respective fields. The term
ηψ is added to the evolution equation of the phase-field ψ to account the thermal fluctuation effects of the
heterochromatin region at the average time-scale. The amplitude of fluctuation is determined by the fluctuation-
dissipation relation, which is related to the mobility coefficient Lψ. By calculating the variational derivative of
the total free energy functional F in [6], we get the system of relaxation equations:

∂ϕ0

∂t
= Lϕ0

(
ε2ϕ0
∇2ϕ0 − f ′coex(ϕ0)− 2h′(ϕ0)

{
2β0 (1− 2h(ϕ0))

N∑
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[
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N∑
i=1

Vi(t)

]

−γ
2
∇2h(ψ) + α4

[
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]})
(7)

∂φi
∂t

= Lφi

(
ε2φ∇2φi − f ′coex(φi)− 2h′(φi)

{
αV
[
Vi(t)− V i(t)

]
− α0

[
VN (t)−

N∑
i=1

Vi(t)

]

+αv [vi(t)− vi(t)]h(ψ) + 2β0h(ϕ0) (1− h(ϕ0))− βψ
2
h(ψ) +
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2

[ N∑
i=1

h(φi)− h(φi)

]})
(8)

∂ψ

∂t
= Lψ

(
ε2ψ∇2ψ − f ′coex(ψ)− h′(ψ)

{
2αv

N∑
i=1

[
vi(t)− vi(t)

]
h(φi) + βψ

(
1−

N∑
i=1

h(φi)

)
− γ∇2h(ϕ0)

})
+ηψ(r, t)

(9)
When the nuclear volume is constant VN (t) = V N , the governing equations of chromatin dynamics [Eq 6] are
reduced to [Eq 8, 9] which also makes the interfacial profile of nucleus independent of time: ϕ0(r, t) = ϕ0(r) =
1
2

{
1− tanh

(
r/2
√

2εϕ0

)}
.

Finally, the equations governing chromatin dynamics are resolved in nondimensional form. For that we intro-
duce the length-scale l and the time-scale t for dimensionlizing the equations. The length scale was set to 1µm
and the mobility parameter was chosen to set the time length as a unit.

Numerical simulations and parameter setting:

Let consider the application of MELON framework to model drosophila nucleus with 8 chromosome territories.
The governing equations of the chromatin dynamics are highly nonlinear. To solve the coupled non-dimensional
equations resulting from minimization of the global free energy functional, we use a fully implicit finite element
method combined with the preconditioned Jacobian Free Newton Krylov (JFNK) technique [7]. The development
of the MELON framework and equations that are derived from it have been implemented in the MOOSE library
[8, 9]: it’s a massively parallel finite element open-source coded on C++ language which was builds using sev-
eral high-performance computational libraries for solving nonlinear partial differential equations: MPI, LibMesh,
PETSc. Once all the equations are transformed in the weak form to extract the residual vectors, we compute the
solution of the phase field variables by using the different kernels implemented in Moose phase-field module. More
details of the numerical implementation of the phase-field module are given in [10, 8].
The simulations were performed on a rectangular domain of dimensions 6 µm × 9 µm. A quadrilateral element
with 4 nodes was used for domain meshing with the refinement. The total number of elements used for the fine
mesh is 640000. The time step of integration ∆t is fixed at 0.0025 [a.u.]. An elliptical nucleus is introduced
in the center of computational domain in which the chromosomes and heterochromatin domains are randomly
generated. The initial conditions to generate the conventional nuclear architecture are provided by a tanh-like
function: 1/2

[
1− tanh

(
r/2
√

2ε.
)]

. The geometries of different subdomains described by the phase-field variables
ϕ0, {φi}i=1,...,N , andψ have an elliplical shape where r represents the signed distance function. We use the steady-
state of conventional architecture as an initial condition to study the nuclear reorganization process. For interface
geometry of the nucleus, two cases have been considered in this work. With fixed nucleus volume: ϕ0(r) and with a
dynamic relaxation of the nuclear interface through ϕ0(r, t) which remodels nuclear volume as function time until
steady-state volume V N . When nuclear volume is kept constant, the nucleus interface is simulated by an elliptical
shape in which the semi-major axes are fixed to a = 2.5µm and the semi-minor axis to b = 4µm; thus the nuclear
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Figure 1: Illustration of MELON free energy terms for intra-nuclear chromatin dynamic. Shown are bulk free
energy density as a function of the phase field variable φm and their corresponding interface profile. The relative
position of the fbulk indicates the phase transition direction.

volume is: VN = πab = 31.416µm2. For volume remodeling simulations, we compute the temporal evolution of the
nuclear volume through h-function as follows: VN (t) =

∫
Ω
dΩ[1 − h(ϕ0)]. The mobility coefficient of the nuclear

interface is linked to the volume reduction rate in the following way: Lϕ0
= (VN (t0)− V N )/((tf − t0)× VN (t0)),

where the coefficient αNeq (fixed at 2 for conventional architecture) controls the nuclear interface velocity . The
mobility of chromosomal and heterochromatin compartments are set to be equal L = Lϕ = Lψ. Since this pa-
rameter fixes the inter and intra-chromosomal interface relaxation time: τ ∝ L−1. The interface relaxation time
τ is used to set the unit timescale for the kinetics of phase transitions. We note that the value of τ is naturally
expected to be different for different developmental stages of the nucleus. For instance for the post-embryonic
interphase of drosophila [11] we set τ ∼ 0.005 h while for studying long time senescence and nuclear inversion the
time scale is calibrated to match different set of experiments [12] and corresponds to τ ∼ 5 h.
The interfacial parameters εϕ, εψ quantify thickness of inter and intra-chromosomal compartments respectively.
These parameters can be estimated through the interfacial energies of chromosome territories and euchromatin-
heterochromatin compartments. We estimate the interfacial parameters through the diffusion coefficient: Dϕ =
L ε2ϕ for chromosomes and Dψ = L ε2ψ for the heterochromatin regions. By varying the interfacial parameters, we
have investigated how the diffusion coefficient impact the nuclear architecture organization and chromatin dynam-
ics. We estimate diffusion coefficients from long-time scale measurements of diffusion of chromosomal loci where
clear diffusive behaviour is seen [13, 14]. In this study we have varied the diffusion coefficients wihtin a resonable
range that accouts for cellular variablility. The range of values considered is Dψ=[ 0.003 µm2/h, 0.004 µm2/h,
0.008 µm2/h] and Dϕ=[ 0.0015 µm2/h, 0.001 µm2/h]. The thickness of the diffuse interfacial layer of the nucleus,
the heterochromatin and the chromosome compartments are all determined by κ. = 4

√
2ε. tanh−1(1− 2ζ) where ζ

is set to 0.1. The specific values are, κϕ0
= 0.44µm , κφ = 0.44µm, 0.538µm and κψ = 0.761µm, 0.88µm, 1.243µm.

The nondimensionalized parameters of the model such as the intensity of the energetic belt surrounding the nuclear
envelope and the excluded volume interaction parameters are simply chosen to be strong enough to contain all
the chromosome territories within the nucleus and restrict the overlap. The value of parameters are respectively
set to β0 = 16.67 and βϕ = 40 for all the simulations. The interaction range of heterochromatin regions has been
varied within a range: βψ = 0.1 − 0.4 to investigate its impact on the degree of euchromatin-heterochromatin
mixing. For nuclear reorganization simulations, the parameter βψ was fixed to 0.1. The computed values of the
growing domains kinetic parameters are set as α0 = 0.16, and αv = αV = 2. The interaction parameter between
heterochromatin and nuclear lamina is chosen to be the smaller value that allows maintaining the binding between
them and is set as γ = 0.009 µm2. Euchromatin-heterochromatin interfacial fluctuation have been modeled as
thermal noise with an amplitude set to A = 2kBTL. Three values of fluctuation amplitude were considered here
A=5, 10 and 15 which corresponding to the different effective temperatures in the nucleus.
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Table 1: Fit settings used to extract the characteristic time (or relaxation time). Notice that the time necessary
to reach the equilibrium state can be evaluated approximately to 3τ

Final volume function used for fit a(µm) b τ(h)
Nucleus 35.6931 0.11043 165.058
Chromosomes 110% a(1− bexp(−t/τ)) 35.043 0.115398 166.021
Heterochromatin 10.674 0.129893 147.994
Nucleus 16.0959 0.969034 295.307
Chromosomes 50% a(1 + bexp(−t/τ)) 15.3689 1.03216 296.809
Heterochromatin 4.77723 0.9523 303.584
Nucleus 12.7916 1.47789 323.406
Chromosomes 40% a(1 + bexp(−t/τ)) 12.0589 1.59465 324.675
Heterochromatin 3.77556 1.47166 331.641

Data Analysis: Kinetic aspects

The density of the heterochromatin at the i-th chromosome can be expressed as: ρi(t) = vi(t)/Vi(t). Thus, the
associated euchromatin density is evaluated as 1− ρi(t).
The density of the heterochromatin in cell’s nucleus: ρ(t) = v(t)/V (t)
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Figure 2: Temporal evolution of the overall chromosome (fig. a)) and heterochromatin (fig. b)) volumes in the
cell’s nucleus, without binding affinity with heterochromatin domain, for two different values of coefficient αv and
αV .
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50 days
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IC− P0 cell 7 days 14 days 21 days 28 days

Figure 3: Effect of heterochromatin diffusion coefficient on nuclear architecture reorganization with a fixed cell’s
nucleus volume. The architecture obtained for a low diffusion coefficient ε2ψ = 0.015µm2 is reported in fig a) and

0.02µm2 in fig. b), while for higher value ε2ψ = 0.04µm2 is reported in fig. c). The heterochromatin density in cell’s

nucleus is fixed to 30%. The other parameters used: ε2ϕ = 0.005µm2, β0 = 16.67, βϕ = 40, βψ = 0.1, α0 = 0.16,
and αv = αV = 2.

6



C
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Figure 4: Effect of heterochromatin density in cell’s nucleus on nuclear architecture reorganization. The architec-
ture organization for a low density (ρ = 25%) is reported in fig. a) and (ρ = 30%) in fig. b) while for high value
(ρ = 35%) is reported in fig. c). The other parameters used: ε2ϕ = 0.005, ε2ψ = 0.02 β0 = 16.67, βϕ = 40, βψ = 0.1,
α0 = 0.16 and αv = αV = 2.
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Figure 5: Temporal evolution of heterochromatin volume during the reorganization of nuclear architecture for two
different value of heterochromatin density in the cell’s nucleus (relaxation of heterochromatin domain: for ρ = 25%
we found a = 3.94977µm2, b = 0.967667 and τ = 305.096h−1; for ρ = 30% a = 4.77723µm2, b = 0.952299 and
τ = 303.586h−1, and we found a = 5.53373µm2, b = 0.957598 and τ = 315.993h−1 for ρ = 35%).
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b)

IC− P0 cell 7 days 14 days 21 days 28 days 50 days

a)

Figure 6: Effect of the heterochromatin diffusion coefficient on the reorganization of nuclear architecture accom-
panied by a change in the nuclear volume to reach 50% of its initial volume. The architecture organization for a
low diffusion coefficient (ε2ψ = 0.015 µm2) is reported in fig. a) while for high value (ε2ψ = 0.02 µm2) is reported

in fig. b). The other parameters used: ε2ϕ = 0.005, β0 = 16.67, βϕ = 40, βψ = 0.1, α0 = 0.16, αv = αV = 2 and
ρ = 30%.
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