Pharmacotherapy to Gene Editing: Potential Therapeutic Approaches for Hutchinson-Gilford Progeria Syndrome

Journal name: GeroScience

Manuscript Number: JAAA-D-19-00223

Saurabh Saxena^{1#}, Sanjeev Kumar²

¹Department of Medical Laboratory Sciences, Lovely Professional University, Jalandhar -

Delhi G.T. Road, Phagwara, Punjab, India – 144411

²Faculty of Technology and Sciences, Lovely Professional University, Jalandhar – Delhi G.T.

Road, Phagwara, Punjab, India – 144411

[#]Email of corresponding author: drsaurabh.bio@gmail.com

Phone number: +91-7073216026

Table S1: Potential treatment strategies for HGPS and their assessment in different disease models.

Abbreviations: 1,25 D, 1a, 25-dihydroxy vitamin D3; AFC, N-acetyl-S-farnesyl-l-cysteine; AMPK, adenosine monophosphate-activated protein kinase; ATM, ataxia-telangiectasia-mutated); ATRA, all-trans retinoic acid; CK2, Casein kinase 2; COL3, Collagen type III; CRISPR, clustered regularly interspaced short palindromic repeats; CRM1, Chromosomal region maintenance 1; DOT1L, Disruptor of telomeric silencing 1-like; DSB, double strand break; ECM, Extracellular Matrix; ER, endoplasmic reticulum; FDPS, farnesyl diphosphate synthase; FTI, farnesyl transferase inhibitors; GH, growth hormone; H3K27me3, histone H3 trimethylated on lysine 27; HSCs, hematopoietic stem cells; ICMT, Isoprenylcysteine carboxyl methyltransferase; IGF-1, insulin-like growth factor-1; IKK complex, IkB kinase complex; iPSC, induced pluripotent cell; iPSC-EVs, extracellular vesicles derived from induced pluripotent cells; MAF: mouse adult fibroblast; MDSPCs, muscle-derived stem/progenitor cells; MEF, mouse embryonic fibroblast; MIAMI cells, marrow isolated adult multilineage inducible cells; MMP, mitochondrial membrane potential; mono-AP, mono-aminopyrimidines; MRTF-A, myocardin related transcription factorA; MSC, mesenchymal stem cells; MSC-EVs, Extracellular vesicles derived from healthy mesenchymal stem cells; mTOR, mammalian target of rapamycin; NAT10, N-acetyltransferase 10; NRF-2, Nuclear factor erythroid 2-related factor 2; OSKM: Oct4, Sox2, Klf4, and c-Myc; ROS, reactive oxygen species; ROCK, Rho-associated protein kinase; SASP, senescence-associated secretory phenotype; SIRT1 and 6, sirtuin-1 and -6; SRF, serum response factor; SRSF-1 and -5, serine/arginine-rich splicing factor-1 and -5; UTR, untranslated region; VSMC, vascular smooth muscle cells.

Therapeutic	Target molecule/function	Affected pathway	Therapeutic effects	Model of study	Reference
approach /					
Treatment					
Drug based therape	eutic approaches				
FTI	Inhibitor of farnesyl	Prelamin A processing	Ameliorated nuclear shape defects,	Skin fibroblast from HGPS	(Bikkul et al.
	transferase enzyme		mis-localization of prelamin A away	patient, Zmpste24 ^{-/-} MEF,	2018; Capell
			from nuclear rim, improved	<i>Lmna^{HG/HG}</i> and <i>Lmna^{HG/+}</i>	et al. 2005;
			chromosome positioning and	MEF	Glynn and
			tethering of telomeres to the		Glover 2005;
			nucleoskeleton		Toth et al.
					2005; Yang et
					al. 2005)
			Improved ATD synthesis and	Mouse adult fibroblast	(Rivera-
			Improved ATP synthesis and	(MAF) from <i>Zmpste24^{-/-}</i> and	Torres et al.
			COX/CS ratio	<i>Lmna^{G609G/G609G}</i> mice	2013)

	Improved self-renewal capacity, increased cell migration, decreased cell stiffness	Marrow Isolated Adult Multilineage Inducible (MIAMI) cells	(Pacheco et al. 2014)
	Extended life span, increased body weight, improved muscle and bone strength	<i>Zmpste24</i> ^{-/-} mice	(Fong et al. 2006a)
	Extended life span, increased body weight, improved bone mineralization and cortical thickness, elevated adipose tissue mass	<i>Lmna^{HG/+}</i> mice	(Yang et al. 2006; Yang et al. 2008b)

			Delayed onset and progression of	BAC <i>Lmna</i> ^{G608G} mice	(Capell et al.
			cardiovascular disease		2008)
Combined	Amino bisphosphonate	Prelamin A processing	Ameliorated nuclear morphological	Skin fibroblast from HGPS	(Varela et al.
treatment of	inhibits farnesyl		defects, inhibition of formation	patient, Zmpste24-deficient	2008)
Amino	pyrophosphate synthase and		lamin A/C nucleoplasmic	cells	
bisphosphonate +	isopentenyl pyrophosphate		aggregates, partial rescue of DNA		
Statin	isomerase. Statins are HMG-		damage		
	CoA reductase inhibitor.				
			Extended life span, increased size	<i>Zmpste24^{-/-}</i> mice	(Varela et al.
			and body weight, improved bone		2008)
			mineralization and cortical		
			thickness, reduced nuclear		
			abnormalities		

			Improved ATP synthesis and	Mouse adult fibroblast	(Rivera-
			COX/CS ratio	(MAF) from <i>Zmpste24^{-/-}</i> and <i>Lmna^{G609G/G609G}</i> mice	Torres et al. 2013)
Rapamycin and	mTOR signaling inhibitor	Autophagy	Delayed senescence, rescued	Skin fibroblast from HGPS	(Cao et al.
		i incolumB)			
its analogs			nuclear blebbing, reduced progerin	patient	2011)
			level		
			Reduced progerin level, restored	Skin fibroblast from HGPS	(Cenni et al.
			nuclear integrity and chromatin	patient	2011)
			organization		
			Increased progerin clearance,	Skin fibroblast from HGPS	(Gabriel et
			restored nuclear shape, increase cell	patient	al. 2016)
			growth, partially rescued DNA		
			damage		

			Improved cell proliferation,	Skin fibroblast from HGPS	(DuBose et
			decreased nuclear lobulation,	patient	al. 2018)
			reduced senescence.		
			Reduced DNA damage	Skin fibroblast from HGPS	(Bikkul et al.
				patient	2018)
			Reduced senescence & apoptosis,	MDSPCs from Zmpste24 ^{-/-}	(Kawakami et
			improved myogenic and	mice	al. 2019)
			chondrogenic differentiation		
			potential, decreased adipogenic		
			differentiation ability		
AFC	Competitive ICMT inhibitor	Prelamin A processing	Increased cell proliferation	Skin fibroblast from HGPS	(Ibrahim et al.
				patient	2013)

Mono-AP	Inhibitor	of	Farnesyl	Prelamin	А	Rescued	nuclear	defects,	Mesenchymal	stem cells	(Blondel et al.
	pyrophosp	hate s	ynthase and	farnesylation	and	ameliorated		premature	(MSC) derived	from HGPS-	2016)
	farnesyl tr	ansfera	ise	prenylation		differentiatio	n of HG	PS-MSC into	iPSCs, HGPS p	batient dermal	
						osteoblastic l	ineage.		fibroblast		
All-trans retinoic	Retinoic	acid	responsive	Autophagy		Reduced prog	gerin as w	vell as lamin A	Skin fibroblast	from HGPS	(Pellegrini et
acid (ATRA)	element,					accumulatior	i, decre	eased DNA	patient		al. 2015)
						damage, rest	ored nuc	lear structure,			
						enhanced	cell	proliferation			
						(Synergistic	action wi	th rapamycin)			
Sulforaphane	Inducer	of	antioxidant	Oxidative	stress,	Reduced	nuclear	blebbing,	Skin fibroblast	from HGPS	(Gabriel et al.
	enzymes			autophagy		decreased R	OS and I	ONA damage,	patient		2015; Gabriel
						increased co	ell proli	feration rate,			et al. 2017)
						increased	progerin	clearance,			
						increase in in	tracellula	ar ATP			

MG132	Proteasome	inhibitor	Autophagy, Aberran	Decreased progerin level, reduced	Skin fibroblast from HGPS	(Harhouri et
	Regulates	SRSF-1 and	splicing of <i>LMNA</i>	abnormal nuclei, delayed	patient	al. 2017)
	SRSF-5			senescence, increased cell		
				proliferation, lowered DNA damage		
				and heterochromatin loss.		
				Increased progerin clearance	HGPS iPSC-derived MSC	(Harhouri et
					and VSMC, <i>Lmna</i> ^{G609G/G609G}	al. 2017)
					mice	
Metformin	Regulates SI	RSF-1, Activates	Aberrant splicing o	Decreased SRSF-1 and progerin	Mouse <i>Lmna</i> ^{G609G/G606G}	(Egesipe et al.
	АМРК		LMNA, AMPK cel	expression, reduced abnormal	fibroblast, HGPS-MSCs,	2016; Park
			signaling pathway	nuclei, lowered premature	Skin fibroblast from HGPS	and Shin
				osteogenic differentiation of HGPS-	patient	2017)
				MSCs, reduced ROS and DNA		
				damage, retarded senescence,		

			increased splenocyte proliferation,		
			enhanced antioxidant expression		
JH4	Binding with C-terminal	Lamin A-progerin	Rescued cell cycle arrest, restored	Lmna ^{+/G609G} and	(Lee et al.
	region of progerin	interaction	H3K9me3 level, alleviated nuclear	<i>Lmna</i> ^{G609G/G609G} mutant mice	2016b)
			defects in HGPS cells. Enhanced		
			life span of mice, improved body		
			weight, increased muscle strength,		
			raised cell density, restored tissue		
			growth morphology in thymus and		
			spleen etc.		
N-acetyl cysteine	ROS scavenger	Oxidative stress	Depletion of DNA DSB load,	Skin fibroblast from HGPS	(Richards et
			improved cell proliferation rate	patient	al. 2011)
Methylene blue	Improves mitochondrial	Mitochondrial	Induced cell proliferation,	Skin fibroblast from HGPS	(Xiong et al.
	function	biogenesis and	ameliorated nuclear blebbing,	patient	2016)
		oxidative stress	reduced ROS production, improved		
			mitochondrial function, alleviated		

			senescence, decreased		
			heterochromatin loss, corrected		
			gene expression		
Oltipraz	NRF2 activator	Oxidative stress	Ameliorated the defects in certain	Human skin fibroblast from	(Kubben et al.
			lamina associated proteins and	HGPS patients	2016)
			H3K27me3		
			Decreased ROS production,	MSC derived from HGPS-	(Kubben et al.
			increased NRF2 regulated	iPSC implanted into tibialis	2016)
			antioxidant gene expression,	anterior muscle of SCID	
			reduced number of apoptotic cells	mice	
Y-27632 and	Inhibitor of Rho-associated	Oxidative stress	Decreased ROS production,	Skin fibroblast from HGPS	(Kang et al.
Fasudil	protein kinase (ROCK)		increased MMP, improved	patients	2017; Park et
	activity		mitochondrial function, reduced		al. 2018)
			DNA DSB and ameliorated nuclear		

			defects, increased cell proliferation,		
			reduced senescence.		
KU-60019	ATM inhibitor	Metabolic	improved mitochondrial function,	Skin fibroblast from HGPS	(Kuk et al.
		reprogramming in	decrease in ROS, reduced	patient	2019)
		mitochondria	senescence associated markers		
Sodium salicylate	Inhibitor of the IKK complex	Blocking of NF-κB	Extended longevity, improved body	<i>Lmna</i> ^{G609G/G609G} and	(Osorio et al.
		activation	weight, improved bone architecture,	Zmpste24-deficient mice	2012)
			enhanced cell proliferation,		
			increased subcutaneous fat layer		
			thickness, raised normal hair		
			follicles in the skin, inhibited thymic		
			and spleen involution		
Baricitinib	Inhibition of JAK-STAT	Inflammatory pathways	Reduction of proinflammatory	Skin fibroblast from HGPS	(Liu et al.
	Signaling	belonging to SASP	factors, activation of proteasomes	patients	2019a)
			and autophagy, lowered progerin		
			expression, increased proliferation,		

			reduced senescence, decreased ROS		
			level, restored cellular ATP levels		
Chloroquine	Increases ATM activity	DNA damage response	Decrease in DNA damage, retarded	Zmpste24 ^{-/-} mouse model	(Qian et al.
		and SIRT6 pathway	loss of body weight, enhanced		2018)
			running endurance, extended		
			lifespan.		
1,25D/calcitriol	vitamin D receptors	Correction of replicative	Ameliorated nuclear and DNA	Skin fibroblast from HGPS	(Kreienkamp
		stress and DNA damage	damage repair defects, improved	patient	et al. 2016;
			cellular senescence		Kreienkamp
					et al. 2018)
Remodelin	NAT10 inhibitor	Microtubular	Improved nuclear morphology,	Skin fibroblast from HGPS	(Larrieu et al.
		rearrangement	restored normal nucleocytoplasmic	patient	2014; Larrieu
			transport, reduced DNA damage,		et al. 2018)
			enhanced cell proliferation,		
			rebalanced gene expression in		
			HGPS fibroblasts.		

			Increased life span, reduced loss of	Homo- and hetero-zygous	(Balmus et al.
			body weight, improved cardiac	<i>Lmna</i> ^{G609G} progeroid mouse	2018)
			function in progeroid mouse model	model	
Quercetin	Multiple including NRF2	Multiple pathways,	Reduced cellular senescence,	Human HGPS-hMSC	(Geng et al.
		majorly of cell cycle,	improved cell proliferation		2018)
		nuclear division, NRF2	(synergistic effect with vitamin C)		
		antioxidant and			
		chromosome			
		segregation pathways			
Vitamin C	Multiple	Multiple pathways	reduced cellular senescence,	Human HGPS-MSC	(Geng et al.
		including oxidative	improved cell proliferation		2018)
		stress, telomere	(synergistic effect with quercetin)		
		attrition, inflammation,			
		nuclear lamina and			

		heterochromatin			
		reorganization			
Resveratrol	SIRT1 activator	Deacetylase activity	Decreased adult stem cell depletion,	<i>Zmpste24</i> ^{-/-} mouse model	(Liu et al.
			reduced body weight loss, improves		2012)
			bone structure and mineral density,		
			extended life span		
MS-275	Class I HDAC inhibitor	Lamin A/C-HDAC2	Improved histone acetylation status	Skin fibroblast from HGPS	(Mattioli et
(entinostat)		interaction	of the cell	patient	al. 2019)
Spermidine	Activation of CK2	Multiple pathways viz.	Increased CK2 activity, reduced	Zmpste24 ^{-/-} MEFs	(Ao et al.
		cell proliferation, cell	p16 ^{Ink4a} expression & SA-β-gal		2019)
		survival, cell	activity (reduced senescence),		
		differentiation and	decreased DNA damage marker		
		development, apoptosis,	level, improved DDR and repair.		
		DNA repair etc.			

			Increased body weight, extended	<i>Zmpste24^{-/-}</i> mice	(Ao et al.
			life span, lesser rib fractures,		2019)
			increased bone density		
S-adenosyl-	Alternative source of purine	AMP production	Increased proliferative capacity and	Skin fibroblast from HGPS	(Mateos et al.
methionine			reduced senescence associated	patient	2018)
			markers		
Recombinant	Balance between IGF-1 and	Somatotroph signaling	Increased life span, improved body	<i>Zmpste24^{-/-}</i> mice	(Mariño et al.
human IGF-1	growth hormone		weight, increase in the amount of		2010)
			subcutaneous fat, reduced level of		
			kyphosis, and alopecia.		
ABT-737	Inhibitor of anti-apoptotic	Apoptosis	Decrease in senescent cells,	<i>Lmna</i> ^{+/G609G} progeroid mice	(Ovadya et al.
	proteins BCL-W and BCL-		lowering of molecular markers of		2018)
	XL		senescence, reduced inflammation,		
			increased life span		
0.1% cholic acid	Bile acid metabolism	Lipid metabolism	Increased life span, retarded	<i>Zmpste24^{-/-}</i> mice	(Bárcena et
			hindlimb stiffness, enhanced daily		al. 2018)

			movement, bigger size, milder loss		
			of weight, reduced loss of hair,		
			lowered cervicothoracic		
			lordokyphosis, decreased loss of		
			body weight		
Tauroursodeoxyc	Improves protein folding	ER stress	Extended life span, ameliorated	Apoe ^{-/-}	(Hamczyk et
holic acid			vascular pathology	<i>Lmna^{LCS/LCS}SM22aCre</i> mice	al. 2019)
Pamidronate	Inhibitor of FDPS	Progerin/PLA2R1/p53/	Reduced senescence, increased cell	Primary culture of human	(Griveau et
		FDPS prosenescent axis	proliferation, improved nuclear	dermal fibroblasts from	al. 2018)
			morphology	HGPS patients	
Exogenous	Inhibition of calcium	Pyrophosphate	Reduced aortic calcification	<i>Lmna^{G609G/G609G}</i> mice	(Villa-
pyrophosphate	phosphate deposition	homeostasis			Bellosta et al.
					2013)
Leptomycin B	CRM1 inhibitor	Nuclear export	Decreased nuclear blebbing,	Primary culture of human	(García-
			improved lamin B1 expression,	dermal fibroblasts	Aguirre et al.
			reduced cellular senescence,		2019)

			lowered heterochromatin loss,		
			alleviated expansion of nucleoli.		
BRL37344	β_3 -adrenergic receptor (β_3 -	Bone marrow	Restore lympho-myeloid skewing of	<i>Lmna^{G609G/G609G}</i> mice	(Ho et al.
	AR) agonist	microenvironment	HSCs, improved number of		2019)
			circulating granulocytes and		
			lymphocytes, reestablished bone		
			marrow neutrophils, partially		
			restored bone marrow B cells,		
			improved association of		
			megakaryocytes to HSCs		
Dietary interventio) DNS	<u> </u>	I	<u> </u>	
Methionine	Suppression of GH/IGF1	Metabolic homeostasis	Increased life span, reduced DNA	<i>Lmna^{G609G/G609G}</i> mice	(Bárcena et
restriction in diet	somatotrophic axis and		damage and inflammation,		al. 2018)
	mTOR pathway, enhances		retardation in the appearance of		
	AMPK activity		lordokyphosis and loss of grooming,		
			improvement in bone structure and		

			mineral density, augmented tissue		
			architecture in muscle, modulation		
			of respiration rates and energy		
			expenditure, restoration of gene		
			expression, escalates metabolism		
			and lipid profile, increase in bile		
			acid level in <i>LMNA</i> ^{G609G/G609G} mice.		
			Increased life span, decreased loss	<i>Zmpste24^{-/-}</i> mice	(Bárcena et
			of hair, improved cervicothoracic		al. 2018)
			lordokyphosis in <i>Zmpste24^{-/-}</i> mice.		
Sodium nitrite	Nitric oxide	Nitric oxide signaling	Ameliorated vascular stiffness and	<i>Lmna</i> ^{G609G/G609G} progeroid	(del Campo et
			inward remodeling	mice	al. 2019)
High-fat diet	Lipid metabolism	Multiple pathways	Nearly doubled life span, reduction	<i>Lmna</i> ^{G609/G609G} progeroid	(Kreienkamp
		related to metabolism	in body weight loss, increase in	mice	et al. 2019)
			body fat and adipocyte size,		

			ameliorated metabolic alterations,			
			improved expression of genes			
			associated with cachexia			
Oral	Intestinal dysbiosis	Bile acid metabolism	Increased body weight, improved	<i>Lmna^{G609G/G609G}</i> mice and	(Bárcena	et
supplementation		(possible mechanism)	body temperatures, ameliorated		al. 2019b)	
of fecal			blood glucose level, extended life			
microbiota			span			
obtained from						
healthy						
individuals						
Oral	Intestinal dysbiosis	Bile acid metabolism	Extended life span, improved body	<i>Zmpste24^{-/-}</i> mice	(Bárcena	et
supplementation		(possible mechanism)	weight and size, less pronounced		al. 2019b)	
of			cervicothoracic lordokyphosis,			
Verrucomicrobia			ameliorated hypoglycemia			
Akkermansia						

muciniphila			Increased expression of Reg3g in Lmna ^{G609G/G609G} mice	(Bárcena et
			Ileum, thickened intestinal mucosa	al. 2019b)
			layer, enhanced expression of	
			wound healing factor (Tff3) in the	
			intestine, improvement metabolome	
			profile in the ileum	
			Improved life span and body weight $Zmpste24^{-/-}$ mice	(Bárcena et
				al. 2019b)
Other approaches	I	I		
Constitutively	Reactivation of NRF2	Oxidative stress	Decreased ROS production, Human skin fibroblast from	(Kubben et al.
active NRF2			increased NRF2 regulated HGPS patients	2016)
(caNRF2)			antioxidant gene expression,	
			reduced progerin expression,	
			improved expression of lamina	
			associated proteins	
1	1			

			Enhanced expression levels of	MSC derived from HGPS-	(Kubben et al.
			NRF2-controlled antioxidant genes,	iPSC implanted into tibialis	2016)
			reduced ROS levels, improved	anterior muscle of SCID	
			nuclear architecture, lowered	mice	
			number of apoptotic cells		
Short hairpin (sh)	ICMT	Prelamin A processing	Delayed senescence, increased cell	Human skin fibroblast from	(Ibrahim et al.
RNA against			proliferation rate	HGPS patient	2013)
ICMT					
Short hairpin (sh)	LMNA gene	Progerin expression	Amelioration of morphological	Human skin fibroblast from	(Huang et al.
RNA against			defects in nucleus, increased cell	HGPS patients	2005)
LMNA			proliferation, reduced numbers of		
			senescent cells		
CK2a	Activation of CK2	Multiple pathways viz.	Reduced β -gal-positive cells	$Zmpste24^{-/-}CK2\alpha^{TG}$ MEFs	(Ao et al.
overexpression		cell proliferation, cell	& $p16^{Ink4a}$ level (decreased		2019)
		survival, cell	senescence)		

		differentiation and			
		development, apoptosis,			
		DNA repair etc.			
NANOG	Increases SMAD2/3	TGF-β1 pathway	Restoration of COL3 in ECM,	Human skin fibroblast from	(Rong et al.
overexpression	mediated COL3 synthesis		reduced senescence, increased cell	HGPS patient	2019)
			proliferation, decreased DNA		
			damage		
	MRTF-A and SRF	TGF-β1 and ROCK	Induce actin polymerization and	Human dermal fibroblast	(Mistriotis et
	dependent gene expression	pathways	restore contractile activity	from HGPS patient	al. 2017)
CRISPR/Cas9	LMNA gene	Progerin expression	Extended life span, attenuated body	<i>Lmna^{G609G/G609G}</i> mouse	(Beyret et al.
system			weight loss, improved architecture		2019)
			of gastro-intestinal tissues, reduced		
			epidermal thinning and dermal fat		
			loss, decreased degeneration of		
			VSMC of the aortic arch, lessened		

	development	of	bradycardia,		
	increased gri	p strength.			
	Reduced	progerin	expression,	Human skin fibroblast from	(Santiago-
	decreased nu	mber of ab	errant nuclei	HGPS patient	Fernández et
					al. 2019)
	Reduced 1	progerin	expression,	Lmna ^{G609G/G609G} mouse	(Santiago-
	decreased nu	clear alter	ations	fibroblast	Fernández et
					al. 2019)
	Reduced 1	progerin	expression,	<i>Lmna^{G609G/G609G}</i> mice	(Santiago-
	increased lif	e span an	d maximum		Fernández et
	survival, o	decreased	apoptosis,		al. 2019)
	retarded loss	of groomi	ng,		

			improved be	ody weight	and blood					
			glucose lev	vels, reduce	ed gastric					
			mucosa atroj	phy, lowered	fibrosis in					
			heart and mu	ıscle						
Cellular reprogramming	Stem cell	regeneration	Extended li	fe span, we	eight gain,	Ercc1 ^{-/-}	and Erco	$c l^{-/\Delta}$ mice	(Lavasani	et
	capability		delayed agi	ng related	symptoms,				al. 2012)	
			promoted	neovasc	cularization					
			several tissu	es (viz. mus	cle, brain),					
			reduced mus	scle atrophy						
Partial reprogramming of the	epigenetic	alterations,	Moderated	spinal	curvature,	Lmna ^{G60}	9 <i>G/G</i> 609G	(LAKI)	(Ocampo	et
cell	cellular	senescence	increase in	median and	maximum	mice of	crossed	to mice	al. 2016)	
	pathways		life span, au	gmented epi	dermal and	carrying	an	OSKM		
			dermal	thickness,	reduced	polycyst	ronic cas	ssette (4F)		
			keratinizatio	n of the skin	, improved	and a r	tTA tran	s-activator,		
			histological	features o	f multiple	thereby	generatin	g LAKI 4F		
			organs (skin	n, spleen, ki	dneys, and	mice				
	Cellular reprogramming Partial reprogramming of the cell	Cellular reprogrammingStem cell capabilityPartial reprogramming of the cellepigenetic cellular pathways	Cellular reprogrammingStem cell regeneration capabilityPartial reprogramming of the cellepigenetic cellularalterations, senescence pathways	Improved b glucose let glucose let mucosa atro heart and mu heart and mu let Cellular reprogramming Stem cell regeneration Extended li capability delayed agi promoted promoted several tissu reduced mus Partial reprogramming of the epigenetic alterations, Moderated cell cellular senescence increase in pathways life span, au dermal keratinizatio histological organs (skir	Improved body weight glucose levels, reduced mucosa atrophy, lowered heart and muscle Cellular reprogramming Stem cell regeneration Extended life span, weight capability delayed aging related promoted neovasc several tissues (viz. mus reduced muscle atrophy Partial reprogramming of the epigenetic cellular senescence increase in median and pathways life span, augmented epid dermal thickness, keratinization of the skin histological features o organs (skin, spleen, kin	improved body weight and blood glucose levels, reduced gastric mucosa atrophy, lowered fibrosis in heart and muscleCellular reprogrammingStem cell regeneration capabilityExtended life span, weight gain, delayed aging related symptoms, promoted neovascularization several tissues (<i>viz.</i> muscle, brain), reduced muscle atrophyPartial reprogramming of the cellepigenetic alterations, pathwaysModerated spinal curvature, increase in median and maximum life span, augmented epidermal and dermal thickness, reduced keratinization of the skin, improved histological features of multiple organs (skin, spleen, kidneys, and	improved body weight and blood glucose levels, reduced gastric mucosa atrophy, lowered fibrosis in heart and muscle Cellular reprogramming Stem cell regeneration capability Extended life span, weight gain, capability delayed aging related symptoms, promoted neovascularization several tissues (viz. muscle, brain), reduced muscle atrophy Partial reprogramming of the epigenetic alterations, cell cellular senescence increase in median and maximum pathways life span, augmented epidermal and carrying dermal dermal thickness, reduced fistological features of mucos mice	improved body weight and blood glucose levels, reduced gastric mucosa atrophy, lowered fibrosis in heart and muscle Cellular reprogramming Stem cell regeneration capability delayed aging related symptoms, promoted neovascularization several tissues (viz. muscle, brain), reduced muscle atrophy Partial reprogramming of the epigenetic alterations, Moderated spinal curvature, cellular senescence increase in median and maximum mice crossed pathways life span, augmented epidermal and dermal thickness, reduced netways reduced fibrosis in and a rtTA tran histological features of multiple thereby generatin,	improved body weight and blood glucose levels, reduced gastric mucosa atrophy, lowered fibrosis in heart and muscle Cellular reprogramming Stem cell regeneration Extended life span, weight gain, Ercc1 ^{-/-} and Ercc1 ^{-/4} mice capability delayed aging related symptoms, promoted neovascularization several tissues (viz. muscle, brain), reduced muscle atrophy Partial reprogramming of the epigenetic cellular senescence pathways life span, augmented epidermal and dermal thickness, reduced polycystronic cassette (4F) keratinization of the skin, improved histological features of multiple and a rtTA trans-activator, histological features of multiple thereby generating LAKI 4F	improved body weight and blood improved body weight and blood glucose levels, reduced gastric mucosa atrophy, lowered fibrosis in in heart and muscle improved fibrosis in Cellular reprogramming Stem cell regeneration Extended life span, weight gain, Erce1 ^{-/-} and Ercc1 ^{-/4} mice (Lavasani capability delayed aging related symptoms, promoted neovascularization al. 2012) Partial reprogramming of the epigenetic alterations. Moderated spinal curvature, Lmma ^{G609G/G609G} (LAKI) cell increase in median and maximum mice crossed to mice al. 2016) pathways life span, augmented epidermal and carrying an OSKM dermal thickness, reduced polycystronic cassette (4F) keratinization of the skin, improved and a rtTA trans-activator, histological features of multiple thereby generating LAKI 4F

	gastrointestinal tract), decreased		
	VSMC degeneration, rescued		
	development of bradycardia,		
	restored cell proliferation rate,		
	reestablished histone modifications,		
	reduced apoptosis, partial		
	restoration of adult stem cell		
	population		
	Reduced ROS and DNA damage,	LAKI 4F mice tail tip	(Ocampo et
	decreased senescence, lowered	fibroblast culture	al. 2016)
	expression of senescence associated		
	stress response genes, restored		
	histone methylation, improved		
	nuclear envelope architecture		

Morpholino	LMNA gene (Correction of	Progerin expression	Restored nuclear	structure and	Human skin fibroblast from	(Scaffidi and
antisense RNA	aberrant splicing of LMNA		expression of mist	regulated genes,	HGPS patient	Misteli 2005)
	gene)		reduced lamin A ex	pression		
			Reduced progerin	level, decreased	<i>Lmna^{G609G/G609G}</i> mice	(Osorio et al.
			loss of body weigh	nt, increased life		2011)
			span, lowered	expression of		
			senescence assoc	iated markers,		
			thickened subcutar	neous fat layer,		
			heightened serum	glucose level, a		
			reduced involution	of thymus and		
			spleen.			
			Ameliorated n	uclear shape	Human skin fibroblast from	(Lee et al.
			abnormalities, incre	eased lamin C but	HGPS patient	2016a)

			reduced	lamin	A/progerin		
			expression,				
			Reduced pro	ogerin, im	proved aortic	Lmna ^{G609G/G609G} mice	(Lee et al.
			pathology.	8,	Pro los dorne		(2016a)
			Decreased	progerin	expression,	Human skin fibroblast from	(Harhouri et
			reduced se	enescence	e, improved	HGPS patient	al. 2016)
			nuclear shape	e,			
miR-9 (micro	Lamin A RNA 3'-UTR	Progerin expression	Reduced	lamin	A/progerin,	HGPS-iPSC-MSC	(Nissan et al.
RNA)			ameliorated 1	nuclear al	onormalities		2012)
hTERT mRNA	Telomerase enzyme	Telomere length	Increased te	lomere 1	ength, partial	HGPS cell line	(Li et al.
			restoration of	of telome	ere associated		2019)
			proteins,	enhan	ced cell		
			proliferation,	, reduced	l senescence,		
			improved	nuclear	morphology,		

				rescued secretion of inflammatory				
				cytokines				
Human MSC	- Peroxiredoxin	antioxidant	Oxidative stress	Reduced senescence and increased	Progerin overexpressing	(Liu	et	al.
EVs and iPSC	enzymes			cell proliferation	MSCs		2019b)	
EVs								