Supplementary Information for

Functional characterization of Vib-PT, an aromatic prenyltransferase involved in the biosynthesis of vibralactone from *Stereum vibrans*

Na Bai^{1,3}, Guo-Hong Li^{1,3}, Shao-Liu Luo¹, Liangcheng Du², Qian-Yi Hu¹, Han-Ke Xu¹, Ke-Qin Zhang^{1,*}, Pei-Ji Zhao^{1,*}

¹ State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, PR China ²Department of Chemistry, University of Nebraska Lincoln, Lincoln, Nebraska 68588, USA ³ These authors contributed equally to this work

*Correspondence:

Ke-Qin Zhang: E-mail: kqzhang1@ynu.edu.cn, Tel: 86-871-65034878 Pei-Ji Zhao: E-mail: pjzhao@ynu.edu.cn, Tel: 86-871-65031092 Na Bai and Guo-Hong Li contributed equally to this work. Author order was determined both alphabetically and in order of increasing seniority.

Name	Primer sequence (5'-3')
Alc_A-F	CCAAGCTTTGAAAAGCTGATTGTGAT
Alc_A-R	CGGGATCCGCTAATTAACTGAGTAGA
PT-2UP-BamH1	ATGGATCCCGCTTCTCGGTCACTGTTATGGTC
PT-2DN-Hpal	ATGTTAAC TTGCGAACTCGTAGTGGTAAGGTA
PT-2iv-UP-sac1	AT GAGCTCTTGCGAACTCGTAGTGGTAAGGTA
PT-2iv-DN-xho1-Not1	ATCTCGAGGCGGCCGCCGCTTCTCGGTCACTGTTAT GGTC
PT-FW F	CCACCATGGTAGATCTTTGCGAACTCGTAGTGGTAAGG
PT-FW R	AACACTAGTCAGATCTTTTGAAAAGCTGATTGTGATAGTTC
PT-IV F	ATCCTCTAGAGTCGACCGCTTCTCGGTCACTGTT
PT-IV R	ATGCCTGCAGGTCGACAACAAGAGAGGTCCACAATGA
IN F	AATTCTGATGTGTAATTCTG
ALC R	GTTAACACTAGTCAGATCTTT
1HF	ATTTCGGCTCCAACAATGTC
1IR	GTCCACAATGATAAAGAGGG
β-tubulin F	ATGCGTGAGATTGTCCATCT
β-tubulin R	CCATGGTTCCGGGCTCGAGA
PTF	CTATCCCTCCTTGGTCAACT
PT R	TTAGGAAGCTGCCTCTCTGC

Table S1. Primer sequences used for PCR and qPCR

Table S2. Strains and plasmids

Strain or Vector	Properties	Reference or Source
E. coli BL21(DE3)	F-, ompT, hsdS(rBB-mB-), gal, dcm (DE3)	Novagen
Agrobacterium tumefaciens AGL1	Genotype C58 RecA (rif R/carbR) Ti pTiBo542DT-DNA (strepR) Succinamopine.	Biomed
Agrobacterium tumefaciens LBA4404	Genotype Ach5 (RIF R) Ti pAL4404 (strepr) Octopine.	Biomed
Agrobacterium tumefaciens EHA105	Genotype C58 (rif R) Ti pEHA105 (pTiBo542DT-DNA) Succinamopine.	Biomed
Agrobacterium tumefaciens GV3101	Genotype C58 (rif R) Ti pMP90 (pTiC58DT-DNA) (gentR) Nopaline.	Biomed
Stereum vibrans	Wild-type, vibralactone producer	Zhao et al., 2013
Stereum vibrans A2	vib-PT RNA silencing transformant by targeted PCR	This study
Stereum vibrans G7	vib-PT RNA silencing transformant by targeted PCR	This study
pUC18	pUC cloning vector	Addgene
pC-HYG-YR	Yeast recombinational cloning compatible Agrobacterium tumefaciens ternary vector containing a hygromycin selectable marker on transfer DNA	Addgene
pUCH2-8	pUCH2-8 containing the hygromycin B phosphotransferase gene, as the selectable marker for transformation of Aspergillus	Alexander et al., 1998
pMCB17apx	Promoter of alcohol dehydrogenase <i>alcA</i> (p)	Efimov, 2003
pUC18-RNAi	pUC18 harboring the second intron of the <i>Arabidopsis</i> small nuclear ribonuclear protein D1 (locus At 4g02840)	Kumar et al., 2012
pUNZ101	The promoter of <i>alcA</i> (p) was cloned into the expression vector pUCH2-8	This study
pUNZ103	A 1103-bp and reverse-complement of <i>vib-PT</i> cloned into the two ends of the intron of the pUC18-RNAi vector	This study
pUNZ104	The 2456-bp RNA silencing cassette digested with BamHI and NotI and cloned into pUNZ101	This study
pYUZ10	A 1479-bp element containing the <i>alc</i> A promoter and <i>vib-PT</i> forward sequence subcloned into the pC-HYG-YR vector	This study
pYUZ11	A 1357-bp element containing the intron and <i>Vib-PT</i> reverse- complemented sequence cloned into pYUZ10	This study

References

Alexander NJ, Hohn TM, McCormick SP. 1998. The TRI11 gene of Fusarium sporotrichioides encodes a cytochrome P-450 monooxygenase required for C-15 hydroxylation in trichothecene biosynthesis. Appl Environ Microbiol 64(1): 221-225. Efimov VP, Zhang J, Xiang X. 2006. CLIP-170 homologue and NUDE play overlapping roles in NUDF localization in *Aspergillus nidulans*. Mol Biol Cell, 17(4): 2021-2034.

Kumar T, Dweikat I, Sato S, Ge Z, Nersesian N, Chen H, Clemente T. 2012. Modulation of kernel storage proteins in grain sorghum (*Sorghum bicolor* (L.) Moench). Plant Biotechnol J 10(5): 533-544.

Zhao PJ, Yang YL, Du L, Liu JK, Zeng Y. 2013. Elucidating the biosynthetic pathway for vibralactone: a pancreatic lipase inhibitor with a fused bicyclic b-lactone. Angew Chem Int Ed 52: 2298-2302.

Figure S1. Michaelis-Menten plots of three substrates. (A) Lineweaver-Burk of 4-hydroxybenzenemethanol. (B) Lineweaver-Burk of 4-hydroxy-benzaldehyde. (C) Lineweaver-Burk of DMAPP.

Figure S2. SIM chromatograms of the products by UPLC-HR-ESI-MS analysis. The donor specificity of Vib-PT was probed using DMAPP, GPP, FPP or GGPP and 4-hydroxy-benzaldehyde as an acceptor. **DMAPP** shows the specific ion of product for DMAPP and 4-hydroxy-benzaldehyde selected ion monitoring (SIM) peak at *m/z* 189.09125 [M - H]⁻; **GPP** shows the specific ion of the product for GPP and 4-hydroxy-benzaldehyde SIM peak at *m/z m/z* 257.15457 [M - H]⁻; **FPP** shows the specific ion of product for FPP and 4-hydroxy-benzaldehyde SIM peak at *m/z m/z* 325.21722 [M - H]⁻; and **GGPP** shows the specific ion of the product for GGPP and 4-hydroxy-benzaldehyde SIM peak at *m/z* 325.21722 [M - H]⁻; and **GGPP** shows the specific ion of the product for GGPP and 4-hydroxy-benzaldehyde SIM peak at *m/z* 325.21722 [M - H]⁻; The retention times of these products were 12.7, 16.4, 18.2 and 19.5 min, consistent with their polarity.

Figure S3. Chromatogram profiles for the products of 4-hydroxy-benzenemethanol by UPLC-MS analysis. (A) Extracted ion chromatographs of UPLC-MS analysis of the products for DMAPP and 4-hydroxy-benzenemethanol Vib-PT for 1 h. **(B)** Extracted ion chromatographs of UPLC-MS analysis of the products for DMAPP and 4-hydroxy-benzenemethanol Vib-PT for 20 h. **(C)** 4OPBM was fast converted into 4O3PBM under acidic (such as 0.1% formic acid) and nonenzymatic conditions.