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LEAD CONTACT AND MATERIALS AVAILABILITY
Further information and requests for resources and reagents should be directed to and will be
fulfilled by the Lead Contact, Kevin Tsia (tsia@eee.hku.hk)

This study did not generate new unique reagents

QUANTIFICATION AND STATISTICAL ANALYSIS

In this section we describe the choice of performance measures used. For the multi-population

mass cytometry datasets where relatively granular annotations where available, we adopt the

approach used by Weber and Robinson 2016 and Samusik et al 2016 to compute the F1-measure

as follows: First construct an F1-matrix and then apply the Hungarian algorithm to find an

optimal one-to-one assignment between the manually-gated populations and the automatically

detected clusters. Fij=2(RijPij)/(Rij + Pij) is the ij’th entry of the F1-matrix. Precision Pij is the

number of matches between a true class and a cluster, divided by the number of cells in that

cluster; and Recall Rij as the number of matches between the true label and the cluster, divided

by the total number of cells for that true label (that should have been in that cluster). Precision

and Recall are defined as Pij = Cij/Σj(Cij), and Rij = Cij/Σk(Ckj) respectively. Cij is the number of

cells in the i’th cluster that belong to the j’th reference population [45].

The method offers some advantages over the more common multi-class extension of the F1-

score (where T is the set of true classes, T = {t1, t2, ..., tn} and S is the clustering result

= {s1, s2, ..., sm}.



Most evidently, it does not bias the overall F1-measure to that found in larger populations (thus

obscuring the importance of smaller but phenotypically distinct populations) and less trivially, it

also avoids the problem of potentially assigning multiple reference populations to the same

cluster.

However, in the absence of an adequately well annotated or detailed ‘ground truth’, the

Hungarian method can be punitive when coarse manual gatings overlook real divisions

(subpopulations) revealed by the clusters.

For the 10X PBMC scRNA-seq data as well as the Multi-ATOM data, the ‘ground truth’

reference annotations are coarse. To avoid penalizing the algorithm for splitting up an annotated

population into distinct subtypes (e.g. a reference monocyte annotation may have been divided

into clusters we can infer as classical and non-classical monocytes), we evaluate the performance

evaluation based on a macro F1-score. We assign each cluster a reference label based on its

majority population. This means there may be 1 or more clusters that are assigned to a particular

reference population and belong to that ‘macro-level’ cluster. We then compute the one-vs-all

F1-score for each of the major annotated populations on the ‘macro-cluster’ level. The mean

one-vs-all F1-scores are an unweighted average to give importance to rare cells. When using the

macro-F1-score, the number of clusters uncovered is reported in order to highlight that

performance is achieved within a number of clusters suitable for downstream analysis.



DATA AND CODE AVAILABILITY

PARC source code is available from github: https://github.com/ShobiStassen/PARC

The mass cytometry and flow cytometry datasets (Mosmann_rare, Nilsson_rare, Samusik_all,

Levine_32dim, Levine_13dim) are all publicly available at FlowRepository (repository I.D.: FR-

FCM-ZZPH)

The Mouse Brain and Zheng_PBMC sc-RNA datasets are publicly available from 10X

Genomics website https://www.10xgenomics.com/solutions/single-cell/

The Multi_ATOM lung cancer data supporting the current study are available from Mendeley

https://data.mendeley.com/datasets/nnbfwjvmvw/draft?a=dae895d4-25cd-4bdf-b3e4-

57dd31c11e37

EXPERIMENTAL MODEL AND SUBJECT DETAILS OF

LUNG CANCER IMAGING FLOW CYTOMETRY

DATASET
Multi-ATOM imaging protocol for Lung Cancer Data

Multi-ATOM is an ultrafast quantitative phase imaging (QPI) technique that bypasses the use of

camera technology and its speed limitation. It measures the optical path length of the cell for

deriving multiple biophysical markers, e.g. cell size, morphology, mass density, sub-cellular

texture, refractive index etc. (Shin, S. et. al. 2018, and Lee 2019b). Detailed configuration of

multi-ATOM can be referred to (K. Lee et al.,2019a and K. Lee et al., April 2019). In brief, it

relies on all-optical image encoding in and retrieval from the broadband laser pulses by two

mapping steps at an ultrafast line-scan rate governed by the laser repetition rate (11.8 MHz in our

case): wavelength–time mapping (time-stretch process) and wavelength–space mapping

(spectral-encoding process). Here the cells are in a unidirectional microfluidic flow orthogonal to

the spectrally-encoded line-illumination, at a flow speed >1 m/s (equivalent to a typical imaging

throughput of 10,000 cells/s). These encoded line-scans are then digitally stacked to form the

https://github.com/ShobiStassen/PARC
https://www.10xgenomics.com/solutions/single-cell/


two-dimensional (2-D) images of the cells. Furthermore, by means of multiplexed spectral-

encoding measurements, multi-ATOM retrieves the spatially dependent optical phase shift, or

simply called quantitative phase from each line-scan – a quantity closely linked to variations in

cell morphology and refractive index distribution that cause optical wavefront distortion as the

illumination light propagates through a cell. Following our previous work (K. Lee et al., 2019a),

we ensured robust in-focus single-cell imaging under a fast-microfluidic flow (>1 m/s) by

designing the microfluidic channel platform to optimize the balance between the inertial lift

force and the viscous drag force. The microfluidic channel was fabricated by curing

polydimethylsiloxane (PDMS) on a silicon wafer mold which was prepared by the standard soft

lithography technique.

The enormous number of image-context-rich multi-ATOM images favours analysis of the high-

dimensional spatially-resolved biophysical single-cell data in large-scale. Based on the

amplitude and quantitative phase images of cells, we extract the typical bulk parameters, e.g. size,

averaged dry mass density (DMD), and optical opacity. Beyond that, we further transform the

quantitative phase image into a 2D dry-mass-density contrast (DC) map and analyse its spatial

variation in a statistical histogram (Supplementary Table 5). We note that the DC map

visualizes the local variation of DMD within the cell. Based on the amplitude, quantitative phase

and DC images, we extract in total 26 features, representing different aspects of biophysical

properties of single cells.

Cell-culture of lung cancer cell lines

The 7 lung cancer cell lines consisted of 5 adherent (H358, H1975, HCC827, H520 and H2170)

and 2 suspended (H526 and H69) lines. They were all cultured in their full medium: Roswell

Park Memorial Institute (RPMI)-1640 with ATCC modification (GibcoTM), supplemented with

10% Fetal Bovine Serum (FBS, GGibcoTM) and 1% Antibiotic-Antimycotic (GibcoTM). The

adherent types were trypsinized by 0.25% Trypsin-EDTA (GibcoTM) for 4 minutes at 37oC. The

detached cells were extracted, centrifuged and re-suspended in complete medium. A portion

would be re-seeded and the remaining (usually 1 x 106 ~ 3 x 106) suspended in 3mL of complete



medium prior to commencing the flow experiment. The suspended cell lines were centrifuged

and re-suspended in complete medium. The same strategy was used to split a portion for re-

seeding and the remaining were suspended in 3mL complete medium for the flow experiment.

The experiment was held within 3 hours of harvesting.

KEY RESOURCES TABLE



Supplementary Figures

Supplementary Figure 1



Supplementary Figure 2

Multiple population detection mean F1-Score and No. of Clusters

Supplementary Figure 3

Stability of Rare-cell detection of 100 H1975 cells: Phenograph vs. PARC



Supplementary Figure 4

“Ground Truth” annotations of 68K 10X PBMC sc-RNA data

Supplementary Table 1

Performance characteristics: PARC avoids excessive fragmentation and offers significant
speedup



Supplementary Table 2

Pruning ensures rare populations to be consistently captured, whereas lowering K only

marginally improves rare cell detection at the cost of fragmentation



Supplementary Table 3

10X PBMC (68,000 cells) Marker genes and references



Supplementary Table 4

Marker Genes and references for 10X Mouse Brain (1.3 Million cells)



Supplementary Table 5

Population composition of PARC’s clustering of Lung Cancer multi-ATOM data

Supplementary Table 6

Description of biophysical features extracted from multi-ATOM images

BF: bright-field; QPI: quantitative phase image; DMD: dry-mass density
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