Supplementary Information

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be
fulfilled by the Lead Contact, Kevin Tsia (tsia@eee.hku.hk)

This study did not generate new unique reagents

QUANTIFICATION AND STATISTICAL ANALYSIS

In this section we describe the choice of performance measures used. For the multi-population
mass cytometry datasets where relatively granular annotations where available, we adopt the
approach used by Weber and Robinson 2016 and Samusik et al 2016 to compute the F1-measure
as follows: First construct an Fl-matrix and then apply the Hungarian algorithm to find an
optimal one-to-one assignment between the manually-gated populations and the automatically
detected clusters. Fi=2(RiiPi)/(Rij + Pi) is the ij’th entry of the F1-matrix. Precision Pj is the
number of matches between a true class and a cluster, divided by the number of cells in that
cluster; and Recall Rij as the number of matches between the true label and the cluster, divided
by the total number of cells for that true label (that should have been in that cluster). Precision
and Recall are defined as Pij = Cij/2j(Cij), and Rij = Cij/Zk(Clkj) respectively. Cij is the number of
cells in the 1’th cluster that belong to the j’th reference population [45].

The method offers some advantages over the more common multi-class extension of the F1-
score (where T is the set of true classes, 7' = {t, f, ..., t»} and § is the clustering result
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Most evidently, it does not bias the overall F1-measure to that found in larger populations (thus
obscuring the importance of smaller but phenotypically distinct populations) and less trivially, it
also avoids the problem of potentially assigning multiple reference populations to the same

cluster.

However, in the absence of an adequately well annotated or detailed ‘ground truth’, the
Hungarian method can be punitive when coarse manual gatings overlook real divisions

(subpopulations) revealed by the clusters.

For the 10X PBMC scRNA-seq data as well as the Multi-ATOM data, the ‘ground truth’
reference annotations are coarse. To avoid penalizing the algorithm for splitting up an annotated
population into distinct subtypes (e.g. a reference monocyte annotation may have been divided
into clusters we can infer as classical and non-classical monocytes), we evaluate the performance
evaluation based on a macro Fl-score. We assign each cluster a reference label based on its
majority population. This means there may be 1 or more clusters that are assigned to a particular
reference population and belong to that ‘macro-level’ cluster. We then compute the one-vs-all
Fl-score for each of the major annotated populations on the ‘macro-cluster’ level. The mean
one-vs-all Fl-scores are an unweighted average to give importance to rare cells. When using the
macro-F1-score, the number of clusters uncovered is reported in order to highlight that

performance is achieved within a number of clusters suitable for downstream analysis.



DATA AND CODE AVAILABILITY

PARC source code is available from github: https://github.com/ShobiStassen/PARC

The mass cytometry and flow cytometry datasets (Mosmann_rare, Nilsson rare, Samusik all,
Levine 32dim, Levine 13dim) are all publicly available at FlowRepository (repository I.D.: FR-
FCM-ZZPH)

The Mouse Brain and Zheng PBMC sc-RNA datasets are publicly available from 10X

Genomics website https://www.10xgenomics.com/solutions/single-cell/

The Multi ATOM lung cancer data supporting the current study are available from Mendeley
https://data.mendeley.com/datasets/nnbfwjvmvw/draft?a=dae895d4-25cd-4bdf-b3e4-
57dd31cl1e37

EXPERIMENTAL MODEL AND SUBJECT DETAILS OF
LUNG CANCER IMAGING FLOW CYTOMETRY
DATASET

Multi-ATOM imaging protocol for Lung Cancer Data

Multi-ATOM is an ultrafast quantitative phase imaging (QPI) technique that bypasses the use of
camera technology and its speed limitation. It measures the optical path length of the cell for
deriving multiple biophysical markers, e.g. cell size, morphology, mass density, sub-cellular
texture, refractive index etc. (Shin, S. et. al. 2018, and Lee 2019b). Detailed configuration of
multi-ATOM can be referred to (K. Lee et al.,2019a and K. Lee et al., April 2019). In brief, it
relies on all-optical image encoding in and retrieval from the broadband laser pulses by two
mapping steps at an ultrafast line-scan rate governed by the laser repetition rate (11.8 MHz in our
case): wavelength—time mapping (time-stretch process) and wavelength—space mapping
(spectral-encoding process). Here the cells are in a unidirectional microfluidic flow orthogonal to
the spectrally-encoded line-illumination, at a flow speed >1 m/s (equivalent to a typical imaging

throughput of 10,000 cells/s). These encoded line-scans are then digitally stacked to form the


https://github.com/ShobiStassen/PARC
https://www.10xgenomics.com/solutions/single-cell/

two-dimensional (2-D) images of the cells. Furthermore, by means of multiplexed spectral-
encoding measurements, multi-ATOM retrieves the spatially dependent optical phase shift, or
simply called quantitative phase from each line-scan — a quantity closely linked to variations in
cell morphology and refractive index distribution that cause optical wavefront distortion as the
illumination light propagates through a cell. Following our previous work (K. Lee et al., 2019a),
we ensured robust in-focus single-cell imaging under a fast-microfluidic flow (>1 m/s) by
designing the microfluidic channel platform to optimize the balance between the inertial lift
force and the viscous drag force. The microfluidic channel was fabricated by curing
polydimethylsiloxane (PDMS) on a silicon wafer mold which was prepared by the standard soft
lithography technique.

The enormous number of image-context-rich multi-ATOM images favours analysis of the high-
dimensional spatially-resolved biophysical single-cell data in large-scale. Based on the
amplitude and quantitative phase images of cells, we extract the typical bulk parameters, e.g. size,
averaged dry mass density (DMD), and optical opacity. Beyond that, we further transform the
quantitative phase image into a 2D dry-mass-density contrast (DC) map and analyse its spatial
variation in a statistical histogram (Supplementary Table 5). We note that the DC map
visualizes the /ocal variation of DMD within the cell. Based on the amplitude, quantitative phase
and DC images, we extract in total 26 features, representing different aspects of biophysical

properties of single cells.

Cell-culture of lung cancer cell lines

The 7 lung cancer cell lines consisted of 5 adherent (H358, H1975, HCC827, H520 and H2170)
and 2 suspended (H526 and H69) lines. They were all cultured in their full medium: Roswell
Park Memorial Institute (RPMI)-1640 with ATCC modification (Gibco™), supplemented with
10% Fetal Bovine Serum (FBS, GGibco™) and 1% Antibiotic-Antimycotic (Gibco™). The
adherent types were trypsinized by 0.25% Trypsin-EDTA (Gibco™) for 4 minutes at 37°C. The
detached cells were extracted, centrifuged and re-suspended in complete medium. A portion

would be re-seeded and the remaining (usually 1 x 10° ~ 3 x 10°) suspended in 3mL of complete



medium prior to commencing the flow experiment. The suspended cell lines were centrifuged
and re-suspended in complete medium. The same strategy was used to split a portion for re-

seeding and the remaining were suspended in 3mL complete medium for the flow experiment.

The experiment was held within 3 hours of harvesting.

KEY RESOURCES TABLE

REAGENT or RESOURCE | SOURCE ‘ IDENTIFIER
Software and algorithms
PARC this paper https://github.com/ShobiStassen/PARC-

phenotyping-by-accelerated-refined-community-
partitioning.git

Hierarchical Navigable Small
World

Malkov and Yashunin, 2016

arXiv: 1603.09320 and
https://github.com/nmslib/hnswlib

igraph

python package

https://igraph.org/python/

multicore tsne

https://github.com/DmitryUlyanov/Multicore-
TSNE

Scanpy

Wolf et al. 2018

https://scanpy.readthedocs.io/en/stable/

Leiden algorithm

Traag et al. 2019

https://github.com/vtraag/leidenalg.git

Deposited data

Samusik_all

Samusik et al (2016)

doi.org/10.1038/nmeth.3863 and
doi.org/10.1002/cyt0.a.23030

Levine 32dim and Levine
13dim

Levine et al (2015)

doi: 10.1016/j.cell.2015.05.047 and
10.1002/cyto0.a.23030

Mosmann_rare

Mosmann et al (2014) and Weber and
Robinson 2016

doi.org/10.1002/cyto.a.22445 and
doi.org/10.1002/cyt0.a.23030

Nilsson_rare

Nilsson et al 2013 and Weber and
Robinson 2016

doi.org/10.1002/cyto.a.23030 and
doi.org/10.1002/cyt0.a.23030

10X PBMC

Zheng et al 2017

10.1038/ncomms 14049 and
www. 1 Oxgenomics.com/solutions/single-cell/

10X 1.3Million Mouse Brain

10X Genomics 2017

www. | Oxgenomics.com/solutions/single-cell/




Supplementary Figures

Supplementary Figure 1
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Supplementary Figure 2

Multiple population detection mean F1-Score and No. of Clusters
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Supplementary Figure 3

Stability of Rare-cell detection of 100 H1975 cells: Phenograph vs. PARC
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Supplementary Figure 4

“Ground Truth” annotations of 68K 10X PBMC sc-RNA data

Annotations

“PBMC Ground Truth” ..

Supplementary Table 1

Performance characteristics: PARC avoids excessive fragmentation and offers significant

speedup

Mulri-
pop

PARC
Pheno
X-shift

F1

0.63
0.56
0.69

Levine_32dim

N=265K
clus time (s)
28 90
32 1537
3l 11125

F1

0.49
0.46
0.47

Levine_13dim

N=167K

clus

time (s)

35
084
2897

F1

0.66
0.65
0.66

Samusik_All
N=841K
clus time (s)
24 331
30 8549
74 13700



Supplementary Table 2

Pruning ensures rare populations to be consistently captured, whereas lowering K only

marginally improves rare cell detection at the cost of fragmentation

Rare Nilsson_rare Mosmann_rare H1975 (0.04%)
N= 44K N= 396K N= 280,100
Phenograph F1 clus F1 clus F1 clus
K=10 0.21 39 0.15 36 0 35
K=i5 0.37 33 0.46 31 0 27
K=20 0.18 30 0.49 24 0 22
K=25 0.19 28 0.48 24 0 20
K=30 (default) L 0.18 26 L 0.50 20 0 I8
PARC . | |
K=30 default pruning 0.49 31 0.62 20 0.55 24
K=30, no pruning 0.14 19 0.00 14 0 14
K=10, no pruning 0.18 23 0.66 19 0.24 24
K=15, no pruning 0.18 19 0.60 19 0 18
K=20, no pruning 0.15 19 0.01 16 0 19

K=25, no pruning 0.14 18 0.01 16 0 16



Supplementary Table 3

10X PBMC (68,000 cells) Marker genes and references

Markers for cell type inference

Cluster  Inferred Cell type  Markers [Various Ref]
9 Classical Monocyte CD14+ FCGR3A- (CD16-), CX3CRI1-, Ajami and Steinman 2018: Wong et al. (2011) ,Schinnerling
S100A12+ etal. 2015; Stansfield and Ingram (2015)

Non-Classical CDI16+, CD14+ CX3CRI1+, S100A12-
Monocyte

13 Myeloid and CD1C+, CDIE+, HLA-genes, CD14 Collin et al. (2013); Wojciech (2011)
Monocyte related
CD14+ Dendritic
Plasmacytoid IL-3RA+ (CDI123), GZMB Collin et al. (2013); Tel et al. (2011), Zhang et al., 2017
Dendritic
NK cytotoxic NKG7+, FCGR3A+HCD16+), CD160+, CCR7- Le Bouteiller et al. (2011), Hong (2012), Turman (1993)
CD56dimCD16+

3 NK II CD160-, NKG7+ Le Bouteiller et al. (2011), Turman (1993)
CD356brightCD16dim

8 Mature B cell CD22+, CD79A+, CD79B+, CD19+ Boyd (2016)
Early-B cell 1GJ+, CD79A+ Hystad (2007), Boyd (2016)
CD34+Megakaryocyte PF4+,GP9+, TREMLI+, PPBP+ Sakurai (2016), Smith (2018)

6 CD25+ T-Reg FOXP3+, CD52+, CD70+ Rudensky (2011), Samten (2013)

2 CD8+ Naive Cytoxic CCR7+ CD8A+, CD4- CD28-, GZMK Campbell (2001)

4,7 CD8+ CytoToxic CD8A+, NKG7 Turman (1993)
(activated)

1 CD4+ T-Memory CD8A-, CCR7- Campbell (2001)

16 CMV-specific CD4+ IFl6+, IF127+, [FIT3 Hu (2013)
T-Memory

CD4+ Naive T CD4+, CD8A-, CCR7+ Campbell (2001)



Supplementary Table 4

Marker Genes and references for 10X Mouse Brain (1.3 Million cells)

Cell sub-types

Tbrl, Eomes, Slc16a7, Sle16a7

Thalamic origin (Slc16a7)

pyramidal projection neurons

(Eomes, Tbrl)

Cortical Terminals (Slc16a6)

Aldoc, Hesl, Oligl, Gjal, Gfap

Aldoc, Gfap (astrocyte)

Oligl (oligdendrocyte)
Hes1 (Glia)

Gadl, Gad2, Sle32al
Sst (SOM interneuron)
Calcr (CR interneuron)
Calbl (CB interneuron)

Htr3a (cortical interneuron)

References
Zeisel etal., 2018

Liguz-Lecznar and
Skangiel-Kramska 2017

Hevner et at., 2006

Liguz-Lecznar and
Skangiel-Kramska 2017

Tasic et al., 2016
Boisvert et al., 2018

Othman te al., 2011
Furukawa et al., 2000

Tasic et al., 2016

Gonchar et al., 2007
Reynolds and Beasley 2001
Reynolds and Beasley 2001
Frazer et al., 2017




Supplementary Table 5

Population composition of PARC’s clustering of Lung Cancer multi-ATOM data

Cell type Major cell line f:l::“
h2170-0 squamous 167662
h2170-2 sguamous 129825
h526-13 small cell 31058
h520-1 squamous 154626
h520-3 squamous 126852
h520-4 squamous 60130
h520-5 squamous 57626
h358-6 Adenocarcinoma 53719
h358-9 Adenocarcinoma 39385
h358-11 Adenocarcinoma 33653
h358-16 Adenocarcinoma 22751
h69-10 small cell 35884
h69-14 small cell 28802
h827-7 Adenocarcinoma 47259
h827-8 Adenocarcinoma 45029
h1975-12 Adenocarcinoma 30069
h1975-15 Adenocarcinoma 22648

Supplementary Table 6

Description of biophysical features extracted from multi-ATOM images

Biophysical features summary

Feature QPI/BF  Description

Area/Volume BF Linked to cell proliferation and growth and often used in conjunction with cell
mass to study regulation of cell size (Girshovitz and Shaked 2012)

Circularity BF Measure of conic deviation from cell being circular. Can be indicative of cell
apoptosis or disease mass to study regulation of cell size (Girshovitz and Shaked
2012)

Attenuation Density  BF Indicative of cell composition

Amplitude BF Peak, mean and variance of BF amplitude

(Moments)

Dry Mass Density QPI Mass of non-aqueous material of cell, which is the integral of the optical path

delay profile on the projected cell area. mass to study regulation of cell size
(Girshovitz and Shaked 2012)

Dry Mass Density QPI Statistical features of DMD contrast which measures local variations in DMD
Contrast (Moments) (Lee 2018)

Phase Ammangement QPI Extract spatial phase information by considering the distribution of the phase as a
(Moments) function of the radius (distance from image center)

Phase orientation QPI Distribution of the phase as a function of a product of the angle and radius (from

center of image)

BF: bright-field; QPI: quantitative phase image; DMD: dry-mass density
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