IOWA STATE UNIVERSITY

Moss Lab Tools

ScanFold RNA2DMut RNAStructuromeDB

Contact

Create ScanFold Submission

a **Use Example Data**

Submit your sequence (in FASTA format):

>hg38|chr6:43784726..43785077(VEGFA_riboswitch_region)

CCTCTTGGAATTGGATTCGCCATTTTATTTTTCTTGCTGCTAAATCACCGAGCCCGGAAGATTAGAGAGTTTTATTTC

TCTATTTTATATATAAAATATATATATTCTTTTTTTAAATTAACAGTGCTAATGTTATTGGTGTCTTCACTGGATG TATTTGACTGCTGTGGACTTGAGTTGGGAGGGGAATGTTC

Sequence must be in FASTA format (i.e. requires a header line before sequence). Or you can upload a FASTA file below. Limit 20,000 nucleotides.

FASTA file upload

Choose File No file chosen

Upload

Files must be less than 50 KB. Allowed file types: txt fa fasta.

Input Name

optional | No spaces or unique characters allowed

Give a name for this submission to be used for labeling output. No spaces or unique characters allowed. Default ="UserInput"

E-mail address

optional

When your job is complete an email will be sent to this address along with a link to results.

expires

One day

Window Size

optional | e.g. 100 or 150 (Default = 120)

This will adjust the window size (in nucleotides) which is used to canvas input sequence (default 120)

Step Size

h

optional | e.g. 1 (Default = 10)

This will adjust the step size (in nucleotides) of the ScanFold-Scan scanning window analysis. By default this is set to 10 nucleotides. Smaller numbers take longer but increase sequence coverage; larger numbers decrease computational time but reduce sequence coverage.

Randomizations

optional | e.g. 50 (Default = 30)

This will adjust the number of randomizations (number of randomized minimum free energy values) which will be used to calculate the thermodynamic z-score (Default: 30)

Shuffle Type:

optional | e.g. mono or di (Default = mono)

ADVANCED SETTING. This will change the method of shuffling used to generate randomized sequence during calculation of the thermodynamic z-score. mono = mononucleotide shuffling; di = dinucleotide shuffling (using Clote's implementation of the Altschul and Erickson algorithm (Mol Bio Evol. 1985)).

Temperature

optional | e.g. 32 (Default = 3

This will adjust the temperature (in Celsius) at which the minimum free energy RNA secondary structures will be folded (default 37)

Competition

optional | e.g. 0 or 1 (Default = 1)

ADVANCED SETTING. 1 = ON (default). 0 = OFF. This field adjusts whether ScanFold will detect and select the most favorable base pairs in regions with competition (when multiple base pairs compete for same partner). ScanFold-Fold results are calculated much faster but are now limited: no CT files or final partner files can be generated; IGV base pair stats are not shown; all base pairs are shown. ScanFold-Scan results are unaffected.

Global Refold

When checked, this option will refold your entire sequence while constraining the most significant base pairs (with Zavg values < -1 and < -2).

Preview Submit

IOWA STATE **UNIVERSITY**

College of Agriculture and Life **Sciences**

Biochemistry, Biophysics and **Molecular Biology** 3256 Molecular Biology Building 2437 Pammel Drive Ames IA 50011-1079 wmoss@iastate.edu

Roy J. Carver Department of

GitHub

Site Index

🚠 Site map

Copyright © 2018 Iowa State University of Science and Technology. All rights reserved.

Non-discrimination Policy **Privacy Policy** Digital Access & Accessibility