Biophysical Journal, Volume 118

Supplemental Information

Structural and Dynamical Signatures of Local DNA Damage in Live

Cells

Jonah A. Eaton and Alexandra Zidovska

Supplementary Figure 1: DSB dynamics as a function of the DSB position and NCS concentration. (*A*) Average *MSD* for the interior DSBs from Fig. 2E plotted with error bars (standard error). (*B*) Average *MSD* for the periphery DSBs from Fig. 2E plotted with error bars (standard error).

Supplementary Figure 2: The 53BP1 focus size vs. the 53BP1-mCherry expression. (*A*) Size of a DSB focus, R_B , as a function of the mean 53BP1-mCherry intensity in the cell nucleus measured for 2052 interior DSBs in 356 cell nuclei. (*B*) Relative change of R_B , δR_B , as a function of the mean 53BP1-mCherry intensity across the cell nucleus, where $\delta R_B = (R_B - \langle R_B \rangle) / \langle R_B \rangle$. (*C*) Histogram depicting the number of DSBs evaluated at a given mean 53BP1-mCherry intensity. No correlation was found between the 53BP1 focus size and the 53BP1-mCherry expression. Error bars shown are standard errors.

Supplementary Figure 3: Unique chromatin compaction profile at DSBs. Distributions of I_{ch} and S_{rel} including both the interior and periphery 53BP1 foci from NCS-treated nuclei from Fig. 4 (*purple*) and for the 53BP1 foci co-localizing with γ H2AX from Fig. 1D (*green*).

Supplementary Figure 4: Negative control for the DSB dynamics. (*A*) Average *MSD* from Fig. 4D plotted with error bars (standard error). (*B*) Relationship between the long-term DSB mobility (A_L) and the local chromatin compaction (I_{ch}) for three NCS concentrations plotted with error bars (standard error). (*C*) Relationship between the long-term DSB mobility (A_L) and the local chromatin compaction (I_{ch}) from Fig. 4E with plotted with error bars (standard error).

Supplementary Figure 5: Universal behavior of the DSB dynamics. (*A*) Relationship between the DSB focus size (R_B) and nuclear DSB density (ρ_B) from Fig. 5A plotted with error bars (standard error). (*B*) Relationship between the long-term DSB mobility (A_L) and the DSB focus size (R_B) from Fig. 5B plotted with error bars (standard error). (*C*) R_B as a function of A_L and ρ_B for each analyzed DSB in the nuclear interior across all NCS concentrations: NCS 200 (*circles*), NCS 500 (*triangles*) and NCS 800 (*squares*). (*D*) Average value of A_L as a function of S_{rel} and I_{ch} for analyzed DSBs in the nuclear interior across all NCS concentrations average over fewer DSBs. (*E*) A_L as a function of S_{rel} and I_{ch} for each analyzed DSB in the nuclear interior across all NCS concentrations. NCS 200 (*circles*), NCS 500 (*triangles*), NCS 500 (*triangles*) and NCS 800 (*squares*).

Supplementary Figure 6: DSB dynamics as a function of time upon DNA damage induction. (*A*) Average *MSD* for the interior DSBs analyzed during 10 - 25 min (*circles*, $N_{\text{DSB}} = 215$, $N_{\text{Cells}} = 42$), 25 - 50 (*triangles*, $N_{\text{DSB}} = 271$, $N_{\text{Cells}} = 47$), 50 - 75 min (*squares*, $N_{\text{DSB}} = 300$, $N_{\text{Cells}} = 49$) and 75 - 100 min (*diamonds*, $N_{\text{DSB}} = 318$, $N_{\text{Cells}} = 54$) after NCS 500ng/mL addition. *Purple line* ($N_{\text{DSB}} = 2052$, $N_{\text{Cells}} = 356$) represents data from Fig. 5C collected at 60 min mark. (*B*) R_{B} as a function of ρ_{B} for DSBs analyzed at different times. (*C*) A_{L} as a function of I_{ch} for DSBs analyzed at different times. Error bars shown are standard errors.

Supplementary Figure 7: Comparison of the long-term mobility, A_L , and the length of constraint, L_C , for a DSB focus trajectory. (A) L_C as a function $\sqrt{A_L/\pi}$ shows linear dependence suggesting that the two measures are equivalent. The length of constraint, L_C , is defined as the standard deviation of the centroid position of a DSB focus with respect to its temporal average [35]. (B) L_C distributions calculated for all individual DSB trajectories presented in the DSB populations from Figs. 2 and 5.

	NCS	200	NCS	500	NCS	5 800
N_{Cell} (total)	107		121		131	
$ ho_B \ [\#/\mu m^2]$	0.077 ± 0.003		0.084 ± 0.003		0.145 ± 0.005	
	inter.	peri.	inter.	peri.	inter.	peri.
N _{Cell}	107	99	121	100	128	131
N _{DSB}	610	336	682	254	760	862
$A_{\rm s}$ $[\mu m^2]$	0.00064 ± 0.00002	0.00035 ± 0.00001	$\begin{array}{c} 0.00061 \\ \pm 0.00002 \end{array}$	0.00034 ± 0.00001	0.00067 ± 0.00001	$\begin{array}{c} 0.00036 \\ \pm 0.00001 \end{array}$
α	0.675 ± 0.008	0.717 ±0.012	0.607 ± 0.007	0.625 ± 0.015	0.634 ± 0.007	0.652 ± 0.008
$egin{array}{c} A_{ m L} \ \left[\mu m^2 ight] \end{array}$	0.0207 ± 0.0006	0.0126 ±0.0004	0.0171 ± 0.0004	0.0103 ± 0.0004	$0.0195 \\ \pm 0.0005$	0.0112 ± 0.0002
$R_{ m B} \ \left[\mu m ight]$	0.301 ± 0.003	0.296 ± 0.003	0.295 ± 0.003	0.298 ± 0.003	$\begin{array}{c} 0.280 \\ \pm 0.002 \end{array}$	$0.289 \\ \pm 0.002$
S _{rel}	-0.142 ±0.009	-0.162 ±0.013	-0.134 ±0.008	-0.168 ±0.015	-0.176 ±0.008	-0.240 ±0.007
<i>I</i> _{ch}	1.158 ± 0.009	$\begin{array}{c} 1.088 \\ \pm 0.008 \end{array}$	1.144 ± 0.008	1.095 ± 0.012	1.209 ± 0.008	1.118 ± 0.005

Supplementary Table 1: Summary of the characteristics (mean \pm SE) of the DSB dynamics for the interior and periphery DSBs at 3 different NCS concentrations.

N_{Cell} - number of cells analyzed

 N_{DSB} - number of DSBs analyzed

 ρ_B - number of DSBs per unit area

 $A_{\rm s}$ - area explored by a DSB in 250 ms

 α - exponent obtained from fitting the *MSD* to $f(\tau) = C + B\tau^{\alpha}$

 $A_{\rm L}$ - area explored by a DSB in 25 s

 $R_{\rm B}$ - radius of a 53BP1 focus

S_{rel} - slope of a linear fit to radially averaged H2B-GFP intensity around a DSB

Ich - normalized H2B-GFP intensity at the DSB centroid

	NCS 200 vs NCS 500	NCS 200 vs NCS 800	NCS 500 vs NCS 800
	inter vs inter	inter vs inter	inter vs inter
$A_{\rm s}$	4.2×10^{-1}	4.4×10^{-5}	1.7×10^{-3}
α	3.7×10^{-7}	1.8×10^{-3}	1.9×10^{-2}
$A_{\rm L}$	3.5×10^{-3}	4.9×10^{-1}	$7.0 imes 10^{-4}$
$R_{\rm B}$	2.5×10^{-1}	1.0×10^{-7}	4.8×10^{-4}
Srel	9.5×10^{-1}	4.1×10^{-3}	3.6×10^{-3}
<i>I</i> _{ch}	5.9×10^{-1}	9.6×10^{-5}	3.9×10^{-5}
	NCS 200 vs. NCS 200	NCS 500 vs. NCS 500	NCS 800 vs. NCS 800
	peri vs inter	peri vs inter	peri vs inter
A_{s}	0	0	0
α	1.1×10^{-3}	2.2×10^{-2}	4.0×10^{-3}
$A_{\rm L}$	0	0	0
$R_{\rm B}$	6.0×10^{-3}	7.1×10^{-4}	6.3×10^{-9}
S _{rel}	4.8×10^{-2}	2.0×10^{-2}	1.8×10^{-8}
<i>I</i> _{ch}	6.7×10^{-7}	3.2×10^{-3}	0
	NCS 200 vs NCS 500	NCS 200 vs NCS 800	NCS 500 vs NCS 800
	peri vs peri	peri vs peri	peri vs peri
$A_{\rm s}$	2.2×10^{-1}	8.2×10^{-1}	4.1×10^{-2}
α	1.1×10^{-4}	8.0×10^{-4}	1.6×10^{-1}
$A_{\rm L}$	3.8×10^{-6}	2.1×10^{-6}	3.4×10^{-1}
$R_{\rm B}$	1.8×10^{-1}	3.5×10^{-2}	6.3×10^{-4}
$S_{\rm rel}$	4.2×10^{-1}	1.4×10^{-6}	1.3×10^{-4}
<i>I</i> _{ch}	3.5×10^{-1}	1.8×10^{-2}	4.2×10^{-3}

Supplementary Table 2: Summary of the *p*-values (Kolmogorov-Smirnov test) for all measured physical quantities in the nuclear interior and periphery across 3 different NCS concentrations.

	All	NCS	ATF	' dep	Mock	C DSB
N_{Cell} (total)	359		38		83	
	inter.	peri.	inter.	peri.	inter.	peri.
N _{Cells}	356	330	37	29	83	74
N _{DSB}	2052	1452	158	85	729	276
$A_{\rm s}$ $\left[\mu m^2 ight]$	$\begin{array}{c} 0.00064 \\ \pm \ 0.00001 \end{array}$	$\begin{array}{c} 0.00035 \\ \pm \ 0.00001 \end{array}$	$\begin{array}{c} 0.00063 \\ \pm \ 0.00003 \end{array}$	$\begin{array}{c} 0.00037 \\ \pm \ 0.00003 \end{array}$	$\begin{array}{c} 0.00077 \\ \pm \ 0.00002 \end{array}$	$\begin{array}{c} 0.00056 \\ \pm \ 0.00003 \end{array}$
α	0.637 ± 0.004	0.662 ± 0.006	$0.580 \\ \pm 0.013$	0.572 ± 0.019	0.587 ± 0.009	0.584 ± 0.015
$egin{array}{c} A_{ m L} \ \left[\mu m^2 ight] \end{array}$	$0.0190 \\ \pm 0.0003$	$\begin{array}{c} 0.0113 \\ \pm 0.0002 \end{array}$	0.0171 ± 0.0010	$0.0092 \\ \pm 0.0005$	0.0151 ± 0.0004	0.0115 ± 0.0005
S _{rel}	-0.152 ±0.005	-0.209 ±0.006	-0.088 ±0.016	-0.074 ±0.024	-0.125 ±0.009	-0.173 ±0.016
I _{ch}	1.172 ± 0.005	1.107 ± 0.004	1.094 ±0.015	1.014 ± 0.014	1.200 ± 0.009	1.132 ± 0.010

Supplementary Table 3: Summary of the characteristics (mean \pm SE) of DSB dynamics for the interior and periphery DSBs for the negative control (mock DSBs) and upon ATP depletion.

N_{Cell} - number of cells analyzed

N_{DSB} - number of DSBs analyzed

 $A_{\rm s}$ - area explored by a DSB in 250 ms

 α - exponent obtained from fitting the *MSD* to $f(\tau) = C + B\tau^{\alpha}$

 $A_{\rm L}$ - area explored by a DSB in 25 s

 S_{rel} - slope of a linear fit to radially averaged H2B-GFP intensity around a DSB

 I_{ch} - normalized H2B-GFP intensity at the DSB centroid

	all NCS vs ATP dep inter vs inter	all NCS vs Mock DSB inter vs inter	ATP dep vs Mock DSB inter vs inter
$A_{\rm s}$	4.9×10^{-1}	2.2×10^{-6}	2.2×10^{-2}
α	1.6×10^{-3}	0	9.0×10^{-2}
$A_{\rm L}$	4.4×10^{-2}	0	6.2×10^{-2}
$S_{\rm rel}$	1.4×10^{-3}	2.1×10^{-1}	1.9×10^{-2}
Ich	1.9×10^{-6}	1.1×10^{-1}	1.5×10^{-7}
	all NCS vs all NCS	ATP dep vs ATP dep	Mock DSB vs Mock DSB
	peri vs inter	peri vs inter	peri vs inter
As	0	3.8×10^{-8}	5.8×10^{-6}
α	1.1×10^{-7}	6.9×10^{-1}	5.1×10^{-1}
$A_{\rm L}$	0	1.8×10^{-8}	5.3×10^{-7}
$S_{\rm rel}$	0	4.4×10^{-1}	1.2×10^{-3}
I _{ch}	0	2.0×10^{-3}	7.1×10^{-5}
	all NCS vs ATP dep	all NCS vs Mock DSB	ATP dep vs Mock DSB
	peri vs peri	peri vs peri	peri vs peri
As	2.0×10^{-1}	0	4.2×10^{-4}
α	8.9×10^{-6}	1.7×10^{-8}	1.2×10^{-1}
$A_{\rm L}$	3.4×10^{-2}	4.5×10^{-1}	8.2×10^{-2}
Srel	3.2×10^{-7}	3.1×10^{-1}	2.0×10^{-4}
I _{ch}	1.1×10^{-7}	1.0×10^{-1}	1.6×10^{-8}

Supplementary Table 4: Summary of the *p*-values (Kolmogorov Smirnov test) for all measured physical quantities for the interior and periphery DSBs for the negative control (mock DSBs) and upon ATP depletion.