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Detection of Misaligned Features 

In this section, we define a test statistic and derive the p-value for each initially-aligned feature 

from XCMS. Assume there are 𝑁 samples in total. For a feature detected in 𝑛 samples, we denote 

the indices (run-order) of these samples as a set {𝑙1, 𝑙2, … , 𝑙𝑛}, where 1 ≤ 𝑙𝑖 ≤ 𝑁 and 𝑙1 < 𝑙2 <

⋯ < 𝑙𝑛. For this feature, we define the test statistic 

𝑡 = max1≤𝑖,𝑗≤𝑛|𝑙𝑖 − 𝑙𝑗|, (𝑆1) 

which is the same as the range of the 𝑛 indices. It is clear that 𝑛 − 1 ≤ 𝑡 ≤ 𝑁 − 1. Under the null 

hypothesis, these 𝑛 samples are randomly drawn from the 𝑁 samples. Therefore, each index in this 

feature can be viewed as a random variable and we assume it follows a discrete uniform 

distribution. Our goal is to find the null distribution of 𝑡, which is obtained by subtracting the 

smallest of these 𝑛 random variables from the largest one. To achieve this, we sort these 𝑛 random 

variables from small to large. Each sorted random variable is no longer uniformly distributed. 

Instead, its distribution need to be calculated using order statistics (Arnold, et al., 1992). For 𝑙𝑖, 

the 𝑖th smallest index in the feature, the probability mass function (pmf) is 

𝑓𝑙𝑖
(𝑘) =

(
𝑘 − 1
𝑖 − 1

) (
𝑁 − 𝑘
𝑛 − 𝑖

)

(
𝑁
𝑛

)
, 𝑖 ≤ 𝑘 ≤ 𝑁 − 𝑛 + 𝑖, (𝑆2) 

and the joint pmf of 𝑙𝑖 and 𝑙𝑗 is given by 

𝑓𝑙𝑖, 𝑙𝑗
(𝑘, 𝑙) =

(
𝑘 − 1
𝑖 − 1

) (
𝑙 − 𝑘 − 1
𝑗 − 𝑖 − 1

) (
𝑁 − 𝑙
𝑛 − 𝑗

)

(
𝑁
𝑛

)
, 𝑖 ≤ 𝑘 < 𝑙 ≤ 𝑁 − 𝑛 + 𝑗, 𝑙 − 𝑘 ≥ 𝑗 − 𝑖. (𝑆3) 
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To obtain the null distribution of the test statistics, we let 𝑖 = 1, 𝑗 = 𝑛, 𝑙 = 𝑘 + 𝑡. Thus, equation 

(S3) becomes  

𝑓𝑙1, 𝑙𝑛
(𝑘, 𝑘 + 𝑡) =

(
𝑡 − 1
𝑛 − 2

)

(
𝑁
𝑛

)
, 1 ≤ 𝑘 < 𝑘 + 𝑡 ≤ 𝑁, 𝑡 ≥ 𝑛 − 1. (𝑆4) 

Therefore, under the null hypothesis, the pmf of 𝑡 is 

𝑓𝑇(𝑡) = ∑ 𝑓𝑙1, 𝑙𝑛
(𝑘, 𝑘 + 𝑡)

𝑁−𝑡

𝑘=1

= (𝑁 − 𝑡)
(

𝑡 − 1
𝑛 − 2

)

(
𝑁
𝑛

)
, 𝑛 − 1 ≤ 𝑡 ≤ 𝑁 − 1. (𝑆5) 

For an observed feature, we can calculate its p-value:  

𝑝-𝑣𝑎𝑙𝑢𝑒 = Pr{𝑡 ≤ 𝑡𝑜𝑏𝑠} = ∑ (𝑁 − 𝑡)
(

𝑡 − 1
𝑛 − 2

)

(
𝑁
𝑛

)

𝑡𝑜𝑏𝑠

𝑡=𝑛−1

, (𝑆6) 

where 𝑡𝑜𝑏𝑠 is the test statistic calculated in that feature (Connor, 1969). The summation is over all 

𝑡s that are smaller than 𝑡𝑜𝑏𝑠, which reflects the assumption that the more concentrated the indices 

are, the more likely misalignment exists. The smaller the p-value, the more unlikely the observed 

feature follows the null distribution, and the more likely misalignment occurs. 
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Details on the alignment module of ncGTW 

ncGTW contains a multiple alignment module that is designed to flexibly model and incorporate 

any structural information among samples, as long as their relationship can be represented as a 

weighted graph. This module aims to find a set of warping functions, through which each sample 

can be aligned to a reference. The main challenge in multiple alignment is the lack of a priori 

reference. Indeed, various strategies have been proposed to select a reference sample or estimate 

a reference using all samples. However, when the samples have complex patterns such as missing 

signals at some time points, or contain significant noise, no single sample merits a good reference 

while the estimation of an ensemble reference requires a set of pre-aligned samples.  

Instead of explicitly picking a certain reference, ncGTW extracts the needed information 

from all possible sample pairs to perform multiple alignment. To deal with missing signals and 

noise, ncGTW borrows the idea from graphical time warping (GTW) (Wang, et al., 2016) to 

incorporate the structural information in the dataset, which makes the estimation of the pairwise 

warping functions more accurate. The flowchart of ncGTW is shown in Fig. 5 in the main article. 

We first find all pairwise warping functions under the constraints of structural prior knowledge. 

Then we use these pairwise warping functions as constraints to estimate the final warping functions, 

which align all samples to a reference. These two subproblems are formulated as network flow 

problems and each can be solved efficiently with a global optimal solution. 

Problem modeling and methods 

Given N samples (curves) {𝑥1, … , 𝑥𝑁}, multiple alignment problem aims to find a set of warping 

functions {Φ𝑖,𝑐}, 𝑖 ∈ {1 … 𝑁}, through which each sample can be aligned to a reference 𝑥𝑐. For the 

sake of clarity, all samples have the same number of points 𝑃. The subscript "𝑖, 𝑐" means this 
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function maps a set of points {𝑥𝑖𝑝}, 𝑝 ∈ {1 … 𝑃} in curve 𝑥𝑖  to a corresponding set of points in 

curve 𝑥𝑐. That is, for any point 𝑥𝑖𝑝 in 𝑥𝑖, Φ𝑖,𝑐 can always map 𝑥𝑖𝑝 to at least one point in 𝑥𝑐, where 

𝑝 is from 1 to 𝑃. 

Definition 1 – valid warping function 

A valid warping function for the pair of curves (𝑥𝑖, 𝑥𝑗) is a set of integer pairs Φ𝑖,𝑗 = {(𝑝, 𝑞)}, 

such that the following conditions are satisfied: (a) boundary conditions: (1,1) ∈ Φ𝑖,𝑗 and (𝑃, 𝑃) ∈

Φ𝑖,𝑗 ; (b) continuity and monotonicity conditions: if (𝑝, 𝑞) ∈ Φ𝑖,𝑗 , then (𝑝 − 1, 𝑞) ∈ Φ𝑖,𝑗  or 

(𝑝, 𝑞 − 1) ∈ Φ𝑖,𝑗 or (𝑝 − 1, 𝑞 − 1) ∈ Φ𝑖,𝑗. An example is shown in Fig. S1a. 

Definition 2 – inverse of a valid warping function  

Given a valid warping function Φ𝑖,𝑗 = {(𝑝, 𝑞)}, the inverse of Φ𝑖,𝑗 is Φ𝑖,𝑗
−1 = {(𝑞, 𝑝)} = Φ𝑗,𝑖 

Definition 3 – alignment cost  

For any given valid warping function Φ𝑖,𝑗  and its corresponding pair of curves (𝑥𝑖 , 𝑥𝑗) , the 

associated alignment cost is defined as follows: 

cost(Φ𝑖,𝑗) = ∑ 𝑔(x𝑖𝑝, xj𝑞)(𝑝,𝑞)∈Φ𝑖,𝑗
, (𝑆7)

where 𝑔(x𝑖𝑝, xj𝑞) is any nonnegative function which computes the distance between x𝑖𝑝 and xj𝑞. 

Stage 1: jointly aligning all pairs with the structural prior incorporated 

To estimate {Φ𝑖,𝑗} jointly, ncGTW considers all possible sample pairs. For each pair, one sample 

is set as the reference. In other words, in the first stage, ncGTW tries to align each sample to the 

other samples. For 𝑁 samples, the number of alignment pairs is 𝑁(𝑁 − 1). However, Φ𝑖,𝑗 is the 
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inverse of Φ𝑗,𝑖, so only 𝑁(𝑁 − 1)/2 pairs need to be considered in the real implement. That is, 

only 𝑁(𝑁 − 1)/2 pairwise warping functions are needed.  

In order to incorporate the structural information, as GTW, we need to convert the given 

structural information in the dataset into the warping function neighborhood information. Suppose 

(𝑥𝑖 , 𝑥𝑗)  are neighbors by structural information, we consider the pair of warping functions, 

(Φ𝑖,𝑘, Φ𝑗,𝑘), as well as (Φ𝑘,𝑖, Φ𝑘,𝑗), as neighbors for all k. Also, if (𝑥𝑖 , 𝑥𝑗) are neighbors and 

(𝑥𝑘, 𝑥𝑙) are also neighbors respectively, we can consider the pair of Φ𝑖,𝑘 and Φ𝑗,𝑙 are neighbors. 

Fig. S1c gives an example of the warping function neighborhood information of five samples. The 

run orders of the five samples are exactly 1, 2, 3, 4, and 5. Thus, these five samples are expected 

to have a pattern of continuous changing, so (𝑥1, 𝑥2) , (𝑥2, 𝑥3) , (𝑥3, 𝑥4) , and (𝑥4, 𝑥5)  are 

considered as neighbors respectively. More examples about the structures are shown in the 

experiment section. 

Definition 4 – neighboring warping functions 

Suppose the neighboring structure for a set of 𝑀 valid warping functions is given by the graph 

𝐺𝑠𝑡𝑟𝑢𝑐𝑡 = {𝑉𝑠, 𝐸𝑠} , where 𝑉𝑠  is the set of nodes, with each node corresponding to a warping 

function, and 𝐸𝑠 is the set of undirected edges between nodes. If 𝑣𝑖𝑗 , 𝑣𝑘𝑙 ∈ 𝑉𝑠 and (𝑣𝑖𝑗 , 𝑣𝑘𝑙) ∈ 𝐸𝑠, 

we call Φ𝑖,𝑗 and Φ𝑘,𝑙 neighbors, denoted by ((𝑖, 𝑗), (𝑘, 𝑙)) ∈  𝑁𝑒𝑖𝑏.  

As an improvement of GTW, ncGTW also adapts the idea of dynamic time warping 

(DTW). DTW aligns two curves 𝑥𝑖 and 𝑥𝑗 by finding a warping function Φ𝑖,𝑗 that minimize the 

alignment cost (S7). The correspondence represented by Φ𝑖,𝑗 can be visualized as a path in a DTW 

grid, from bottom left to top right, and the weight of each edge is decided by the distance function 

𝑔(⋅) with all possible point pairs (𝑥𝑖𝑝, 𝑥𝑗𝑞), where 𝑥𝑖𝑝 ∈ 𝑥𝑖 and 𝑥𝑗𝑞 ∈ 𝑥𝑗 . DTW estimates Φ in the 
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DTW grid using dynamic programming and various additional constraints can be employed, such 

as the direction of the path. 

Definition 5 – DTW grid for a single pair of curves  

For each pair of curves, consistent with the cost function (S7), there is an induced directed planar 

graph (Korte, et al., 2012), 𝐺𝑖𝑗 ≔ {𝑉𝑖𝑗, 𝐸𝑖𝑗},1 ≤ 𝑖 < 𝑗 ≤ 𝑁, where 𝑉𝑖𝑗 and 𝐸𝑖𝑗 are the nodes and 

directed edges respectively. Each point pair (𝑥𝑖𝑝, 𝑥𝑗𝑞) is corresponding to a node 𝑉𝑖𝑗,𝑝𝑞 ∈ 𝑉𝑖𝑗 , 

where 1 ≤ 𝑝, 𝑞 ≤ 𝑃. The weight of (𝑉𝑖𝑗,𝑝1𝑞1
, 𝑉𝑖𝑗,𝑝2𝑞2

) ∈ 𝐸𝑖𝑗 is the distance between the two points 

(𝑥𝑖𝑝1
, 𝑥𝑗𝑞1

), measured by 𝑔(𝑥𝑖𝑝1
, 𝑥𝑗𝑞1

). An example is shown in Fig. S1a. Any directed path from 

the bottom-left corner to the upper-right corner is corresponding to a valid warping function Φ𝑖,𝑗. 

Once the structure for warping functions is obtained, the joint alignment of all pairs of 

samples can be readily solved by the recently developed model – Graphical Time Warping (GTW). 

When we jointly align multiple pairs of curves with structural information, our goal is to minimize 

both the overall alignment cost and the distance between neighboring warping functions.  

Definition 6 – distance between two valid warping functions  

For any two given valid warping functions Φ𝑖,𝑗 and Φ𝑘,𝑙, the distance between them is defined as 

follows: 

dist(Φ𝑖,𝑗, Φ𝑘,𝑙) =
1

2
∑ | max

(𝑝𝑖,𝑛)∈Φ𝑖,𝑗

𝑝𝑖 − max
(𝑝𝑘,𝑛)∈Φ𝑘,𝑙

𝑝𝑘| + | min
(𝑝𝑖,𝑛)∈Φ𝑖,𝑗

𝑝𝑖 − min
(𝑝𝑘,𝑛)∈Φ𝑘,𝑙

𝑝𝑘|

1≤𝑛≤𝑃

, (𝑆8) 

which is equivalent to the area of the region bounded by the two corresponding paths in a DTW 

grid as shown in Fig. S1a.  
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Mathematically, to balance the alignment cost (S7) and the distance between warping 

functions (S8), we want to minimize the following cost function for GTW problem: 

min
Φ

𝑓 (Φ) = min
Φ={Φ𝑖,𝑗|1≤𝑖<𝑗≤𝑁}

∑ cost(Φ𝑖,𝑗)

1≤𝑖<𝑗≤𝑁

+ κ1 ∑ dist(Φ𝑖,𝑗, Φ𝑘,𝑙)
((i,j),(k,l))∈Neib

, (𝑆9) 

where κ1 is the parameter which balance the two terms. The first term is the overall alignment cost 

of the warping functions. The second term could be considered as the sum of the “dissimilarity” 

between each pair of the neighboring warping functions. Again, the neighboring warping functions 

should be similar. In the other words, their distance should be small. 

There are three major steps to solve the GTW problem. Firstly, GTW transforms the DTW 

grid for each pair of curves to an equivalent minimum cut problem as a DTW graph. Supposing 

there are M pairs of curves, where each pair contains two curves to be aligned with each other, 

then we will have M DTW grids, of which there are also M DTW graphs. Secondly, GTW adds in 

extra edges between DTW graphs, if two pairs of curves are considered as neighbors. Note that if 

edges are to be added between two DTW graphs, all the corresponding vertices in the two graphs 

need to be connected. Thus, the M separate DTW graphs become an extended graph (GTW graph). 

Thirdly, GTW proved that the joint alignment of multiple pairs with smoothness constraints 

imposed could be formulated as a minimum cut problem in the GTW graph. Hence, efficient 

network flow algorithms can be used to find a global optimal solution. 

Definition 7 – DTW graph 

Define 𝐺𝑖𝑗
′ ≔ {𝑉𝑖𝑗

′ , 𝐸𝑖𝑗
′ } as the DTW graph of the DTW grid 𝐺𝑖𝑗, where nodes 𝑉𝑖𝑗

′  are all faces of 

𝐺𝑖𝑗 . That is, for each 𝑉𝑖𝑗,𝑝𝑞 ∈ 𝑉𝑖𝑗 , where 2 ≤ 𝑝 ≤ 𝑃 − 1  and 1 ≤ 𝑞 ≤ 𝑃 − 1 , there are two 

corresponding nodes 𝑉𝑖𝑗,𝑝𝑞+
′  and 𝑉𝑖𝑗,𝑝𝑞−

′ ; for each 𝑉𝑖𝑗,𝑝𝑞 where 𝑝 = 1 and 1 ≤ 𝑞 ≤ 𝑃 − 1, there is 
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one corresponding node 𝑉𝑖𝑗,𝑝𝑞+
′ ; for each 𝑉𝑖𝑗,𝑝𝑞  where 𝑝 = 𝑃  and 1 ≤ 𝑞 ≤ 𝑃 − 1, there is one 

corresponding node 𝑉𝑖𝑗,𝑝𝑞−
′ . For each 𝑒 ∈ 𝐸𝑖𝑗, we have a new edge 𝑒′ ∈ 𝐸𝑖𝑗

′  connecting the faces 

from the right side of 𝑒  to the left side. This edge is directed (with positive direction by 

convention). The edge weights are the same as for the primal graph 𝐺𝑖𝑗. An example is shown in 

Fig. S1b. 

Definition 8 – GTW graph 

The GTW graph 𝐺𝑔𝑡𝑤 ≔ {𝑉𝑔𝑡𝑤, 𝐸𝑔𝑡𝑤}  is defined as the integrated graph of all DTW graphs 

{𝐺𝑖𝑗
′ |1 ≤ 𝑖 < 𝑗 ≤  𝑁} with the integration guided by the neighborhood of warping functions, such 

that 𝑉𝑔𝑡𝑤 = {𝑉𝑖𝑗
′ |1 ≤ 𝑖 < 𝑗 ≤ 𝑁} and  

𝐸𝑔𝑡𝑤 = 𝐸𝑖𝑗
′ |1 ≤ 𝑖 < 𝑗 ≤ 𝑁 ∪ {(𝑉𝑖𝑗,𝑝𝑞+

′ , 𝑉𝑘𝑙,𝑝𝑞+
′ ), (𝑉𝑖𝑗,𝑝𝑞−

′ , 𝑉𝑘𝑙,𝑝𝑞−
′ )}|((i, j), (k, l)) ∈ 𝑁𝑒𝑖𝑏.  

All newly introduced edges (𝑉𝑖𝑗,𝑝𝑞+
′ , 𝑉𝑘𝑙,𝑝𝑞+

′ )  and (𝑉𝑖𝑗,𝑝𝑞−
′ , 𝑉𝑘𝑙,𝑝𝑞−

′ )  are bi-directional with 

capacity λ1 as shown in Fig. S1d. An example of a GTW graph with two pairs of curves is shown 

in Fig. S1e. 

Definition 9 – Labeling of the graph 

𝐿 is a labeling of graph 𝐺 if it assigns each node in 𝐺 a binary label. 𝐿 can induce a cut set 𝐶 =

{(𝑠, 𝑡)|𝐿(𝑠) ≠  𝐿(𝑡), (𝑠, 𝑡) ∈  𝐸𝐺} . The corresponding cut (or flow) is 𝑐𝑢𝑡(𝐿) = 𝑐𝑢𝑡(𝐶) =

∑ 𝑤𝑒𝑖𝑔ℎ𝑡(𝑠, 𝑡)(𝑠,𝑡)∈𝐶 , where 𝑤𝑒𝑖𝑔ℎ𝑡(𝑠, 𝑡) is the weight on the edge between nodes 𝑠 and 𝑡. 

Based on its construction, a labeling 𝐿 for the graph 𝐺𝑔𝑡𝑤 can be written as 𝐿 = {𝐿𝑖𝑗|1 ≤

𝑖 < 𝑗 ≤ 𝑁}, where 𝐿𝑖𝑗 is a labeling for the DTW graph 𝐺𝑖𝑗
′ . Thus, we can express the minimum 

cut problem for the graph 𝐺𝑔𝑡𝑤 as: 
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min
𝐿

𝑔(𝐿) = min
𝐿≔{𝐿𝑖𝑗|1≤𝑖<𝑗≤𝑁}

∑ 𝑐𝑢𝑡(𝐿𝑖𝑗)

1≤𝑖<𝑗≤𝑁

+ 𝜆1 ∑ 𝑐𝑢𝑡(𝐿𝑖𝑗 , 𝐿𝑘𝑙)
((𝑖,𝑗),(𝑘,𝑙))∈𝑁𝑒𝑖𝑏

, (𝑆10) 

where 𝑐𝑢𝑡(𝐿𝑖𝑗) is the cut of all edges for 𝐺𝑖𝑗
′  and 𝑐𝑢𝑡(𝐿𝑖𝑗 , 𝐿𝑘𝑙) is the number of the cut edges 

between two neighboring DTW graphs 𝐺𝑖𝑗
′  and 𝐺𝑘𝑙

′ . 

As proved in (Wang, et al., 2016), the GTW problem as stated in (S9) is equivalent to the 

minimum cut problem on the GTW graph 𝐺𝑔𝑡𝑤 if we set 𝜆1 = 2𝜅1. Once we apply any existing 

network flow algorithm to solve this minimum cut problem, the GTW problem would be solved, 

and all pairwise warping functions are available. 

Stage 2: Finding multiple alignment based on the constraint of pairwise alignments 

In the stage 2 of ncGTW, the result from the stage 1, {Φ𝑖,𝑗}, is used to estimate {Φ𝑖,𝑐}, which are 

the final goal of multiple alignment problem. Here, N warping functions need to be estimated. On 

contrary to stage 1, where neighboring information as constraints, in stage 2 the warping function 

{Φ𝑖,𝑗} are set as constraints to estimate {Φ𝑖,𝑐}. For example, according to the warping function 

Φ𝑖,𝑗, point 𝑥𝑖𝑝 in 𝑥𝑖 should be aligned to point 𝑥𝑗𝑞 in 𝑥𝑗. Then, we expect that 𝑥𝑖𝑝 and 𝑥𝑗𝑞 should 

be aligned to the same position on the reference 𝑥𝑐. That is, we want the warping of 𝑥𝑖𝑝 and 𝑥𝑗𝑞 

on the reference is consistent.  

Definition 10 – inconsistency between two sample points 

For any given integer pair (𝑝𝑖, 𝑝𝑗) ∈ Φ𝑖,𝑗 , where 𝑝𝑖  is the point index of 𝑥𝑖  and 𝑝𝑗  is the point 

index of 𝑥𝑗 . The inconsistency between 𝑥𝑖𝑝𝑖
 and 𝑥𝑗𝑝𝑗

 is defined as follows: 

incons (𝑥𝑖𝑝𝑖
, 𝑥𝑗𝑝𝑗

; Φ𝑖,𝑗) = | max
(𝑝𝑖,𝑞𝑖)∈Φ𝑖,𝑐

𝑞𝑖 − max
(𝑝𝑗,𝑞𝑗)∈Φ𝑗,𝑐

𝑞𝑗| + | min
(𝑝𝑖,𝑞𝑖)∈Φ𝑖,𝑐

𝑞𝑖 − min
(𝑝𝑗,𝑞𝑗)∈Φ𝑗,𝑐

𝑞𝑗|, 
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which could be considered as the distance between two continuous integer sets, as shown in Fig. 

S2a. The inconsistency quantifies how much the alignment deviates from our expectation. If the 

inconsistency is zero, we call these two points are consistent.  

Definition 11 – inconsistency between two warping functions 

For any given valid warping function Φ𝑖,𝑗, the inconsistency between two warping functions Φ𝑖,𝑐 

and Φ𝑗,𝑐 is defined as follows: 

incons(Φ𝑖,𝑐 , Φ𝑗,𝑐; Φ𝑖,𝑗)

= ∑ | max
(𝑝𝑖,𝑞𝑖)∈Φ𝑖,𝑐

𝑞𝑖 − max
(𝑝𝑗,𝑞𝑗)∈Φ𝑗,𝑐

𝑞𝑗| + | min
(𝑝𝑖,𝑞𝑖)∈Φ𝑖,𝑐

𝑞𝑖 − min
(𝑝𝑗,𝑞𝑗)∈Φ𝑗,𝑐

𝑞𝑗|

(𝑝𝑖,𝑝𝑗)∈Φ𝑖,𝑗

, (𝑆11) 

which is equivalent to the sum of the inconsistency between two sample points 𝑥𝑖𝑝𝑖
 and 𝑥𝑗𝑝𝑗

, where  

(𝑝𝑖, 𝑝𝑗) ∈ Φ𝑖,𝑗. Likewise, if the inconsistency between these two warping functions is zero, then 

the two warping functions are consistent. 

Intuitively speaking, stage 2 tries to identify the final warping functions from all pairwise 

ones, with the constraint that the sum of inconsistency between all warping function pairs as low 

as possible. However, due to the noise and other factors, in the real data, there are always some 

contradictions among the pairwise warping functions. For example, from Φ𝑖,𝑗, we know that 𝑥𝑖𝑝 

and 𝑥𝑗𝑞 are aligned together, and from Φ𝑗,𝑘, we know that 𝑥𝑗𝑞 and 𝑥𝑘𝑟 are aligned together, but 

from Φ𝑘,𝑖, we know that 𝑥𝑘𝑟 and 𝑥𝑖𝑜 (not 𝑥𝑖𝑝) are aligned together. This kind of contradictions 

will make the alignment tend to be the trivial “all to one” mapping, if we want to minimize the 

inconsistency. To solve this problem, here we introduce another constraint that makes the warping 

functions tend to choose “one to one” mapping, to avoid the trivial mapping. In the real implement, 

we redesign the weight of the edges in the DTW graphs. Thus, the exact values of neither 𝑥𝑖 nor 
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𝑥𝑐 do no matter in this stage. In the other words, the weights of the edges on the DTW graph of 𝑥𝑖 

and 𝑥𝑐 is not based on the points of 𝑥𝑖 and 𝑥𝑐. This property is the reason why our approach does 

not rely on the selection or estimate of the reference curve. Therefore, 𝑥𝑐  is called a “virtual 

reference”. 

Definition 12 – non-diagonality of a warping function 

For any given valid warping function Φ𝑖,𝑐, the associated non-diagonality is defined as follows: 

nondiag(Φ𝑖,𝑐) = ∑ 𝟙 ((𝑝 − 1, 𝑞) ∈ Φ𝑖,𝑐 ∨ (𝑝, 𝑞 − 1) ∈ Φ𝑖,𝑐)
(𝑝,𝑞)∈Φ𝑖,𝑐

, (𝑆12)
 

where 𝟙(⋅) is the indicator function. This definition is the same as the total number of vertical and 

horizontal edges in the corresponding path. The smallest value of non-diagonality is zero (one-to-

one mapping, the diagonal line). An example of non-diagonality is shown in Fig. S2a. 

In order to obtain the consensus final alignment from pairwise warping functions, we 

design ncGTW problem which tries to balance the non-diagonality (S12) and inconsistency (S11) 

among final warping functions: 

min
Φ

𝑓 (Φ) = min
Φ={Φ𝑖,𝑐|1≤𝑖≤𝑁}

∑ nondiag(Φ𝑖,𝑐)

1≤𝑖≤𝑁

+ κ2 ∑ incons(Φ𝑖,𝑐 , Φ𝑗,𝑐; Φ𝑖,𝑗)

1≤𝑖<𝑗≤𝑁

, (𝑆13)  

where the first term relates to the warping path for each final warping function, and the second 

term is the constraints between each warping function pair. The relation between these two terms 

is similar to the two terms in the GTW problem (S9). Thus, as same as GTW, an ncGTW problem 

could also be transformed to an ncGTW graph, and solved by maximum flow algorithms. 

Definition 13 – ncGTW graph 
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The ncGTW graph 𝐺𝑛𝑐𝑔𝑡𝑤 ≔ {𝑉𝑛𝑐𝑔𝑡𝑤, 𝐸𝑛𝑐𝑔𝑡𝑤}  is defined as the integrated graph of all DTW 

graphs {𝐺𝑖𝑐
′ |1 ≤ 𝑖 ≤  𝑁} with the integration guided by the pairwise warping functions, such that 

𝑉𝑛𝑐𝑔𝑡𝑤 = {𝑉𝑖𝑐
′ |1 ≤ 𝑖 ≤ 𝑁}  and 𝐸𝑛𝑐𝑔𝑡𝑤 = {𝐸𝑖𝑐

′ |1 ≤ 𝑖 ≤ 𝑁 ∪ (𝑉𝑖𝑐,𝑝𝑖𝑞+
′ , 𝑉𝑗𝑐,𝑝𝑗𝑞+

′ ) |(𝑝𝑖, 𝑝𝑗) ∈ Φ𝑖,𝑗 ∪

(𝑉𝑖𝑐,𝑝𝑖𝑞−
′ , 𝑉𝑗𝑐,𝑝𝑗𝑞−

′ ) |(𝑝𝑖, 𝑝𝑗) ∈ Φ𝑖,𝑗} . That is, all newly introduced edges are guided by Φ𝑖,𝑗  as 

shown in Fig. S2b. Also, all these new edges are bi-directional with capacity λ2. For the edges in 

𝑉𝑖𝑐
′ , the capacity of edges corresponding to vertical or horizontal path is one, and zero for edges 

corresponding to diagonal path, so that the non-diagonality of the warping function Φ𝑖,𝑐  is 

equivalent to the cost of the warping path on the corresponding DTW grid 𝐺𝑖𝑐. 

Like GTW problem, the ncGTW problem as stated in equation (S13) is equivalent to the 

minimum cut problem on the ncGTW graph 𝐺𝑛𝑐𝑔𝑡𝑤 if we set 𝜆2 = 2𝜅2. Moreover, a labeling 𝐿 

for the graph 𝐺𝑛𝑐𝑔𝑡𝑤 can be written as 𝐿 = {𝐿𝑖𝑐|1 ≤ 𝑖 ≤ 𝑁}, where 𝐿𝑖𝑐 is a labeling for the DTW 

graph 𝐺𝑖𝑐
′ . Therefore, we can express the minimum cut problem for the graph 𝐺𝑛𝑐𝑔𝑡𝑤 as: 

min
𝐿

𝑔(𝐿) = min
𝐿≔{𝐿𝑖𝑐|1≤𝑖≤𝑁}

∑ 𝑐𝑢𝑡(𝐿𝑖𝑐)

1≤𝑖≤𝑁

+ 𝜆2 ∑ 𝑐𝑢𝑡(𝐿𝑖𝑐 , 𝐿𝑗𝑐)

1≤𝑖<𝑗≤𝑁

, (𝑆14) 

where 𝑐𝑢𝑡(𝐿𝑖𝑐) is the cut of all edges for 𝐺𝑖𝑐
′  and 𝑐𝑢𝑡(𝐿𝑖𝑐, 𝐿𝑗𝑐) is the number of the cut edges 

between two connecting DTW graphs 𝐺𝑖𝑐
′  and 𝐺𝑗𝑐

′ . 

Again, after applying any generic maximum flow algorithm, the ncGTW problem would 

be solved, and all final warping functions {Φ𝑖,𝑐} are available. 

Relationship between hyper-parameter and the solutions of Stage 1 and Stage 2 

With a specific value of hyper-parameter 𝜆1(κ1) in Stage 1, we can obtain from Equation S10 the 

corresponding label set 𝐿 and the minimum cut. Similarly, in Stage 2, with 𝜆2(κ2) given, we can 



14 

 

 

 

obtain the corresponding label set and the minimum cut from Equations S12. We also obtain the 

final warping functions corresponding to that minimum cut. If we change the value of 𝜆1 or 𝜆2, 

the minimum cut solution may or may not change. Since the solution space is discrete, a very 

minor change of 𝜆1 or 𝜆2 may not lead to the change of solution. If the change of the hyper-

parameter is large enough, we may get a different minimum-cut solution.  

The edges that are cut in any minimum cut solution can be grouped into two categories: those 

inside each DTW graph and those between DTW graphs. Therefore, the minimum cut obtained in 

Stage 1 or 2 can be viewed as a function of hyper-parameter 𝜆 (𝜆1 in Stage 1 or 𝜆2 in Stage 2): 

𝑐𝑢𝑡𝑡𝑜𝑡𝑎𝑙(𝜆) = 𝑐𝑢𝑡𝐷(𝜆) + 𝜆 × 𝑐𝑢𝑡𝐵(𝜆), (𝑆14) 

where 𝑐𝑢𝑡𝐷(𝜆) is the cut for all DTW graphs and 𝑐𝑢𝑡𝐵(𝜆) is the total number of the cut edges 

between any two connecting DTW graphs. Note that 𝜆 (𝜆1 or 𝜆2) can be replaced with 𝜅 (𝜅1 or 

𝜅2) since they are equivalent (Wang, et al., 2016). If we can test all possible values of the hyper-

parameter, we can get all possible solutions of warping functions and we can choose the best one 

from them. However, practically this is intractable and consumes too much time. Instead, we hope 

to find some special properties of Equation S14 and utilize those properties in the search for the 

optimal value of hyper-parameter. 

Interestingly, we found that the total cut 𝑐𝑢𝑡𝑡𝑜𝑡𝑎𝑙(𝜆) in Equation S14 is a concave non-

decreasing piecewise linear function of 𝜆, and each line segment is corresponding to a specific 

result (a set of warping functions) in Stage 1 or Stage 2. We will utilize those properties to reduce 

the search space of hyper-parameters and to obtain efficient approximate strategies. In this section, 

we will prove the property. We first introduce some lemmas.  

Lemma 1 𝑐𝑢𝑡𝑡𝑜𝑡𝑎𝑙(𝜆) is a non-decreasing function.  
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Proof: Assuming 𝜆′′ > 𝜆′, if 𝑐𝑢𝑡𝑡𝑜𝑡𝑎𝑙(𝜆) is not a non-decreasing function, then there should be at 

least one pair of 𝜆′ and 𝜆′′ satisfies: 

𝑐𝑢𝑡𝐷(𝜆′) + 𝜆′ × 𝑐𝑢𝑡𝐵(𝜆′) > 𝑐𝑢𝑡𝐷(𝜆′′) + 𝜆′′ × 𝑐𝑢𝑡𝐵(𝜆′′). 

Since 𝜆′′ > 𝜆′, we can obtain: 

𝑐𝑢𝑡𝐷(𝜆′) + 𝜆′ × 𝑐𝑢𝑡𝐵(𝜆′) > 𝑐𝑢𝑡𝐷(𝜆′′) + 𝜆′′ × 𝑐𝑢𝑡𝐵(𝜆′′) > 𝑐𝑢𝑡𝐷(𝜆′′) + 𝜆′ × 𝑐𝑢𝑡𝐵(𝜆′′), 

and 

𝑐𝑢𝑡𝐷(𝜆′) + 𝜆′ × 𝑐𝑢𝑡𝐵(𝜆′) > 𝑐𝑢𝑡𝐷(𝜆′′) + 𝜆′ × 𝑐𝑢𝑡𝐵(𝜆′′). 

By definition, 𝑐𝑢𝑡𝐷(𝜆′) and 𝑐𝑢𝑡𝐵(𝜆′) should be the cuts which give the minimum cut when 𝜆 is 

𝜆′.  However, the above equation shows that when 𝜆 equals 𝜆′, 𝑐𝑢𝑡𝐷(𝜆′′) and 𝑐𝑢𝑡𝐵(𝜆′′) can give 

even lower total cut. Therefore, there is a contradiction. Thus, 𝑐𝑢𝑡𝑡𝑜𝑡𝑎𝑙(𝜆) is a non-decreasing 

function.                                            □ 

Lemma 2 𝑐𝑢𝑡𝐷(𝜆)  is a non-decreasing step function, and 𝑐𝑢𝑡𝐵(𝜆)  is a non-increasing step 

function. The interval of each step of 𝑐𝑢𝑡𝐷(𝜆) is the same as the one of 𝑐𝑢𝑡𝐵(𝜆). 

Proof: Assuming 𝜆′′ > 𝜆′ ≥ 0, then 

𝑐𝑢𝑡𝐷(𝜆′) + 𝜆′ × 𝑐𝑢𝑡𝐵(𝜆′) ≤ 𝑐𝑢𝑡𝐷(𝜆′′) + 𝜆′ × 𝑐𝑢𝑡𝐵(𝜆′′), 

and 

𝑐𝑢𝑡𝐷(𝜆′′) + 𝜆′′ × 𝑐𝑢𝑡𝐵(𝜆′′) ≤ 𝑐𝑢𝑡𝐷(𝜆′) + 𝜆′′ × 𝑐𝑢𝑡𝐵(𝜆′), 
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since (𝑐𝑢𝑡𝐷(𝜆′), 𝑐𝑢𝑡𝐵(𝜆′)) and (𝑐𝑢𝑡𝐷(𝜆′′), 𝑐𝑢𝑡𝐵(𝜆′′)) should give the minimum cut when 𝜆 is 𝜆′ 

and 𝜆′′ respectively. Thus, from the above two inequalities, we can obtain: 

𝜆′(𝑐𝑢𝑡𝐵(𝜆′) − 𝑐𝑢𝑡𝐵(𝜆′′)) ≤ 𝑐𝑢𝑡𝐷(𝜆′′) − 𝑐𝑢𝑡𝐷(𝜆′) ≤ 𝜆′′(𝑐𝑢𝑡𝐵(𝜆′) − 𝑐𝑢𝑡𝐵(𝜆′′)), 

and thus 

𝑐𝑢𝑡𝐵(𝜆′) ≥ 𝑐𝑢𝑡𝐵(𝜆′′), 

𝑐𝑢𝑡𝐷(𝜆′′) ≥ 𝑐𝑢𝑡𝐷(𝜆′). 

Therefore, 𝑐𝑢𝑡𝐷(𝜆) is a non-decreasing function, and 𝑐𝑢𝑡𝐵(𝜆) is a non-increasing function. Also, 

the possible values of 𝑐𝑢𝑡𝐷(𝜆) and 𝑐𝑢𝑡𝐵(𝜆) are discrete and countable, since the edges in DTW 

graphs and the edges between DTW graphs are countable. Thus, 𝑐𝑢𝑡𝐷(𝜆) is a non-decreasing 

step function, and 𝑐𝑢𝑡𝐵(𝜆) is a non-increasing step function. 

Moreover, 𝑐𝑢𝑡𝐷(𝜆) and 𝑐𝑢𝑡𝐵(𝜆) will change together. When 𝑐𝑢𝑡𝐵(𝜆) increases / decreases, 

𝑐𝑢𝑡𝐷(𝜆) should decrease / increase. If 𝑐𝑢𝑡𝐷(𝜆) does not decrease / increase, which means the 

previous 𝑐𝑢𝑡𝐵(𝜆) does not give the minimum cut and it is a contradiction. Therefore, the interval 

of each step of 𝑐𝑢𝑡𝐷(𝜆) is the same as the one of 𝑐𝑢𝑡𝐵(𝜆).              □ 

Lemma 3 In each step of 𝑐𝑢𝑡𝐷(𝜆) and 𝑐𝑢𝑡𝐵(𝜆), 𝑐𝑢𝑡𝑡𝑜𝑡𝑎𝑙(𝜆) is a linear function with a positive 

slope. 

Proof: From Lemma 2, we know that in each step of 𝑐𝑢𝑡𝐷(𝜆) and 𝑐𝑢𝑡𝐵(𝜆), 𝑐𝑢𝑡𝐷(𝜆) and 𝑐𝑢𝑡𝐵(𝜆) 

are both constants. Thus, Equation (S14) becomes 

𝑐𝑢𝑡𝑡𝑜𝑡𝑎𝑙(𝜆) = 𝐶𝐷 + 𝜆 × 𝐶𝐵,  
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where 𝐶𝐷 and 𝐶𝐵 are constants. Thus, in each step of 𝑐𝑢𝑡𝐷(𝜆) and 𝑐𝑢𝑡𝐵(𝜆), 𝑐𝑢𝑡𝑡𝑜𝑡𝑎𝑙(𝜆) is a 

linear function with a positive slope 𝐶𝐵.                 □ 

Theorem 1 The solved minimum cut from Stage 1 or Stage 2 is a concave non-decreasing 

piecewise linear function of 𝜆1 of 𝜆2, and each line segment corresponding to a specific alignment 

result in Stage 1 or Stage 2. 

Proof: From Lemma 2, we know that 𝑐𝑢𝑡𝐷(𝜆) and 𝑐𝑢𝑡𝐵(𝜆) are not continuous since they are step 

functions. To prove Equation (S12) is continuous, we need to prove that 𝜆 between each step of 

𝑐𝑢𝑡𝐷(𝜆) (and also the same point of 𝑐𝑢𝑡𝐵(𝜆)) is continuous for Equation (S12). That is, assuming 

𝐶𝐷 and 𝐶𝐵 is the value of 𝑐𝑢𝑡𝐷(𝜆) and 𝑐𝑢𝑡𝐵(𝜆) for step 𝑖, and 𝐶𝐷
′  and 𝐶𝐵

′  is the value of 𝑐𝑢𝑡𝐷(𝜆) 

and 𝑐𝑢𝑡𝐵(𝜆) for step 𝑖 + 1, from Lemma 3, we need to prove: 

𝐶𝐷 + 𝜆 × 𝐶𝐵 = 𝐶𝐷
′ + 𝜆 × 𝐶𝐵

′ , 

for 𝜆 between each step of 𝑐𝑢𝑡𝐷(𝜆). If 𝐶𝐷 + 𝜆 × 𝐶𝐵 > 𝐶𝐷
′ + 𝜆 × 𝐶𝐵

′ , then 𝑐𝑢𝑡𝑡𝑜𝑡𝑎𝑙(𝜆) is not a non-

decreasing function, which contradicts Lemma 1. If 𝐶𝐷 + 𝜆 × 𝐶𝐵 < 𝐶𝐷
′ + 𝜆 × 𝐶𝐵

′ , it means 𝐶𝐷 and 

𝐶𝐵 give lower total cut than 𝐶𝐷
′  and 𝐶𝐵

′  for step 𝑖 + 1, which contradicts the fact that 𝐶𝐷
′  and 𝐶𝐵

′  

always give the minimum cut for step 𝑖 + 1. Thus, 𝐶𝐷 + 𝜆 × 𝐶𝐵 = 𝐶𝐷
′ + 𝜆 × 𝐶𝐵

′ , and 𝑐𝑢𝑡𝑡𝑜𝑡𝑎𝑙(𝜆) 

is a continuous function. In addition, the slope of each line segment of 𝑐𝑢𝑡𝑡𝑜𝑡𝑎𝑙(𝜆)  is non-

increasing by Lemma 2 and Lemma 3, so 𝑐𝑢𝑡𝑡𝑜𝑡𝑎𝑙(𝜆) is a concave non-decreasing piecewise 

linear function of 𝜆. From Definition 9 and Definition 13, we know that after obtaining 𝑐𝑢𝑡𝐷(𝜆) 

(the cut of DTW graphs), the warping function set is available for Stage 1 (if 𝜆 is 𝜆1) or Stage 2 

(if 𝜆  is 𝜆2 ). Also, in each line segment of 𝑐𝑢𝑡𝑡𝑜𝑡𝑎𝑙(𝜆) , 𝑐𝑢𝑡𝐷(𝜆) is the same. Thus, each line 

segment of 𝑐𝑢𝑡𝑡𝑜𝑡𝑎𝑙(𝜆) corresponds to a specific alignment result in Stage 1 or Stage 2.              □ 
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We can immediately obtain two corollaries: 

Corollary 1 The first line segment of 𝑐𝑢𝑡𝑡𝑜𝑡𝑎𝑙(𝜆) is corresponding to solving each DTW graph 

separately. 

The first line segment of 𝑐𝑢𝑡𝑡𝑜𝑡𝑎𝑙(𝜆) starts when 𝜆 is zero. Under such circumstance, there is no 

additional edge connecting DTW graphs, so we can solve each DTW graph separately to obtain 

𝑐𝑢𝑡𝐷(𝜆). 

Corollary 2 The last line segment of 𝑐𝑢𝑡𝑡𝑜𝑡𝑎𝑙(𝜆) is corresponding to solving a single DTW graph.  

When 𝜆 is large enough (for example, larger than the maximum value of 𝑐𝑢𝑡𝐷(𝜆)), no additional 

edge will be cut to avoid large value of cut. As a result, 𝑐𝑢𝑡𝐵(𝜆) is zero. Hence, the warping 

functions (paths) of all the DTW graphs are the same to avoid cutting any additional edge. 

Therefore, we can create a new DTW graph whose topology is the same as any existing DTW 

graph. The capacity of each edge in the new graph is the summation of the capacities of 

corresponding edges from all existing graphs. The warping function obtained from the new DTW 

graph is the same as the warping functions of all original DTW graphs of the last segment of  

𝑐𝑢𝑡𝑡𝑜𝑡𝑎𝑙(𝜆). 

The strategy of finding the line segments of 𝒄𝒖𝒕𝒕𝒐𝒕𝒂𝒍(𝝀) 

To obtain the best alignment result of Stage 1 and Stage 2, we need to tune the hyperparameters 

𝜆1 and 𝜆2 (𝜅1 and 𝜅2). However, since the alignment results are countable (line segments), we can 

tune the hyperparameters much more efficiently by finding different line segments, instead of 

trying different values of 𝜆1  and 𝜆2  blindly. Assuming there are total 𝑘  line segments, from 

Corollary 1, we can obtain the first line segment (segment 1) by solving each DTW graph 
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separately, and from Corollary 2, we can obtain the last line segment (segment 𝑘) by solving a 

new DTW graph. As shown in Fig. S3, we can find a crossing point by extending segment 1 and 

segment 𝑘 respectively. The 𝜆 corresponding to the crossing point is the new hyperparameter we 

can try to obtain a new segment 𝑖. Again, we can find another two new segments by extending 

segment 𝑖 to find the crossing points with segment 1 and segment k. Repeating the steps for newly 

obtained line segments, we can obtain different values of 𝜆 roughly uniformly along line segments. 

When this step is repeated with enough times, all line segments are identified if needed.  

Local or global optimum 

In Stage 1 of ncGTW, we claimed that we could obtain the global optimum of a GTW problem. 

That is, we can solve the maximum flow problem from the GTW graph with global optimum. One 

should notice that this global optimum is not the global optimum of the multiple alignment 

problem. In fact, the multiple alignment problem is an NP-hard problem. It is possible that the 

global optimum of GTW is just the local optimum of multiple alignment. In spite of that, ncGTW 

still has a superior advantage. In different fields, the ways of evaluation of the result of multiple 

alignment are very different. However, ncGTW can adjust the weights of the additional edges 

according to the evaluation method. Thus, with the structure information, ncGTW can approach 

to the global optimum of the multiple alignment better than other methods, with great flexibility 

to various evaluation criteria. 
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Experiments 

We evaluate the performance of ncGTW on both simulated and real datasets. Any neighborhood 

structure among samples can be incorporated into ncGTW as long as the structure can be 

represented as a graph. Although weights on edges can also be naturally integrated into ncGTW, 

prior knowledge on weights is very application-dependent and thus we assume the neighborhood 

structure has no weight. In this set of experiments, we test three different structures: line, block, 

and uniform (non-informative). Three peer methods, DBA, CPM, and GTW were selected for 

comparison due to their representativeness. DBA is a DTW based method that iteratively computes 

barycenter and aligns all samples to the barycenter (Petitjean, et al., 2011). CPM uses the hidden 

Markov model to learn the prototype function (Listgarten, et al., 2005). Since GTW does not 

provide the reference, we need to manually supply one if we want to apply GTW to the multiple 

alignment problem. In the experiments, each time we used one sample as a reference. We went 

through all samples one by one and take the average of all scores. For a visual demonstration, we 

choose the most informative one. In the following experiments, one can see that a bad reference 

may ruin the alignment of GTW. Also, other flaws of directly applying GTW on multiple 

alignment are demonstrated.  

Both quantitative measurements and visual assessment were used to evaluate the 

performance. We adopt two quantitative criteria that are frequently used in the literature. They are 

mean correlation coefficient (MCC) and simplicity (SP) (Jiang, et al., 2013). After alignment, the 

correlation among samples is expected to increase. Thus, the mean of the correlation of all sample 

pairs can be considered as a quantification of the alignment quality. The definition of simplicity 

here is the sum of the fourth power of all singular values, where the sum of all singular values is 

normalized to be one. The singular values are computed based on the data matrix, where each row 
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represents a sample. The idea is that if it is a good alignment, the first singular value should 

dominate others. Hence, larger simplicity means better alignment. Note that the largest possible 

value for simplicity is one. 

For the simulation data, since we have the ground truth, we test each peak separately so 

that we can know the alignment quality of each peak. For the real data, the numerical evaluations 

for each peak are not applicable since we do not have the ground truth. 

Simulation data generation 

To understand the performance of each method on different structures, we first conduct three case 

studies on synthetic datasets with line, block, and non-informative structures respectively. To 

prevent the impact of the other factors, the shapes of all peaks are sinusoidal. Also, the distance 

between the neighboring peaks is set to be the same for all simulated samples, and the shifts 

between the neighboring simulated samples are all one (for block structure, the shift between the 

two batch is seven). The apex intensity of each peak is extracted from the samples with similar 

peak intensity in the MESA dataset. Moreover, to fully observe the impact of the missing peak 

problem, we randomly picked a simulated sample and remove one peak from it.  

To compare all the methods on a small-scale real dataset, we picked samples from the 

MESA dataset. For the line structure, we picked samples with a clear linear structure. For the block 

structure, we picked two groups of samples. Within each group, the RT shifts are similar, but the 

RT shift between groups is obvious. For non-informative structure, the samples for line structure 

are re-used but without the structure information.  
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Case study on line structure 

When samples change gradually according to a certain variable (such as time, Fig. S4a), we call 

it to have a line structure, which can be converted to triangles (Fig. S4b) as an input structure 

between pairwise alignments. To evaluate the performance of different methods, we first designed 

a simulation dataset containing five samples. The first sample is shown in Fig. S5a and all five 

samples are plotted in Fig. S5b. Note that all the samples contain three peaks, except the fourth 

sample (purple dash line, the third peak of which is missing). This phenomenon of missing peaks 

occurs frequently in real applications. 

Fig. S5c-f shows the alignment result of DBA, CPM, GTW, and ncGTW, and Table S1 

shows the evaluation scores of each peak. As the ground truth, the two peaks pointed by black 

arrows belong to the first and second group, respectively. The MCC and SP of all peaks of all 

methods are improved comparing with the original curves. However, DBA wrongly aligned the 

peaks in sample 4, which leads to bad scores of MCC and SP. CPM aligned all the peaks correctly, 

so it got good scores for all three peak groups in three evaluation. In Fig. S5e, the reference of 

GTW is the fourth sample. Since the fourth sample lacks the third peak, we can see from the figure 

that the third peaks of all samples are not aligned well. This is an example showing that the 

reference may have a huge effect on alignment. Moreover, the variance of the fourth sample is the 

largest one. In fact, many existing methods posit that the sample with the largest variance should 

be selected as the reference. As we shown here, reference selection is indeed a hard problem. Even 

with averaging, the scores of peak 3 of GTW are still much worse than other methods. ncGTW 

produced accurate alignment as evidenced by both visual assessment and quantitative scores. One 

may notice that the MCC of peak 3 are all smaller than 0.6, which is due to the missing peak in 

the fourth sample. 
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Case study on block structure 

Block structure means there are several blocks formed by samples in the dataset. Within each 

block, the shifts are small. Between blocks, the shift is larger. Suppose we have ten samples in a 

dataset where every five samples form a block. Fig. S6 shows how to connect these pairs. We can 

separate these pairs into three types. The first type is the alignment within the first block. The 

second type is between the two blocks. The third type is within the second block. Only the same 

type of neighbors will be connected. To test this structure, we generated a ten-sample dataset, and 

every five samples form a block. Fig. S7a shows the first sample, which contains three peaks. Fig. 

S7b shows the eighth sample, of which the third peak is missing. Fig. S7c-d show the two blocks 

in the dataset. Fig. S7e shows all the samples. 

Fig. S7f- i show the results of DBA, CPM, GTW, and ncGTW, and Table S2 shows the 

peak scores for each method. DBA wrongly aligned the two peaks in the eighth sample, due to the 

same reason as in the previous section. CPM has the worst performance since CPM separated all 

the peaks into four groups, not three. The reason may be that in Fig. S7e, it somehow shows four 

peak groups, and in each group, there are at least five peaks. Thus, CPM incorrectly treated them 

as four peak groups, not three. The reference of GTW is the tenth sample, which contains three 

peaks. With a good reference, in Fig. S7h, GTW have the performance as good as ncGTW. 

However, since there is a missing peak in the eighth sample, after averaging, the MCC of peak 3 

is a little bit lower than ncGTW. Again, the MCC of peak 3 is not close to one for all methods, and 

this is also due to the missing peak in the eighth sample. 
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Case study on non-informative structure 

Sometimes we may know nothing about the structure of the dataset. In this section, we demonstrate 

the experiments on the dataset without any structural information. For simulation, here we consider 

a ten-sample dataset. Without structural information, in the first stage of ncGTW, we add edges 

between the pairs that have the same aligning sample or reference sample. For example, for 𝐺1,2
′ , 

we will connect it to 𝐺1,𝑖
′ , where i is from 3 to 10. Likewise, for 𝐺2,1

′ , we will connect it to 𝐺𝑖,1
′ , 

where i is from 3 to 10. In this dataset with 10 simulated samples, there are two samples without 

peak 1, another two without peak 2, and still another two without peak 3. Thus, there are only four 

samples with all three peaks. Fig. S8a shows a sample without peak 2. Fig. S8b shows all ten 

samples. Fig. S8c-f show the results of DBA, CPM, GTW, and ncGTW, and Table S3 shows the 

peak scores for each method. DBA again wrongly aligned the sample shown in Fig. S8a (pointed 

by arrows). CPM aligned all the peaks well but with some small drifts in some samples and 

distortions, so the scores are not as good as ncGTW but still better then DBA. With the sample 

shown in Fig. S8a as reference, GTW again misaligned the peak 2 group as shown in Fig. S8e. 

Since there are six samples with a peak missing, the average scores of GTW are all relatively low. 

Even without any structure information, ncGTW has the best performance. 

Case study on small scale real LC-MS dataset  

In this section, we conducted tests on a real liquid chromatography-mass spectrometry (LC-MS) 

experiments. First, ten samples were selected and ordered by the time as they were assayed. 

Assuming the properties of the equipment were gradually changing, we impose a line structure 

among these samples. Fig. S9a shows one sample from the ten samples. Clearly, there are nine 
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peaks in the sample. Fig. S9b shows all ten samples together. Note that the intensity of the 

corresponding peaks between samples are very different, and some peaks are missing. 

Fig. S9c-f show the results of DBA, CPM, GTW, and ncGTW. DBA wrongly aligned the 

peak pointed by the arrow to the third group of peaks (that peak should be aligned to the second 

group). The reason is that DBA is based on DTW. At some steps, DTW aligned a peak to a peak 

with similar intensity, but these two peaks are not in the same group. DTW based methods have 

the tendency to align the peaks with similar intensities together. CPM also aligned the same peak 

wrongly to the third group. Similar to DBA, the intensity of the peak is so strong that CPM decided 

to align this peak to the group with a higher intensity. The reference sample of GTW is just the 

one shown in Fig. S9a and GTW aligned the arrow-pointed peak correctly, while the fourth and 

fifth peak groups were misaligned. Again, ncGTW aligned all the peaks well, so that the nine peak 

groups are clearly separated and none of them is clumped together. 

Next, we chose 20 samples from two batches where each batch contains 10 samples. 

Among the samples in each batch, the retention time drift is small. However, between the first and 

the second batches, the drift is larger. Fig. S10a-b show an example of each batch, and there are 

three peaks for each two sample. However, the third peak of most samples is missing. Fig. S10c-

d show the first and second batches in the dataset. There are three peak groups in both batches. 

However, for the third peak group, only two samples in the first batch and only three samples in 

the second batch have the peak. To see other peaks clearer, in Fig. S10e, we show all the samples 

by changing the scale of the y-axis. 

Fig. S10f-i show the results of DBA, CPM, GTW, and ncGTW. DBA aligned more than 

ten peaks to the third peak group with serious distortions. There should be five peaks in that peak 

group. CPM also aligned wrongly the third peak group, since there are too many missing peaks in 
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the third peak group. The reference of GTW is the first sample of the first batch, as shown in Fig. 

S10a. Though there is no missing peak in the reference, GTW still tends to align the peaks with 

similar intensity together. Thus, the third peak group has more than five peaks and the shapes of 

the peaks are distorted. Only ncGTW aligned correctly the five peaks to the third peak group. This 

example demonstrated the significant improvement of ncGTW compared with GTW. We can see 

the advantage that ncGTW does not need a certain reference, and there is no distortion after 

alignment. 

To test ncGTW on data with no structure among samples (or in the scenario that we are not 

sure about its structure), we use the same ten LC-MS samples in Fig. S9b but we do not incorporate 

the a priori structural information. Instead, we apply the non-informative structure by adding edges 

between the pairs with the same aligning sample or reference sample in the first stage of ncGTW. 

Fig. S9a-d are the same as Fig. S11a-d, since DBA and CPM do not consider structural 

information already. As shown in Fig. S11e-f, unlike DBA and CPM, GTW and ncGTW still well 

aligned the pointed peak. However, without the structural information, GTW misaligned peak 3 

and peak 4. Even without structural information, ncGTW accurately aligned all the peaks. 

Discussion 

Readers may be aware of the significant progress in aligning multiple DNA sequences. One may 

wonder why similar progress has not been seen in the general category of multiple alignment and 

why good ideas for DNA sequence alignment cannot be directly transferred to other applications. 

In our view, this is not surprising because many effective approaches for DNA sequences explicitly 

or implicitly rely on the assumption of the existence of the evolution tree. Yet, the tree structure is 

very special and many applications cannot be described by a tree structure. Our ncGTW can be 

understood as an extension of tree structure to any graph structure. In addition, unlike methods 
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designed for DNA sequences, our method models all samples simultaneously. Though we did not 

test our algorithm on DNA sequencing data, we expect to see favorable performance due to the 

integrative modeling nature. 

The experiments clearly demonstrated the power of ncGTW. When structural information 

is available, it is anticipated to see increased accuracy of alignment due to the use of extra 

information. It is a little bit counterintuitive to observe that ncGTW still performed better when 

there was no informative structure. From hindsight, this is also expected because one can always 

borrow information from other samples if we use a Bayesian perspective and consider all samples 

forming a prior distribution. This phenomenon is also related to Stein’s paradox in the estimation 

theory (Efron and Morris, 1977). 
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The Implementation of ncGTW on Large Dataset 

For a large dataset, it is very time-consuming to simultaneously align all the samples for a profile-

based alignment method. When the sample number is large, the ncGTW graph becomes extremely 

huge, and it may take hours or even days to solve the maximal flow problem. Thus, in the practical 

implementation, ncGTW splits the whole dataset into several sub-datasets, and performs align-

ment on each small dataset. In this way, the numbers of nodes and edges in the graph for each 

small dataset will decrease significantly comparing to the original graph. Also, since these small 

datasets are aligned independently, the computation time can be further reduced with parallel 

computing. (number of threads limited by the number of CPU cores). After the alignment of each 

small dataset, we build a “super-sample” for each small dataset. Then, align these super-samples 

to obtain the warping functions of super-samples. With the warping functions within each small 

dataset and of the super-samples, we can obtain the final warping functions for each sample. We 

called this hierarchical alignment process as “two-layer ncGTW”. Fig. S12 shows the diagram of 

two-layer ncGTW. In the following sections, we will explain each layer in details. 

The first layer of two-layer ncGTW 

In the first layer, to begin with, we need to decide how many sub-datasets we should split the 

original dataset into. For the computational efficiency, we recommend in each sub-dataset there 

should be at least 10 samples. For example, if there are 500 samples in the original dataset, it is 

recommended to split the dataset into 10 sub-datasets (50 samples in each). Then, we apply 

ncGTW on these sub-datasets independently. If the CPU cores the user have are more than 10, the 

computation time of this layer is equivalent to apply ncGTW on a 50-sample dataset once. After 

the alignment of each sub-dataset is done, we obtain the warping functions of all samples. With 
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the warping functions, within each sub-dataset, the samples can be aligned to the same RT axis, 

and a “super-sample” will be generated by taking the average on the aligned samples. After the 

super sample of each sub-dataset is generated, we build a super-dataset with these super samples 

and send the super-dataset to the second layer with the warping functions of all samples. 

The second layer of two-layer ncGTW 

In the second layer, ncGTW is applied to the super-dataset to align the super-samples. Since the 

super-samples can be viewed as samples, we can directly apply ncGTW on them. Therefore, we 

can obtain a set of warping functions for super-samples. With the warping functions from the first 

layer (sample to super-sample) and the ones for super samples (super-sample to the final axis), all 

the samples can be aligned to the final axis, so that the alignment of all samples is done. 
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Different p-value thresholds of misalignment detection 

In the main text, we set the threshold as 0.05 to detect the misaligned features. If we adjust the 

threshold, as shown in Table S4, more truly misaligned features are indeed identified when the 

threshold is less stringent, while expectedly the number of false positives also increases. In our 

ncGTW package, users have the freedom to loosen the threshold for recovering more misaligned 

features. Note that our experimental results also show that, when sample size is relatively large, 

neither the true positives nor false positives increases with further loosened p-value threshold. This 

is expected and actually beneficially because p-value threshold is only applied to the first of the 

two cooperated criterions in the misalignment detection. More precisely, when sample size is large 

with less stringent p-value threshold, the detection power (true positives) increases while at the 

potential cost of more false positives; thus, the second criteria (disjoint sets of sample indices - 

highly associated with true positives) is specifically designed to reduce such unwanted side-effect. 

For more interested user reference, the effectiveness of the second criterion against various degrees 

of overlapped sets of sample indices is experimentally demonstrated via Table S5-8. 
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Supplementary Tables 

 

Peak1 

Scores 

Methods 
MCC SP 

Before alignment 0.3071 0.4240 

DBA 0.5683 0.5095 

CPM 0.9697 0.9390 

GTW 0.9988 0.9986 

ncGTW 0.9999 0.9999 

Peak2 

Scores 

Methods 
MCC SP 

Before alignment 0.3072 0.4407 

DBA 0.5671 0.5118 

CPM 0.8943 0.8169 

GTW 0.9999 0.9999 

ncGTW 0.9999 0.9999 

Peak3 

Scores 

Methods 
MCC SP 

Before alignment 0.0848 0.3959 

DBA 0.4912 0.9999 

CPM 0.5042 0.9384 

GTW 0.3986 0.8791 

ncGTW 0.5099 0.9999 

 

Table S1. Peak scores for four methods of line structure. ‘Before alignment’ serves as the baseline. 

MCC and SP represent mean correlation coefficient and simplicity respectively. The range of 

either score is between 0 and 1 with higher score indicating better performance. 
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Peak1 

Scores 

Methods 
MCC SP 

Before alignment 0.1163 0.1937 

DBA 0.7894 0.8326 

CPM 0.3923 0.4603 

GTW 0.9835 0.9778 

ncGTW 0.9998 0.9998 

Peak2 

Scores 

Methods 
MCC SP 

Before alignment 0.1165 0.1937 

DBA 0.7885 0.7957 

CPM 0.3988 0.4801 

GTW 0.9301 0.9379 

ncGTW 0.9999 0.9998 

Peak3 

Scores 

Methods 
MCC SP 

Before alignment 0.0859 0.2002 

DBA 0.7521 0.9999 

CPM 0.3408 0.5831 

GTW 0.6926 0.9407 

ncGTW 0.7481 0.9998 

 

Table S2. Peak scores for four methods of block structure. 
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Peak1 

Scores 

Methods 
MCC SP 

Before alignment 0.0686 0.2293 

DBA 0.5475 0.9996 

CPM 0.5931 0.9090 

GTW 0.5312 0.8433 

ncGTW 0.6750 0.9991 

Peak2 

Scores 

Methods 
MCC SP 

Before alignment 0.0695 0.2545 

DBA 0.2809 0.7712 

CPM 0.5041 0.8091 

GTW 0.4759 0.8482 

ncGTW 0.6673 0.9989 

Peak3 

Scores 

Methods 
MCC SP 

Before alignment 0.0542 0.2184 

DBA 0.3108 0.5238 

CPM 0.5980 0.9419 

GTW 0.4707 0.8427 

ncGTW 0.7435 0.9990 

 

Table S3. Peak scores for four methods of non-informative structure. 
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Dataset 

Cut-off 

p-value  

Rotterdam iQC 

(44) 

Rotterdam study 

(1000) 

MESA iQC 

(335) 

MESA study 

(1977) 

0.01 48 (35 + 13) 44 (32 + 12) 61 (58 + 3) 49 (48 + 1) 

0.05 57 (41 + 16) 45 (32 + 13) 61 (58 + 3) 49 (48 + 1) 

0.1 60 (42 + 18) 46 (33 + 13) 62 (58 + 4) 49 (48 + 1) 

0.2 68 (44 + 24) 47 (34 + 13) 62 (58 + 4) 49 (48 + 1) 

 

Table S4. The table of detected misaligned features at different cut-off p-values (the first criterion) 

with zero index overlapping rate (the second criterion). The numbers after the name of the datasets 

are the sample number. The first number after the detected misaligned features is the number of 

the true positives, and the second number is the number of the false positives. For example, there 

are 44 samples in the Rotterdam iQC dataset. The number of the detected misaligned feature is 48 

with 0.01 as cut-off, and the number of true positives and false positives are 35 and 13 respectively. 

 

 

Dataset 

Cut-off 

p-value  

Rotterdam iQC 

(44) 

Rotterdam study 

(1000) 

MESA iQC 

(335) 

MESA study 

(1977) 

0.01 48 (35 + 13) 57 (33 + 24) 70 (58 + 12) 53 (49 + 4) 

0.05 61 (42 + 19) 60 (34 + 26) 75 (58 + 17) 54 (49 + 5) 

0.1 65 (43 + 22) 64 (35 + 29) 76 (58 + 18) 57 (49 + 8) 

0.2 71 (45 + 26) 65 (36 + 29) 79 (58 + 21) 57 (49 + 8) 

 

Table S5. The table of detected misaligned features at different cut-off p-value with index 

overlapping rate threshold as 0.1. 
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Dataset 

Cut-off 

p-value  

Rotterdam iQC 

(44) 

Rotterdam study 

(1000) 

MESA iQC 

(335) 

MESA study 

(1977) 

0.01 53 (35 + 18) 80 (36 + 44) 92 (58 + 34) 56 (49 + 7) 

0.05 75 (42 + 33) 84 (37 + 47) 101 (58 + 43) 56 (49 + 7) 

0.1 85 (43 + 42) 93 (39 + 54) 103 (58 + 45) 59 (49 + 10) 

0.2 99 (46 + 53) 97 (41 + 56) 110 (58 + 52) 60 (50 + 10) 

 

Table S6. The table of detected misaligned features at different cut-off p-value with index 

overlapping rate threshold as 0.5. 

 

Dataset 

Cut-off 

p-value  

Rotterdam iQC 

(44) 

Rotterdam study 

(1000) 

MESA iQC 

(335) 

MESA study 

(1977) 

0.01 59 (35 + 24) 81 (36 + 45) 99 (58 + 41) 56 (49 + 7) 

0.05 82 (43 + 39) 85 (37 + 48) 110 (58 +52) 56 (49 + 7) 

0.1 91 (44 + 47) 94 (39 + 55) 114 (58 + 56) 59 (49 + 10) 

0.2 104 (46 + 58) 98 (41 + 57) 123 (58 + 65) 60 (50 + 10) 

 

Table S7. The table of detected misaligned features at different cut-off p-value with index 

overlapping rate threshold as 0.75. 

 

Dataset 

Cut-off 

p-value  

Rotterdam iQC 

(44) 

Rotterdam study 

(1000) 

MESA iQC 

(335) 

MESA study 

(1977) 

0.01 62 (35 + 27) 81 (36 + 45) 101 (58 + 43) 56 (49 + 7) 

0.05 85 (43 + 42) 85 (37 + 48) 112 (58 + 54) 56 (49 + 7) 

0.1 95 (44 + 51) 94 (39 + 55) 116 (58 + 58) 59 (49 + 10) 

0.2 109 (46 + 63) 98 (41 + 57) 125 (58 + 67) 60 (50 + 10) 

 

Table S8. The table of detected misaligned features at different cut-off p-value with index 

overlapping rate threshold as 1. 
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Dataset m/z RT Metabolite annotation 

MESA 431.4 184.9 alpha-tocopherol-glucuronide 

MESA 629.4 184.9 alpha-tocopherol-glucuronide 

MESA 430.4 187.1 alpha-tocopherol-glucuronide 

MESA 1176.7 275.1 Ganglioside GM3 

MESA 1175.7 275.2 Ganglioside GM3 

MESA 520.5 275.6 Ganglioside GM3 

MESA 844.6 275.6 Ganglioside GM3 

MESA 599.5 293.3 Phosphatidylinositol 

MESA 879.5 293.8 Phosphatidylinositol 

MESA 575.5 293.9 Phosphatidylinositol 

MESA 857.5 293.9 Phosphatidylinositol 

MESA 576.5 293.9 Phosphatidylinositol 

MESA 881.5 294.4 Phosphatidylinositol 

MESA 903.5 294.6 Phosphatidylinositol 

MESA 882.5 294.7 Phosphatidylinositol 

MESA 600.5 294.9 Phosphatidylinositol 

MESA 907.5 307.5 Phosphatidylinositol 

MESA 625.5 307.8 Phosphatidylinositol 

MESA 908.5 332.6 Phosphatidylinositol 

MESA 907.5 333.6 Phosphatidylinositol 

MESA 886.5 334.0 Phosphatidylinositol 

MESA 885.5 334.0 Phosphatidylinositol 

MESA 603.5 334.3 Phosphatidylinositol 

MESA 604.5 334.3 Phosphatidylinositol 

MESA 605.5 334.4 Phosphatidylinositol 

MESA 910.5 334.4 Phosphatidylinositol 

MESA 909.5 334.4 Phosphatidylinositol 

MESA 931.5 334.5 Phosphatidylinositol 

MESA 932.5 334.5 Phosphatidylinositol 

MESA 628.5 334.6 Phosphatidylinositol 

MESA 341.3 334.7 Phosphatidylinositol 

MESA 342.3 334.7 Phosphatidylinositol 

MESA 627.5 334.7 Phosphatidylinositol 

MESA 269.2 335.2 Phosphatidylinositol 

MESA 925.5 335.3 Phosphatidylinositol 

MESA 911.6 338.7 Phosphatidylinositol 

MESA 629.5 344.0 Phosphatidylinositol 

MESA 630.6 346.8 Phosphatidylinositol 

Rotterdam 104.1 24.2 Choline 

Rotterdam 342.3 111.5 Lysophosphatidylinositol 

Rotterdam 623.3 112.4 Lysophosphatidylinositol 

Rotterdam 341.3 112.5 Lysophosphatidylinositol 

Rotterdam 583.3 115.4 Lysophosphatidylinositol 

Rotterdam 909.5 284.1 Phosphatidylinositol 

Rotterdam 603.5 285.0 Phosphatidylinositol 

Rotterdam 604.5 285.0 Phosphatidylinositol 

Rotterdam 627.5 285.0 Phosphatidylinositol 

Rotterdam 628.5 285.0 Phosphatidylinositol 

Rotterdam 885.5 284.8 Phosphatidylinositol 

 

Table S9. The annotations of features in MESA and Rotterdam datasets with their m/z and RT 

positions. 
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Supplementary Figures 

 

Figure. S1. Figures of DTW grids, DTW graphs, structural information diagram for GTW, and 

GTW graph. (a) A DTW grid for aligning 𝑥𝑖 to 𝑥𝑗. The purple path and the orange path correspond 

to two different warping functions. Each node in the grid corresponds to a pair of points, one from 

𝑥𝑖 and the other from 𝑥𝑗. For example, node (3, 2) corresponds to the third point on 𝑥𝑖 (𝑥𝑖3) and 

the second point on 𝑥𝑗 (𝑥𝑗2). The weight of an edge is determined by its starting node. For example, 

the weight of the edge ((3, 2), (3, 3)) is given by the distance between (𝑥𝑖3, 𝑥𝑗2). The distance 

between the purple path and the orange path is defined as the area in dark blue (four triangles in 

this case). The corresponding warping function of the purple path is {(1, 1), (2, 2), (3, 2), (3, 3), 

(4, 4)}. (b) A DTW grid and the corresponding DTW graph. The blue lines and dots form the 

original DTW grid, and the red and orange lines and dots form the corresponding DTW graph. 

Note here orange lines link only the vertices (those red dots enclosed by blue lined exterior 

triangle) to a single source or sink. (c) An example of structural information between samples and 

the induced structural information between pairwise warping functions. Suppose there are five LC-

MS samples and the run orders of which are exactly 1, 2, 3, 4, and 5. These samples are expected 

to have continuous changing profiles from smaller indices to larger indices. More importantly, the 

continuous changing gives rise to the similarities between warping function. For example, the 

warping function for curve pair (𝑥1, 𝑥2) is similar to the warping function for (𝑥2, 𝑥3). In general, 

curve pairs (𝑥𝑖 , 𝑥𝑖+1) and (𝑥𝑖+1, 𝑥𝑖+2) are considered as neighbors. Similarly, curve pairs (𝑥𝑖, 𝑥𝑗) 
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and (𝑥𝑖 , 𝑥𝑗+1) , along with curve pairs (𝑥𝑖, 𝑥𝑗)  and (𝑥𝑖+1, 𝑥𝑗)  are also neighbors. The diagram 

shows all warping function neighboring information. (d) Two small DTW graphs connected 

together. Green lines are the additional edges linking the corresponding vertices of the DTW 

graphs. (e) A GTW graph formed by two linked DTW graphs. Two warping functions (Φ𝑖,𝑗 and 

Φ𝑘,𝑙 ) are neighbors. Orange edges connect vertices to source and sink. Green edges link the 

corresponding vertices in two graphs. For clarity, we only show links between top three vertices. 

Other vertices are linked in the same way. 
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Figure S2. The illustration of Stage 2 of ncGTW. (a) Example of inconsistency and non-

diagonality calculation. From the upper-left DTW grid, to achieve consistency, the 2nd point on 𝑥𝑖 

and the 3rd point on 𝑥𝑗 should be aligned to the same position on the virtual reference, because 

(2, 3) ∈ Φ𝑖,𝑗. It is clearly not the case by looking at the other two DTW grids. From Φ𝑖,𝑐 (lower-

left DTW grid), we know that the 2nd point on 𝑥𝑖 is aligned to points 2, 3, and 4 on the reference. 

From Φ𝑐,𝑗 (upper-right DTW grid, the inverse of Φ𝑗,𝑐), we know that the 3rd point on 𝑥𝑗 is aligned 

to points 1 and 2 on the reference. Thus, by definition the inconsistency from (2, 3) is |4 − 2| +

|2 − 1| = 3. The total inconsistency is calculated along all nodes in Φ𝑖,𝑗 . The non-diagonality of 

Φ𝑖,𝑐 is 6, since there are totally 6 corresponding vertical and horizontal paths in the DTW grid. 

The non-diagonality of Φ𝑖,𝑗 is 2. (b) The graph of stage 2 of ncGTW. From stage 1, we have all 

pairwise warping functions. If from the warping function Φ𝑖,𝑗, we know that the 2nd point in 𝑥𝑖 is 

aligned to the 3rd point in 𝑥𝑗, this graph shows how to link the related vertices, where 𝑥𝑐 is the 

virtual reference. 
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Figure S3. The illustration of the strategy of finding the line segments of 𝑐𝑢𝑡𝑡𝑜𝑡𝑎𝑙(𝜆). The first 

line segment (segment 1) can be found by solving each DTW graph separately (Corollary 1). The 

last line segment (segment 𝑘) can be found by solving the new DTW graph (Corollary 2). After 

extending segment 1 and segment 𝑘, we can obtain a crossing point, whose corresponding position 

on the 𝜆  axis is 𝜆𝑖 . With 𝜆𝑖 , we can solve the minimum cut problem to identify segment 𝑖 . 

Similarly, if we extend segment 𝑖, we can find the crossing points with segment 1 and segment 𝑘 

and we can further identify new segments. If we repeat this step, more line segments can be 

identified. 
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Figure S4. Example of five-curve with line structure. (a) Five continuously changing samples: the 

first one is drawn in “o”, second in “+”, third in “*”, fourth in “-”, and fifth in “x”. The shifts 

between the directly neighboring samples are all two points. (b) The induced neighborhood 

structure between warping functions. 
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Figure S5. Case study on line structure. (a) The first sample. (b) The five synthetic samples are 

drawn in the order of “o”, “+”, “*”, “-”, and “x”. The shifts between neighboring samples are all 

one. All samples contain three peaks, except for the fourth sample, which misses the third peak 

(the other two are pointed by the arrows). (c) Alignment result of DBA. (d) CPM. (e) GTW. (f) 

ncGTW. 
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Figure S6. The way to connect samples in a dataset with two blocks (5 samples in each block). 

One can see there are three types of pairs: within the first group, between 2 groups, and within the 

second group. 
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Figure S7. Case study on block structure. (a) The first sample. (b) The eighth sample. The third 

peak is missing. (c) The first block of the dataset. The samples are drawn in the order of “o”, “+”, 

“*”, “-”, and “x”. The shifts between neighboring samples are all one. (d) The second block of the 

dataset. The five samples are drawn the same way as the previous subfigure. In the following 

subfigures, only the eighth sample is drawn with marks (triangle). Its peaks are pointed by arrows. 

(e) All ten samples. The shift between the two blocks is seven points. (f) Alignment result of DBA. 

(g) CPM. (h) GTW. (i) ncGTW. 
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Figure S8. Case study on non-informative structure. (a) A sample without peak 2 (marked as 

triangles in the following subfigures). (b) All ten simulated samples. (c) Alignment result of DBA. 

(d) CPM. (e) GTW. (f) ncGTW. 
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Figure S9. Case study on real LC-MS dataset of ten samples. (a) One exemplary sample with nine 

clear peaks marked with index. The second peak (pointed by an arrow) was wrongly aligned by 

most methods except GTW and ncGTW. (b) All ten samples. (c) Result of DBA. (d) CPM (e) 

GTW (f) ncGTW. 
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Figure S10. Case study on real LC-MS dataset of twenty samples from two batches. (a) The first 

sample from the first batch, in which there are three peaks. (b) The sixth sample from the second 

batch, in which there are also three peaks. (c) The first batch. For the third peak group, only two 

samples have the peak (pointed by the black arrows). (d) The second batch. Only three samples 

have the peak in the third peak group (pointed by the gray arrows). (e) All twenty samples. (f) 

Result of DBA. (g) CPM. (h) GTW. (i) ncGTW. 
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Figure S11. Case study on real LC-MS dataset of ten samples without prior knowledge of the 

structure information. (a) One exemplary sample with nine clear peaks marked with index. The 

second peak (pointed by an arrow) was wrongly aligned by most methods except GTW and 

ncGTW. (b) All ten samples. (c) Result of DBA. (d) CPM. (e) GTW. (f) ncGTW. 
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Figure S12. Diagram of two-layer ncGTW 
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Figure S13. An XCMS aligned feature from the Rotterdam dataset as an example of false positives 

of the misalignment detection algorithm. One can see that all the peaks are aligned well. That is, 

unlike Fig. 6b in the main article, no peaks are spread consecutively across RT, Thus, this detected 

feature is considered as a false positive. The sample indexes in the red box are 34, 36, and 40, and 

the p-value is 0.034. Apparently, there are more than three peaks in the red box, but only three of 

them are detected. Moreover, the sample indexes in the blue box are 1, 4, 9, 21, 23, and 24, and 

the p-value is 0.047. Again, there are many peaks that are not detected in the blue box. Both of the 

p-values are lower than the threshold and the index sets are disjoint, so this feature is reported as 

misaligned. 
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