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ABSTRACT The one-dimensional information of genomic DNA is hierarchically packed inside the eukaryotic cell nucleus and
organized in a three-dimensional (3D) space. Genome-wide chromosome conformation capture (Hi-C) methods have uncov-
ered the 3D genome organization and revealed multiscale chromatin domains of compartments and topologically associating
domains (TADs). Moreover, single-nucleosome live-cell imaging experiments have revealed the dynamic organization of chro-
matin domains caused by stochastic thermal fluctuations. However, the mechanism underlying the dynamic regulation of such
hierarchical and structural chromatin units within the microscale thermal medium remains unclear. Microrheology is a way to
measure dynamic viscoelastic properties coupling between thermal microenvironment and mechanical response. Here, we pro-
pose a new, to our knowledge, microrheology for Hi-C data to analyze the dynamic compliance property as a measure of rigid-
ness and flexibility of genomic regions along with the time evolution. Our method allows the conversion of an Hi-C matrix into the
spectrum of the dynamic rheological property along the genomic coordinate of a single chromosome. To demonstrate the power
of the technique, we analyzed Hi-C data during the neural differentiation of mouse embryonic stem cells. We found that TAD
boundaries behave as more rigid nodes than the intra-TAD regions. The spectrum clearly shows the dynamic viscoelasticity
of chromatin domain formation at different timescales. Furthermore, we characterized the appearance of synchronous and
liquid-like intercompartment interactions in differentiated cells. Together, our microrheology data derived from Hi-C data provide
physical insights into the dynamics of the 3D genome organization.
SIGNIFICANCE Genomic DNA is hierarchically packed inside the eukaryotic cell nucleus, and the genome organization
in three-dimensions (3D) contributes to proper genome function at multiple scales. Although thermal fluctuations inevitably
drive movements of the genome molecules in the microscale cell environment, there is no method, as of yet, to quantify
such dynamic three-dimensional genome organization of hierarchical and structural chromatin units. Here, we describe a
method to calculate rheological properties as measures of flexibility and liquid-like behavior of the genome. We show that
boundaries of known megabase-scale chromatin domains are more rigid than sequences inside these domains. Our
method allows the conversion of static and population-averaged genome-wide chromosome conformation capture data to
information that can reveal the dynamic and hierarchical properties of the three-dimensional genome organization.
INTRODUCTION

In eukaryotes, the one-dimensional information of genomic
DNA is spatiotemporally organized inside the cell nucleus,
which is only a few microns in size (1,2). Dynamic orches-
tration of genomic regulatory elements in three-dimensional
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(3D) space contributes to proper expression of genes.
Genome-wide chromosome conformation capture (Hi-C)
and related methods have revealed that chromatin hierar-
chically forms various sized genomic domains such as topo-
logically associating domains (TADs) at the submegabase
scale and A/B compartments at the megabase scale as func-
tional and cooperative units (2–5). These hierarchical
folding patterns depend on cell types and states during
cell differentiation (6–8). Although Hi-C experiments
require fixed cells and Hi-C data make sense in population
average, the tracking of single nucleosomes by single-mole-
cule and superresolution live-cell imaging experiments has
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Microrheology of 3D Genome Organization
revealed the dynamic organization of chromatin domains in
single cells (9–12). The dynamic property is just like a
‘‘polymer melt’’ state and reveals liquid-like behavior
(13,14). However, the relation of the liquid-like behavior
of chromatin to its hierarchical 3D genome organization re-
mains poorly understood.

Thermal fluctuations are dominant in a microscale me-
dium as well as within the cell environment and cause
random and stochastic motion of tiny particles, such as
Brownian motion. The stochastic dynamics of the Brownian
particle can be described by the generalized Langevin equa-
tion, which is formulated from micromechanics with the aid
of projection methods (15–17). The formalism of micro-
rheology was developed based on the generalized Langevin
equation (18); the generalized Stokes-Einstein relation
(GSER) allows the calculation of linear viscoelastic quanti-
ties from the mean-squared displacement (MSD) of tracer
particles in a complex fluid. Microrheology to measure
elastic or viscous properties as mechanical responses in a
microscale complex fluid has been verified for over two
decades (18,19). Besides, bio-microrheology, the study of
deformation and flow of biological materials at small
length scales, has revealed the nature of the dynamic
coupling between cell microenvironment and mechanical
response (20–22).

Recently, the quantitative significance of Hi-C contact
matrix data was elucidated mathematically by several inde-
pendent groups (23–25). We developed a polymer modeling
and a simulation method called polymer dynamics deci-
phered from Hi-C data (PHi-C) to decipher Hi-C data into
polymer dynamics (25). In the mathematical formalism,
we found a one-to-one correspondence between a Hi-C con-
tact matrix and an interaction matrix of the polymer model.
Once an optimal interaction matrix of the polymer model to
an input Hi-C matrix data is obtained, the method allows the
calculation of not only dynamic information such as the
MSD of a modeled genomic region but also conformations
of the polymer model. Therefore, integrating PHi-C with the
GSER can provide a new microrheology for Hi-C data to
characterize the viscoelastic properties of the modeled chro-
mosome dynamics.

Here, we demonstrate that our microrheology converts an
Hi-C matrix into the spectrum of the complex compliance
J*(u) as a measure of the flexibility of a modeled genomic
region. Because u represents a frequency of oscillatory
shear stress in the rheology formalism (26), the inverse
t ¼ u�1 corresponds to a time, and J*(u) should include dy-
namic information along the time. Thus, the converted spec-
trum of the complex compliance describes how an
individual genomic region as a part of the modeled polymer
flexibly deforms at a specific timescale. We show that rigid
boundaries in a profile of the complex compliance along a
genomic coordinate at a timescale statistically characterize
TAD boundaries. Moreover, by applying Hi-C data during
cell differentiation, we find the appearance of synchronous
and liquid-like intercompartment interactions in differenti-
ated cells. Together, our microrheology enables us to inter-
pret static and population-averaged Hi-C data as a dynamic
and hierarchical rheology spectrum regarding the dynamic
3D genome organization.
MATERIALS AND METHODS

Theory of microrheology to convert Hi-C data into
complex compliance

First, for an N� N-sized Hi-C matrix of a single chromosomewith an appro-

priate bin resolution, we modeled the chromosome fiber as a polymer system

{R0,R1,., RN � 1}, whereRi represents the position vector of the i-th mono-

mer. Besides, we proposed a model for deciphering Hi-C data into polymer

dynamics in which the attractive or repulsive interaction between two mono-

mers was assumed as a linear force proportional to the displacement between

the two monomers (25). We refer to this model as the polymer network

model. Then, the physical interactions of all pairs can be described as an

N � N matrix K ¼ (Kij). The dynamics of the polymer system is described

by the Langevin equation, gðdRiðtÞ=dtÞ ¼ PN�1
j¼0 Kij½RjðtÞ � RiðtÞ� þ giðtÞ,

where g is the friction coefficient of the monomers. The thermal random

force gi(t) satisfies zero average, hgi;aðtÞi ¼ 0, and the fluctuation-dissipation

relation, hgi;aðtÞgj;bðsÞi ¼ 2gkBTdabdijd(t � s), where kB is the Boltzmann

constant, T is the temperature of the environment, h ,i stands for the aver-

aging at thermal equilibrium, and the suffixes a and b represent the spatial

coordinates x, y, and z. Because the equation is linear, we can analytically

solve the equation under thermal equilibrium. Therefore, once the interaction

matrix K is given, we can calculate and simulate the dynamics and conforma-

tions of the polymer model in thermal equilibrium. The positive values of the

matrix K stand for elastic forces between two monomers, and the model

formally resembles the Gaussian network model (27–29). Mathematically,

although a negative value of the matrix K can make the polymer system un-

stable, the positive semidefiniteness of the Laplacian matrix of K is a neces-

sary and sufficient condition for the stability of the polymer network model

(25). As long as the Laplacian matrix of K is positive semidefinite, the eigen-

values of the Laplacian matrix are nonnegative, and the stability of the poly-

mer system is ensured (25). Therefore, the negative values are acceptable as

repulsive forces in the polymer network model. This assumption is a unique

point of our modeling, and different from the recently developed similar poly-

mer modeling (23,24).

PHi-C (https://github.com/soyashinkai/PHi-C) is a simulation tool to

decipher Hi-C data based on the mathematical formalism of the polymer

network model, in which a normalized contact matrix C ¼ (Cij) is con-

nected in a one-to-one correspondence with the normalized interaction

matrix K ¼ s2

3kBT
ðKijÞ (25). Here, s represents the contact distance. The

PHi-C optimization procedure allows for extracting an optimal normal-

ized interaction matrix K from an input-normalized contact matrix C

(Fig. 1). Therefore, we can interpret an input population-averaged Hi-C

contact matrix for a single chromosome as interaction parameters of the

polymer network model in thermal equilibrium. In practice, as long as

the Laplacian matrix of the matrix K is positive semidefinite, PHi-C simu-

lation to calculate polymer dynamics and conformations returns physi-

cally stable results.

In theory, the physical interaction matrix K includes all information with

respect to not only dynamics, but also conformations in thermal equilib-

rium. The matrix K can be converted into the Laplacian matrix

L ¼ D� K to characterize the properties of the network, where the degree

matrix is defined by D ¼ diag(D0, D1, ., DN�1) and Di ¼
PN�1

j¼0 Kij .

Because the Laplacian matrix L is symmetric, L is diagonalizable. Further-

more, the N eigenvalues satisfy 0¼ l0 < l1 % l2 %.% lN � 1 as long as

L is positive semidefinite and there is an orthogonal matrix Q such that

QTLQ ¼ diag(l0, l1, ., lN � 1). Then, the MSD of the n-th monomer

within the modeled single chromosome can be written as
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FIGURE 1 Microrheology pipeline for Hi-C data using PHi-C and GSER. A normalized contact matrix Cij as input data is deciphered into a normalized

physical interaction matrix of the polymer network modelKij through the PHi-C optimization. The red and blue colors in the bins ofKij represent the intensity

of the attractive and repulsive interactions, respectively. The MSD of the n-th monomer in the polymer model is analytically calculated from the interaction

matrix Kij . Finally, the GSER allows us to obtain the normalized complex compliance J
�ðuÞ ¼ J

0ðuÞ� iJ
00ðuÞ. The ratio J

00
=J

0
corresponds to the loss

tangent, tand, where d is the phase angle. To see this figure in color, go online.
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MSDðt; nÞ ¼ 6kBT
XN�1

p¼ 1

Q2
npl

�1
p

�
1� e�lp=g , t

�
; (1)

where t represents actual time (25), and the movement of the center-of-mass

is eliminated to take into account the dynamic fluctuations within a single

chromosome.

The GSER connects the MSD to the complex shear modulus in the Lap-

lace domain (18) with the inertia being neglected, ~GðsÞ ¼
ðkBT =paÞð1 =shD~r2ðsÞiÞ, and the complex compliance is defined as the in-

verse of the complex shear modulus (26),

~JðsÞh 1

~GðsÞ ¼ pa

kBT
s
�
D~r2ðsÞ�: (2)

Here, we employed the MSD of a modeled genomic monomer derived by

PHi-C to consider the dynamic viscoelastic properties of the genome itself

within a single chromosome. Calculating the Laplace transformation of Eq.

1, the complex compliance of the n-th monomer within a single chromo-

some was expressed by using the eigenvalues flpgN�1
p¼1 and the orthogonal

matrix Q as

~Jðs; nÞ ¼ 6pa
XN�1

p¼ 1

Q2
np

gsþ lp
: (3)

The matrix one-to-one correspondence between C and K is formally

closed as dimensionless quantities in PHi-C, where the two physical quan-

tities s and g are unknown factors. Therefore, our theory cannot directly

deal with the above complex compliance with the physical unit Pa�1. We

should give normalized expressions. In PHi-C, the eigenvalues of the

normalized Laplacian matrix L ¼ ðs2 =3kBTÞL were normalized as lp ¼
ðs2 =3kBTÞlp. Moreover, using the normalized inverse time s ¼
ðgs2 =kBTÞs, we could rewrite Eq. 3 as

~Jðs; nÞ ¼ 6pas2

kBT

XN�1

p¼ 1

Q2
np

sþ 3lp
: (4)

In general, the complex compliance was defined by the Fourier-Laplace

transformation, replacing s ¼ iu: J�ðuÞ ¼ ~JðiuÞ ¼ J0ðuÞ� iJ00ðuÞ, where
u, J0, and J00 are the normalized frequency, the storage, and the loss compli-

ances, respectively. Thus, the normalized complex compliance was derived

from the result of PHi-C with no reference to physical parameters,
2222 Biophysical Journal 118, 2220–2228, May 5, 2020
J
�ðu; nÞh J�ðu; nÞ kBT

6pas2
¼

XN�1

p¼ 1

Q2
np

iuþ 3lp
; (5)

and the normalized storage and loss compliances can be written as

J
0ðu; nÞ ¼

XN�1

p¼ 1

3Q2
nplp

u2 þ 9l
2

p

and J
00ðu; nÞ ¼

XN�1

p¼ 1

Q2
npu

u2 þ 9l
2

p

;

(6)

respectively. The ratio of J
00
/J

0
is called the loss tangent,

tandðu; nÞ ¼ J
00ðu; nÞ

.
J
0ðu; nÞ; (7)

where d represents the phase angle between stress and strain (26). A flow

of our microrheology procedure based on both PHi-C and the GSER is

summarized in Fig. 1.
Hi-C data of mouse embryonic stem cells

We used Hi-C data of mouse embryonic stem (ES) cells during neural

differentiation by Bonev et al. (8) (Gene Expression Omnibus, GEO:

GSE96107) on the Hi-C data archive of Juicebox (30). Using Juicer

Tools (30), we extracted the Hi-C matrix data with Knight-Ruiz (KR)

normalization and at a 250-kb resolution from ‘‘.hic’’ files and calculated

the eigenvector. The extracted Hi-C matrix data were analyzed through

the PHi-C pipeline (25).
Analysis of the distance between TAD boundaries
and the genomic positions of the troughs

The analysis was performed as previously described with small modifica-

tions (31,32). We used TAD boundary data, defined by Bonev et al. (2),

on chromosomes 6 and 17 of ES cells during neural differentiation. To

generate the control trough list, the genomic positions of the troughs at

each frequency (u ¼ 10�1, 10�2, and 10�3) were randomly permutated

at 250-kb genomic bin resolution on a chromosome excluding the centro-

meric region (0–3 Mb). Then, cumulative probabilities of the overlap be-

tween the lists of TAD boundaries and the troughs (original or randomly

permutated) at a given frequency were computed based on their nearest

distance.
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PHi-C simulation to calculate polymer dynamics
and conformations

We carried out PHi-C simulations to calculate polymer dynamics of the

polymer network model. First, we obtained an optimal normalized interac-

tion matrix K by the PHi-C optimization procedure. Then, K is converted

into the normalized Laplacian matrix L. Using the eigendecomposition of

the matrix L, the normalized eigenvalues flpgN�1

p¼0 and the orthogonal ma-

trix Q are obtained. For a normalized polymer conformation vector Ra ¼
ððR0;a=sÞ; ðR1;a=sÞ;/; ðRN�1;a=sÞÞT, where Ri,a stands for the a (¼ x, y, z)

coordinate of the i-th monomer, the converted vector Xa ¼ QTRa satisfies

the variance relationship hX2

p;ai ¼ 1=ð3lpÞ for p ¼ 1, 2, ., N � 1. There-

fore, an initial conformation of the converted vector in thermal equilibrium

is given: X0;a

��
t¼0

¼ 0, so that the center-of-mass is the origin, and Xp;a

��
t¼0

is a random variable obeying the normal distribution with mean 0 and vari-

ance 1=ð3lpÞ for p ¼ 1, 2, ., N � 1. Then, the initial normalized confor-

mation in thermal equilibrium is calculated as Ra

��
t ¼0

¼QXa

��
t¼0

. Finally,

to calculate the polymer dynamics, we numerically integrated the stochastic

differential equation by using Heun’s method (17): the integral algorithm

assures the second-order convergence in the parameter E and is defined

by first predicting Rajt� ¼ Rajt�3eLRa

���
t
þ ffiffiffiffiffi

2e
p

xa and then correcting

Rajtþe ¼ Rajt � 3eL Rajt þ Rajt�
� �

=2þ ffiffiffiffiffi
2e

p
xa; where the vector xa ¼

ðx0;a; x1;a;/; xN�1;aÞT consists of random variables fxi;agN�1

i¼0
obeying the

normal distribution with mean 0 and variance 1. The parameter e ¼
ðkBTDt =gs2Þ is nondimensional and represents a normalized step time,

and it determines the accuracy of the stochastic differential equation inte-

gration. Dt stands for the step time of the integration in actual time. We

also eliminated the dynamics of the center of mass to keep the position at

the origin.

To estimate the physical size of polymer conformations in thermal equi-

librium, we sampled a normalized polymer conformation

fRi ¼ ðRi;x;Ri;y;Ri;zÞgN�1

i¼0
by the same method as the above to obtain the

initial normalized conformation. Then, we calculated the radius of gyration

by Rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=NÞPN�1

i¼0 R
2

i

q
.

To visualize and analyze the simulated polymer dynamics and conforma-

tions, we used VMD (33).
RESULTS

Spectrum of complex compliance during mouse
neural differentiation

Because we had previously analyzed Hi-C data of chromo-
somes 6 and 17 in mouse ES cells by the PHi-C method
(25), we focused on these two chromosomes as a demonstra-
tion of our microrheology method. In addition, to uncover
changes in rheological properties of the 3D genome organi-
zation during cell differentiation, we needed to analyze
deep-coverage Hi-C data of mouse ES cells, neural progen-
itor cells (NPCs), and cortical neurons (CNs) (8). First, we
performed the PHi-C optimization procedure for the 3- to
149.75-Mb genomic region of chromosome 6 to obtain an
optimal normalized interaction matrix K of the polymer
network model. The optimized contact matrices for ES
cells, NPCs, and CN cells showed very high Pearson’s cor-
relations (0.979, 0.978, and 0.959, respectively) between the
Hi-C matrix and the optimized contact matrix (Fig. 2 A).
The same analysis for the 3- to 95-Mb genomic region of
chromosome 17 also showed a good agreement between
the Hi-C matrix and the optimized contact matrix with
very high Pearson’s correlations (0.978, 0.983, and 0.969,
respectively) (Fig. S1 A). Also, based on the optimal
normalized interaction matrix, our PHi-C simulation allows
for calculating and visualizing chromosome conformations
for each differentiation stage (Fig. S2).

Using Eqs. 5 and 6, we calculated the normalized com-
plex compliance J

�ðu; nÞ ¼ J
0ðu; nÞ � iJ

00ðu; nÞ as a mea-
sure of flexibility for an oscillatory stress with the
normalized frequency u. Also, the parameter n represents
a genomic region (3 þ 0.25 � n)–(3 þ 0.25 � (n þ 1))
Mb. Thus, we obtained a two-dimensional spectrum of��J�ðuÞ �� along the genomic coordinate (Figs. 2 B and S1
B). In general, at a fixed frequency u, rheological quantities
express the viscoelastic response to the periodic perturba-
tion with u, and these quantities include the dynamic
information on the viscoelastic mobility at the timescale
t ¼ u�1. The values of

��J�ðuÞ �� gradually increase along
with time evolution from the short timescale u ¼ 100 to
the long timescale u ¼ 10�4. The vertical stripe patterns
in the spectrum are variable along the chromosome, suggest-
ing different viscoelastic responses depending on the
genomic regions of the chromosome. Furthermore, accord-
ing to changes in the Hi-C patterns during mouse neural
differentiation, the spectra of

��J�ðuÞ �� also showed different
patterns.

To visualize the frequency-dependent viscoelastic
response, we plotted the normalized storage and loss com-
pliances, J

0ðuÞ and J
00ðuÞ, for all genomic regions (Figs. 2

C and S1 C). The blue bundle of the storage compliances
shows a step-like pattern with slopes on the double logarith-
mic plot, suggesting dynamic and hierarchical viscoelastic
responses in the 3D genome organization. Furthermore,
the red curves of the loss compliances show convex upward
shapes, indicating that the viscous dynamics of a genomic
position n within a chromosome relaxes at the time corre-
sponding to the inverse of the normalized frequency u at
the peak.

Taken together, our microrheology method allows the
conversion of a hierarchical Hi-C pattern to a dynamic
and hierarchical rheological spectrum.
TAD boundaries are more rigid as nodes than
intra-TAD sequences

To understand what the values of the complex compliance
J
�

reveal along the genomic coordinate, we plotted��J�ðuÞ �� at u ¼ 10�1, 10�2, and 10�3 focusing on the 50-
to 100-Mb region of the chromosome 6 in ES cells (Fig. 3
A). According to variously sized triangles corresponding
to chromatin domains such as TADs and compartments on
the Hi-C contact pattern, the shapes of

��J�ðuÞ �� displayed
peaks and troughs marked with pink and blue dots, respec-
tively. Our statistical analysis revealed that the troughs in
Biophysical Journal 118, 2220–2228, May 5, 2020 2223



FIGURE 2 (A) Contact matrices for chromosome 6 during neural differentiation of mouse embryonic stem (ES) cells (left), neural progenitor cells (NPCs)

(middle), and cortical neuron (CN) cells (right) at 250-kb resolution. The upper right and lower left elements in each matrix correspond to the normalized Hi-

C contact probabilities and the optimized ones by PHi-C, respectively. (B) The spectra of the normalized complex compliance
��J�ðuÞ �� for chromosome 6 in

mouse ES cells (left), NPCs (middle), and CN cells (right) are shown. Along the genomic coordinate and the logarithmic frequency log10u, a spectrum of

log10
��J�ðuÞ �� is depicted as a heat map. (C) Frequency-dependent normalized storage (blue) and loss (red) compliances, J

0ðu; nÞ and J
00ðu; nÞ, for all

genomic regions n (¼ 0, 1, ., 586) on chromosome 6 in mouse ES cells (left), NPCs (middle), and CN cells (right) are shown. To see this figure in color,

go online.
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the
��J�ðuÞ �� profile were located near the reported TAD

boundaries at each frequency u ¼ 10�1, 10�2, and 10�3

for chromosomes 6 and 17 of mouse ES cells, NPCs,
and CN cells (Fig. S3; Table S1), suggesting that TAD
boundaries are characterized as more rigid nodes than the
intra-TAD sequences according to the timescale t ¼ u�1.
Therefore, the vertical stripe patterns in the spectrum in
Fig. 2 B show the variation of peaks and troughs, depending
on the frequency.

Next, we tried to visualize the role of the trough positions
in the 3D genome organization. Our PHi-C simulation al-
lows for polymer dynamics consistent with the optimized
Hi-C matrix. Fig. 3 B shows a snapshot of an initial polymer
conformation for chromosome 6 in mouse ES cells, where
pink and blue dots represent the genomic positions corre-
sponding to the peaks and troughs of

��J�ðu ¼ 10�1Þ �� ,
respectively. Video S1 shows the dynamic fluctuation of
the polymer model within time t¼ 10. It seems that, at every
time step, the conformation is irregularly folded, and we
cannot find distinct chromatin domains. Then, we piled up
the pink and blue dots in the dynamics (Fig. 3 B; Video
2224 Biophysical Journal 118, 2220–2228, May 5, 2020
S2). We can see that these two color regions are separated
and that the blue-labeled trough regions look functional as
dynamic boundaries to interfere with interdomain interac-
tions between the pink-labeled intradomain regions.
Dynamic and hierarchical changes of
chromosome rigidness during cell differentiation

The peaks and troughs in the shape of
��J�ðuÞ �� were also

observed for chromosome 6 in ES cells, NPCs, and CN cells
(Fig. 3 C). The number of troughs decreased from the short
timescale (high u) to the long timescale (low u) (Figs. 3 D
and S4 A). This indicated that dynamic and hierarchical
compartmentalization with domain fusions occur in the
3D genome organization according to the time evolution.
For example, intra-TAD dynamics is dominant until
t ¼ 101, then inter-TAD communications and fusions of
TADs arise up to t ¼ 102 in intracompartments, and inter-
compartment interactions occur over t ¼ 103. Besides, the
numbers of troughs for ES cells, NPCs, and CNs were or-
dered, revealing that the number of chromatin domains as
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FIGURE 3 Complex compliance characterizes

chromatin domain boundaries and internal regions

during mouse neural differentiation. (A)
��J�ðuÞ �� at

u ¼ 10�1, 10�2, and 10�3 and a cropped Hi-C con-

tact matrix for the 50- to 100-Mb region on chromo-

some 6 in mouse ES cells with a TAD boundary

profile (8) are shown. Pink and blue dots correspond

to peaks and troughs for each curve, respectively.

The vertical dashed lines represent the genomic po-

sition at the troughs of
��J�ðu ¼ 10�2Þ �� . (B) A snap-

shot of an initial polymer conformation (left) in

PHi-C simulations for chromosome 6 in mouse ES

cells is shown, where pink and blue dots represent

the genomic positions at the peaks and troughs of��J�ðu ¼ 10�1Þ �� . Also shown is a cumulative plot

(right) of the 3D positions of the peaks and troughs

in the simulation within time t ¼ 10. (C)
��J�ðuÞ �� at

u ¼ 10�1 and 10�2 for chromosome 6 in mouse ES

cells, NPCs, and CN cells is shown. (D) The fre-

quency dependence of the number of minimal peaks

as the troughs on
��J�ðuÞ �� for chromosome 6 in

mouse ES cells, NPCs, and CN cells is shown. (E)

The frequency-dependent average values of��J�ðuÞ �� along chromosome 6 in mouse ES cells,

NPCs, and CN cells are shown. (F) The frequency-

dependent Pearson’s correlation between the

normalized storage and loss compliances, J
0ðuÞ

and J
00ðuÞ, on chromosome 6 in mouse ES cells,

NPCs, and CN cells is shown. The scatter plots at

u ¼ 10�2 and u ¼ 10�3 for NPCs and CNs are dis-

played, respectively. To see this figure in color, go

online.
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chromosome structural units decreases depending on an in-
dividual frequency, and the rearrangement occurs during
cell differentiation. Furthermore, the average values of��J�ðuÞ �� were also ordered until the time t ¼ 103 (Figs. 3
E and S4 B), suggesting that the physical property of chro-
mosomes averagely becomes rigid and less flexible during
cell differentiation.

The complex compliance J
�ðuÞ is divided into the storage

and loss components (Eq. 6), which are not independent of
each other in rheological relations (26). We plotted these
two compliances within chromosome 6 in ES cells, NPCs,
and CN cells at different frequencies (Video S3), relating
to the Cole-Cole plot in dielectrics (34). At a fixed fre-
quency u, the scattering pattern should reflect a cooperative
rheological response within a chromosome. Therefore, we
calculated the correlation between these two compliances
on the scatter plots for different frequencies (Fig. 3 F).
For ES cells, broad positive correlations were detected
in the frequency region u ¼ 10�3–10�1. A high positive
correlation indicates that the elastic and viscous responses
described by J

0ðuÞ and J00ðuÞ synchronize within a chromo-
some to the periodic stress with a frequency u. Therefore, a
positive peak of the correlation indicates a characteristic
time t ¼ u�1 of the synchronous response. For NPCs
and CNs, a broad region showing high correlations was
not observed. Instead, some peaks were observed around
u ¼ 10�2 for NPCs and u ¼ 10�2 and 10�3 for CNs.
Note here that the peaks around u ¼ 10�4 are excepted
because the response to the extremely slow fluctuation
corresponds to a whole movement of the chromosome.
Because we could confirm that the checkerboard pattern
corresponding to the A/B compartment organization in
Fig. 2 A gradually becomes dense during cell differentiation,
the correlations for ES cells, NPCs, and CNs at u¼ 10�3 are
ordered, suggesting that the timescale t ¼ 103 must be re-
lated to intercompartment organization. For chromosome
17, we observed similar features of the correlations
(Fig. S4 C).
Synchronous and liquid-like intercompartment
interactions appear in differentiated cells

As shown in Eq. 7, the loss tangent is defined as the ratio of
the normalized loss compliance J

00
to the normalized storage

compliance J
0
. Therefore, positive and negative values of

the logarithmic loss tangent indicate liquid-like viscosity
and solid-like elasticity, with higher and lower energy
dissipation, respectively. Here, we asked whether there is
Biophysical Journal 118, 2220–2228, May 5, 2020 2225
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FIGURE 4 (A) Eigenvectors and spectra of the loss tangent tandðuÞ for chromosome 6 in mouse ES cells (left), NPCs (middle), and CN cells (right) at a

250-kb resolution. Along the genomic coordinate and the logarithmic frequency log10u, a spectrum of log10tandðuÞ is depicted as a heat map. The white

arrows for CNs indicate definite ‘‘island’’ regions around u ¼ 10�3 with negative eigenvectors. (B) The scatter plots between the logarithmic loss tangent

and the eigenvalue for u ¼ 10�2 and u ¼ 10�3 are shown. For CNs, the black arrow indicates the appearance of the ‘‘islands’’ in (A). To see this figure in

color, go online.
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a difference in the liquid-like and solid-like properties be-
tween the A and B compartment organization or not. We
depicted spectra of the loss tangent tandðu; nÞ (see Eq. 7)
with the eigenvector to characterize the compartment orga-
nization (3) during differentiation in Fig. 4 A.

For chromosome 6 in ES cells, the spectrum showed
that viscous behavior with higher energy dissipation is
dominant in the frequency u ¼ 100–10�2, and the shape
at a fixed frequency has peaks and troughs. However, the
positive and negative values of the logarithmic loss tangent
for u ¼ 10�2 did not correlate with the eigenvalues (Fig. 4
B; left), implying that there is little difference in the liquid-
like and solid-like properties between the A and B compart-
ments. In addition, the scatter plot for u ¼ 10�3 dropped
horizontally compared with that for u ¼ 10�2. For NPCs,
we confirmed a different pattern in the spectrum, although
the scatter plots for u ¼ 10�2 and 10�3 showed an overall
decrease similar to that for ES cells (Fig. 4, A and B;
middle).

In contrast, the spectrum for CNs revealed a characteristic
pattern of isolated regions like ‘‘islands’’ with positive values
(Fig. 4 A; right). Interestingly, some islands appeared around
the frequency u ¼ 10�3 belonging to the genomic regions
with negative eigenvalues, indicating the synchronous and
liquid-like intercompartment response to the periodic force
with the frequency. The synchronous appearance was also
confirmed in the scatter plots for u ¼ 10�2 and 10�3 (Fig. 4
B; right), where the solid-like elastic property (tand< 1) for
u ¼ 10�2 turns into the liquid-like viscous property (tand >
1) foru¼ 10�1. For chromosome17,weobserved similar fea-
tures on the loss tangent spectra (Fig. S5).

Although it would be hard to visualize and express the dy-
namic rheology response in three dimensions, we tried to
visualize the dynamic changes of 3D formation of the A/B
compartments along with the time evolution in Fig. 5 and
in Videos S4, S5, S6, S7, S8, and S9. We depicted the
2226 Biophysical Journal 118, 2220–2228, May 5, 2020
time evolution of green- and red-labeled 3D compartments
with positive and negative eigenvectors, respectively, in
PHi-C simulations for mouse ES cells, NPCs, and CN cells
within time intervals t ¼ 10, 100, and 1000. The blue dots
represent cumulative dots of a compartment region
(128.5–134 Mb for ES cells, 128.5–134 Mb for NPCs, and
128.5–134.5 Mb for CNs) with negative eigenvectors in
the simulations. We can see a complicatedly separated 3D
formation of the compartments for the short timescale
(t ¼ 10). For the long timescale (t ¼ 1000), the separated
compartments polarize with an overlap. Within the red-
labeled 3D compartment region, the blue-labeled genomic
region, which belongs to one of the ‘‘islands’’ in the case
of CNs, dynamically moves around.
DISCUSSION

In this study, we revealed the rheological information of the
dynamic 3D genome organization as a spectrum by inte-
grating the theoretical MSD by PHi-C and the GSER. On
the spectrum, the differences in the compliance along the
genomic coordinate at a particular timescale revealed the
distinct characteristics of the boundaries and insides of
chromatin domains; especially, TAD boundaries were found
to be more rigid than the intra-TAD regions. During cell
differentiation, we quantitatively estimated increasing
rigidity of the chromosome, with dynamic organization of
chromatin domains with time evolution.

Particularly, our microrheology method allows for inter-
preting static and population-averaged Hi-C matrix data
as a dynamic and hierarchical 3D genome picture.
Definite boundaries with higher rigidness at a particular
timescale t ¼ u�1 characterize an individual triangle
region corresponding to a chromatin domain such as a
TAD or a compartment on an Hi-C pattern. In other words,
the appearance of a chromatin domain as a functional unit of



FIGURE 5 Time evolution of green- and red-labeled 3D compartments

with positive and negative eigenvectors, respectively, in PHi-C simulations

for chromosome 6 in mouse ES cells (top), NPCs (middle), and CN cells

(bottom) within time intervals t ¼ 10, 100, and 1000. The blue dots repre-

sent cumulative dots of a compartment region (128.5–134 Mb for ES cells,

128.5–134Mb for NPCs, 128.5–134.5Mb for CNs) with negative eigenvec-

tors in simulation. Fig. S6 explains how to make isosurface plotting of

3D compartments from a PHi-C simulation. To see this figure in color,

go online.

Microrheology of 3D Genome Organization
the 3D genome organization correlates to a specific time-
scale with the dynamics. In addition, organization of an in-
terdomain interaction is relatively slow, and synchronous
and liquid-like intercompartment interactions were notable
in the mouse neural-differentiated cells. Therefore, the spec-
trum revealed by our microrheology method explicitly
shows the hierarchical four-dimensional genome organiza-
tion beyond schematic and static 3D genome pictures on
paper.

Large-scale numerical simulations for modeling the inter-
phase cell nucleus environment have revealed viscoelastic
properties based on the GSER (35). As microrheology ex-
periments have tracked the motion of tracer particles, the
authors simulated the viscoelastic response of dispersed
Brownian particles in polymer solutions and found a caged
effect at short times with large particles. In the current
study, our microrheology method did not focus on the tracer
particles but rather on modeled chromosome dynamics itself
by calculating the theoretical MSD and using the GSER.
Thus, we could characterize the rheological properties of a
chromosome along the genome coordinate. Moreover, we
used the complex compliance J*(u) as a measure of flexi-
bility, but we can convert it into the complex modulus
G*(u) and the dynamic viscosity h*(u) by the relationship
G*(u) ¼ iuh*(u) ¼ 1/J*(u) (26).

Although the PHi-C optimization procedure can return a
high correlation value between an input Hi-C and the opti-
mized contact matrices, the correlation value depends on
not only the quality and matrix normalization of the Hi-C
data but also the computational time of the PHi-C optimiza-
tion. In addition, it is crucial to bridge our theoretical predic-
tion and the real dynamics of genomic loci in living cells. In
our theoretical framework, two physical parameters, the con-
tact distance s (m) and the friction coefficient g (kg/s), are
unknown. These values must be determined by comparison
with experimental MSD data of genomic loci. Although the
theoretical MSD result was not comprehensively verified
by experiments, the MSD curves theoretically derived by
PHi-C for Nanog and Oct4 loci of ES cells were partially
consistent with the genomic movements in a live-cell imag-
ing experiment (25,36). Under a high correlation value by
the PHi-C optimization and assuming that a chromosome
modeled by the polymer network model is in thermal equilib-
rium, our microrheology method is reliable and competent.

In this study, we focused on the rheological properties of a
specific chromosome during cell differentiation, but we
could not elucidate a relationship between the physical
properties of chromatin and gene expression, i.e., how phys-
ical rigidness or flexibility of a specific genomic region
including some loci might relate to the gene expression
levels. Our findings on TAD boundaries as more rigid nodes
would suggest they might be the molecular mechanism
regulating the physical rigidness of the boundaries.

In summary, the microrheological spectrum generated
from Hi-C data describes the dynamic changes in rigidness
and flexibility between individual genomic regions as well
as during cell differentiation. To fully understand chromatin
domain formation and interdomain interactions, we need to
understand chromatin dynamics at different timescales. Our
microrheology method opens the possibility of interpreting
Hi-C data as information that can reveal the dynamic and hi-
erarchical properties of the 3D genome organization.
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Figure S1: (A) Contact matrices for chromosome 17 during neural differentiation of mouse em-

bryonic stem (ES) (Left), neural progenitor (NPC) (Middle), and cortical neuron (CN) (Right) cells

at 250-kb resolution. Upper right and lower left elements in each matrix correspond to the nor-

malized Hi-C contact probabilities and the optimized ones by PHi-C, respectively. (B) Spectra of

the normalized complex compliance |J̄∗(ω̄)| for chromosome 17 in ES (Left), NPC (Middle), and

CN (Right) cells. Along the genomic coordinate and the logarithmic frequency log10 ω̄, a spec-

trum of |J̄∗(ω̄)| is depicted as a heat-map. (C) Frequency-dependent normalized storage (blue)
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and loss (red) compliances, J̄ ′(ω̄;n) and J̄ ′′(ω̄;n), for all genomic regions n (= 0, 1, · · · , 367) on

chromosome 17 in ES (Left), NPC (Middle), and CN (Right) cells.
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Figure S2: Probability density analysis of the normalized gyration radius Rg/σ of 105 conforma-

tions for chromosome 6 (A) and 17 (B) of mouse embryonic stem (ES; blue), neural progenitor

(NPC; green), and cortical neuron (CN; red) cells. Snapshots of the polymer conformations with

the average gyration radius are displayed.
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Troughs (ES chr6; ω = 10-1, 10-2, 10-3) vs TBs

Figure S3: Cumulative probability analysis for TAD boundaries and the genomic positions of

the troughs. A cumulative probability analysis of the distance between the trough positions and

the nearest TAD boundaries on chromosome 6 in mouse embryonic stem (ES) cells. Red, green,

gold, and grey represent the troughs from the frequency ω̄ = 10−1, 10−2 and 10−3, and randomly

permutated (control), respectively, with the former three significantly closer to the TAD boundaries

than control (p = 9.42 × 10−6, 9.44 × 10−6, 1.04 × 10−5, respectively, by a two-sided Wilcoxon

rank sum test). The p-values in the same analysis for chromosome 17 are also summarized on

Table S1.
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Figure S4: (A) Frequency dependence of the number of minimum peaks as the troughs on |J̄∗(ω̄)|

for chromosome 17 in mouse embryonic stem (ES), neural progenitor (NPC), and cortical neuron

(CN) cells. (B) Frequency-dependent average values of |J̄∗(ω̄)| along chromosome 17 for mouse

ES, NPC, and CN cells. (C) Frequency-dependent Pearson’s correlation between the normalized

storage and loss compliances, J̄ ′(ω̄) and J̄ ′′(ω̄), on chromosome 17 in mouse ES, NPC, and CN

cells.
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ES: chromosome 17 (3–95 Mb) NPC: chromosome 17 (3–95 Mb) CN: chromosome 17 (3–95 Mb)

Figure S5: (A) Eigenvectors and spectra of the loss tangent tan δ(ω̄) for chromosome 17 in mouse

embryonic stem (ES) (Left), neural progenitor (NPC) (Middle), and cortical neuron (CN) (Right)

cells at 250-kb resolution. Along the genomic coordinate and the logarithmic frequency log10 ω̄,

a spectrum of tan δ(ω̄) is depicted as a heat-map. White arrows for CN indicate definite “island”

regions around ω̄ = 10−3 with negative eigenvectors. (B) Scatter plots between the logarithmic

loss tangent and the eigenvalue for ω̄ = 10−2 and ω̄ = 10−3. For CN, the black arrow indicates the

appearance of the “islands” in (A).
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ES: chromosome 6 (3–149.75 Mb)

Cumulative dots in a PHi-C simulation

Isosurfaces of compartment regions (green and red)
with cummulative dots of a compartment region (blue)

VolMap Tool on VMD

Figure S6: Isosurface plotting of compartment regions by VolMap Tool on VMD (33). According

to an eigenvector profile of a Hi-C matrix, compartment regions of an initial polymer conformation

at t̄ = 0 are labeled by green and red colors. A PHi-C simulation provides cumulative dots within

a time interval. VolMap Tool on VMD allows for converting the labeled cumulative dots into

isosurfaces of compartment regions.
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Table S1: p-values by a two-sided Wilcoxon rank sum test in the cumulative probability

analysis for chromosomes 6 and 17 in mouse embryonic stem (ES), neural progenitor

(NPC), and cortical neuron (CN) cells.

ω̄ = 10−1 ω̄ = 10−2 ω̄ = 10−3

chromosome 6 ES 9.42× 10−6 9.44× 10−6 1.04× 10−5

NPC 2.64× 10−5 5.08× 10−4 2.60× 10−4

CN 4.43× 10−4 9.43× 10−4 2.91× 10−2

chromosome 17 ES 3.10× 10−5 4.46× 10−5 1.87× 10−4

NPC 3.18× 10−4 2.11× 10−3 1.64× 10−2

CN 2.44× 10−5 1.87× 10−4 5.35× 10−3
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Supporting Videos

Video S1: A PHi-C simulation for chromosome 6 in mouse embryonic stem cells within time t̄ =

10 regarding Fig. 3B. Here 104 steps of numerical integration were carried out with the normalized

step time ε = 0.001. Pink and blue dots represent the genomic positions at the peaks and troughs

of |J̄∗(ω̄ = 10−1)| in Fig. 3A.

Video S2: Spinning 3D structure of cumulative dots of the peaks and troughs in the simulation

(Video S1) within time t̄ = 10 regarding Fig. 3B.

Video S3: Time evolution of the Cole-Cole plots between the normalized storage and loss compli-

ances, J̄ ′(ω̄) and J̄ ′′(ω̄), from ω̄ = 10−1 to 10−3 within chromosome 6 in mouse embryonic stem

(Left; blue), neural progenitor (Middle; green), and cortical neuron (Right; red) cells.

Video S4: A PHi-C simulation for chromosome 6 in mouse embryonic stem cells within time

t̄ = 10, which is identical to the dynamics in Video S1. According to an eigenvector profile of

a Hi-C matrix, compartment regions with positive and negative eigenvectors are labeled by green

and red colors, respectively.

Video S5: Spinning green- and red-labeled 3D compartments (Upper) with positive and negative

eigenvectors, respectively, for chromosome 6 in mouse embryonic stem cells and the labeled cu-

mulative dots (Lower) in the PHi-C simulation for time intervals t̄ = 10 (Left), 100 (Middle), and

1000 (Right).
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Video S6: A PHi-C simulation for chromosome 6 in mouse neural progenitor cells within time

t̄ = 10. Here 104 steps of numerical integration were carried out with the normalized step time

ε = 0.001. According to an eigenvector profile of a Hi-C matrix, compartment regions with

positive and negative eigenvectors are labeled by green and red colors, respectively.

Video S7: Spinning green- and red-labeled 3D compartments (Upper) with positive and negative

eigenvectors, respectively, for chromosome 6 in mouse neural progenitor cells and the labeled

cumulative dots (Lower) in the PHi-C simulation for time intervals t̄ = 10 (Left), 100 (Middle),

and 1000 (Right).

Video S8: A PHi-C simulation for chromosome 6 in mouse cortical neuron cells within time

t̄ = 10. Here 104 steps of numerical integration were carried out with the normalized step time

ε = 0.001. According to an eigenvector profile of a Hi-C matrix, compartment regions with

positive and negative eigenvectors are labeled by green and red colors, respectively.

Video S9: Spinning green- and red-labeled 3D compartments (Upper) with positive and negative

eigenvectors, respectively, for chromosome 6 in mouse cortical neuron cells and the labeled cu-

mulative dots (Lower) in the PHi-C simulation for time intervals t̄ = 10 (Left), 100 (Middle), and

1000 (Right).
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