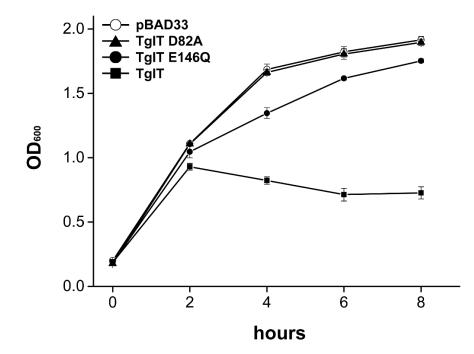

1 Supplementary Figures

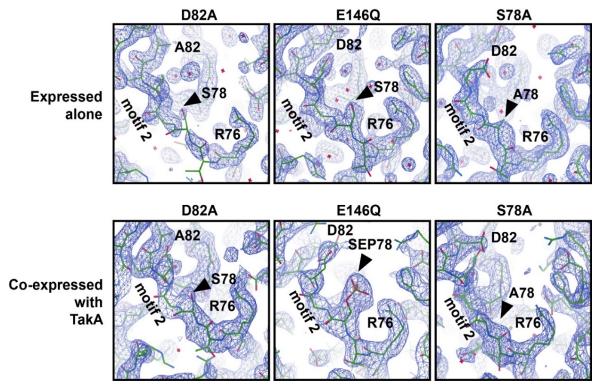

2

Supplementary Figure 1 Structure-based multiple sequence alignment of
DUF1814 family
Sequences of DUF1814 family members Rv1045, Rv2826c from *M. tuberculosis*,

6 AbiEii from S. agalactiae, NTase from B. multivarans, and JHP933 form H, pylori

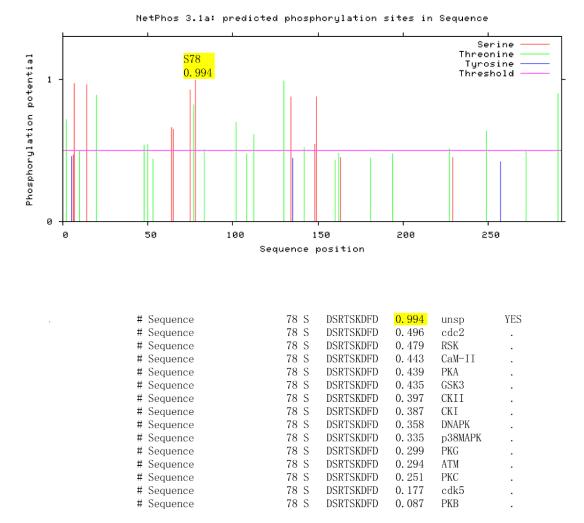
7 were aligned by software MUSCLE; and annotated secondary structure elements of

8 TglT (Rv1045) and JHP933 were aligned to the top and the bottom of the sequences 9 using ESPript server. Residues in red indicate the conserved reisdues; residues with 10 red backgroud indicated the invariant residues. Conserved motifs are indicted at the 11 bottom of the sequences. The phsophoryation target S78 of TglT is highlighted by a 12 phosphate symbol with red background. 13



Supplementary Figure 2 Initial growth rates of BL21 cells after the induction of
 expression of TgIT and variants.

BL21 competent cells were transformed with the indicated expression plasmids. The 18 bacteria cultures were grown to OD₆₀₀=0.6 and then diluted to OD₆₀₀=0.2 before adding 19 L-arabinose for induction. The growth of the bacteria culture was monitored every two 20 21 hours after induction. Bacteria densities (OD₆₀₀) was plotted as the function of time. At 22 least three independent measurements were taken for each time point. Bacteria 23 transformed with TgIT expression plasmid exhibited growth inhibition 2 hours post induction. E146Q mutant showed attenuated toxicity comparing to wildtype protein, 24 whereas D82A was completely non-toxic. Data shown are mean OD_{600} value \pm SD 25 26 (n = 3).


- 27
- 28

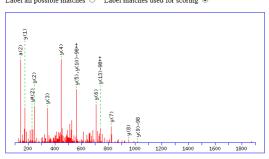
29

30 Supplementary Figure 3 Crystallographic study of TglT variants revealed that 31 residue S78 was phosphorylated when the protein was co-expressed with the 32 antitoxin TakA.

Composite omit maps (with annealing) were calculated for crystal structures of TgIT mutants D82A, E146Q and S78A. The black boxes show the magnified view of the phosphorylation at the active site of TgIT variants. The map (contour 1.5 s) is shown with blue mesh, which is superimposed with the stick model of the protein. Key residues at the active site are labeled. The phosphorylation target residue 78 is indicated with black triangles.

40

41 Supplementary Figure 4 NetPhos 3.1 prediction


Prediction of phosphorylation site in TglT sequence generated from NetPhos 3.1 server. The score of the prediction ranges from 0-1; score higher than threshold 0.5 indicates a significant prediction. S78 from motif 2 in context 74-DSRTSKDFD-82 received the highest score 0.994 among all significant hits. The software found that S78 is the phosphorylation site for unspecified kinase, rather than any of 14 characterized kinases whose scores were all below significant threshold.

Peptide View

MS/MS Fragmentation of GIPDSRTSKDFDTVAR Found in tr[A0A045JBD4]A0A045JBD4_MYCTX, Nucleotidyl transferase of uncharacterised function (DUF1814) OS=Mycobacterium tuberculosis GN=B7R63_05680 PE=4 SV=1

Match to Query 8929: 1843.838096 from(461.966800,4+) intensity(19859188.0000) Title: File43610 Spectrum1939 scans: 4176 Data file F:\DATA\2017\2017\2017\20171214\BPI_14819_RV1054.raw.mgf

Click mouse within plot area to zoom in by factor of two about that point Or, Plot from 100 to 1900 Da Full range Label all possible matches O Label matches used for scoring •

Monoisotopic mass of neutral peptide Mr(calc): 1843.8466 Fixed modifications: Carbanidomethyl (C) (apply to specified residues or termini only) Variable modifications:

S 8		Pho	ospho	(ST),	with	neutral	losses	97.9769	(shown	in	table),	0.0000	
Tons	Sco	re:	71	Expect:	: 5.1	-007							

Mat	ches : 13	/252 fra	gment ions	s using 1	8 most in	tense pe	aks (<u>he</u> l							
#	а	a**	a*	a***	b	b **	b*	b***	Seq.	у	y**	y*	y***	#
1	30.0338	15.5206			58.0287	29.5180			G					16
2	143.1179	72.0626			171.1128	86.0600			Ι	1689.8555	845.4314	1672.8289	836.9181	15
3	240.1707	120.5890			268.1656	134.5864			P	1576.7714	788.8893	1559.7449	780.3761	14
4	355.1976	178.1024			383.1925	192.0999			D	1479.7186	740.3630	1462.6921	731.8497	13
5	442.2296	221.6185			470.2245	235.6159			S	1364.6917	582.8495	1347.6652	674.3362	12
6	598.3307	299.6690	581.3042	291.1557	626.3257	313.6665	609.2991	305.1532	R	1277.6597	639.3335	1260.6331	630.8202	11
7	699.3784	350.1928	682.3519	341.6796	727.3733	364.1903	710.3468	355.6770	Τ	1121.5586	561.2829	1104.5320	552.7696	10
8	768.3999	384.7036	751.3733	376.1903	796.3948	398.7010	779.3682	390.1878	S	1020.5109	510.7591	1003.4843	502.2458	9
9	896.4948	448.7511	879.4683	440.2378	924.4898	462.7485	907.4632	454.2352	K	951.4894	476.2483	934.4629	467.7351	8
10	1011.5218	506.2645	994.4952	497.7513	1039.5167	520.2620	1022.4901	511.7487	D	823.3945	412.2009	806.3679	403.6876	7
11	1158.5902	579.7987	1141.5636	571.2855	1186.5851	593.7962	1169.5586	585.2829	F	708.3675	354.6874	691.3410	346.1741	6
12	1273.6171	637.3122	1256.5906	628.7989	1301.6121	651.3097	1284.5855	642.7964	D	561.2991	281.1532	544.2726	272.6399	5
13	1374.6648	687.8360	1357.6383	679.3228	1402.6597	701.8335	1385.6332	693.3202	Τ	446.2722	223.6397	429.2456	215.1264	4
14	1473.7332	737.3703	1456.7067	728.8570	1501.7281	751.3677	1484.7016	742.8544	v	345.2245	173.1159	328.1979	164.6026	3
15	1544.7703	772.8888	1527.7438	764.3755	1572.7653	786.8863	1555.7387	778.3730	Α	246.1561	123.5817	229.1295	115.0684	2
16									R	175.1190	88.0631	158.0924	79.5498	1

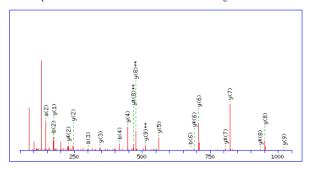
49

50 Supplementary Figure 5. LC-MS/MS analysis of purified wildtype TglT.

51 A fragment₇₁GIPDSRT<u>S</u>KDFDTVAR₈₆ belonging to TglT was observed. In which,

52 the molecular mass of residue S78 (underlined) calculates: (1020.5109-951.4894) * 1

+ 97.9769 (neutral losses, orange underline) + 18 (1 water) = 184.9984Da (orange box


- 54 indicated that data used for calculation). The theoretical molecular mass of
- 55 phosphoserine is 185.07Da. Thus, S78 was phosphorylated.
- 56

Peptide View

MS/MS Fragmentation of TAKDFDTVAR Found in S78A

Match to Query 1886: 1122.565288 from(562.289920,2+) intensity(10497550.0000) Title: File43612 Spectrum2637 scans: 3948 Data file F:\DATA\2017\2017\201712\20171214\bpi_14819\BPI_14819_S78A.raw.mgf

 $\begin{array}{c|c} \mbox{Click mouse within plot area to zoom in by factor of two about that point} \\ \mbox{Or, Plot from 50 to 1050 Da Full range} \\ \mbox{Label all possible matches } \bigcirc & \mbox{Label matches used for scoring } \textcircled{\bullet} \end{array}$

Monoisotopic mass of neutral peptide Mr(calc): 1122.5669 Fixed modifications: Carbamidomethyl (C) (apply to specified residues or termini only) Ions Score: 59 Expect: 1.4e-006 Matches: 21/100 fragment ions using 42 most intense pasks (halo)

Matches : 21/100 fragment ions using 42 most intense peaks (<u>help</u>)														
#	a	a ⁺⁺	a*	a* ⁺⁺	b	b ⁺⁺	b*	b* ⁺⁺	Seq.	у	y**	y*	y****	#
1	74.0600	37.5337			102.0550	51.5311			Τ					10
2	145.0972	73.0522			173.0921	87.0497			Α	1022.5265	511.7669	1005.5000	503.2536	9
3	273.1921	137.0997	256.1656	128.5864	301.1870	151.0972	284.1605	142.5839	K	951.4894	476.2483	934.4629	467.7351	8
4	388.2191	194.6132	371.1925	186.0999	416.2140	208.6106	399.1874	200.0974	D	823.3945	412.2009	806.3679	403.6876	7
5	535.2875	268.1474	518.2609	259.6341	563.2824	282.1448	546.2558	273.6316	F	708.3675	354.6874	691.3410	346.1741	6
6	650.3144	325.6608	633.2879	317.1476	678.3093	339.6583	661.2828	331.1450	D	561.2991	281.1532	544.2726	272.6399	5
7	751.3621	376.1847	734.3355	367.6714	779.3570	390.1821	762.3305	381.6689	Τ	446.2722	223.6397	429.2456	215.1264	4
8	850.4305	425.7189	833.4040	417.2056	878.4254	439.7164	861.3989	431.2031	V	345.2245	173.1159	328.1979	164.6026	3
9	921.4676	461.2375	904.4411	452.7242	949.4625	475.2349	932.4360	466.7216	Α	246.1561	123.5817	229.1295	115.0684	2
10									R	175.1190	88.0631	158.0924	79.5498	1
														_

57

58 Supplementary Figure 6. LC-MS/MS analysis of purified TgIT mutant S78A.

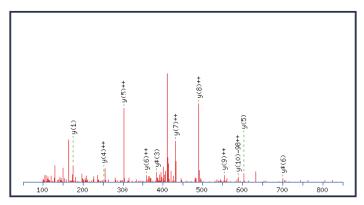
59 A fragment 77TAKDFDTVAR₈₆ belonging to TglT S78A mutant was observed. In

which, the molecular mass of residue A78 (underlined) calculates: (1022.5265-

61 951.4894) * 1 + 18 (1 water) = 89.0371Da (orange box indicated that data used for

62 calculation). The theoretical molecular mass of phosphoserine is 185.07Da. Thus,

63 residue 78 was alanine, non-phosphorylated.


Peptide View

MS/MS Fragmentation of TSKDFDTVARR

Found in tr A0A045JBD4|A0A045JBD4_MYCTX, Nucleotidyl transferase of uncharacterised function (DUF1814) OS=Mycobacterium tuberculosis GN=B7R63_05680 PE=4 SV=1

Match to Query 7048: 1374.630132 from(459.217320,3+) intensity(771675.4375) Title: File4302 Spectrum905 scans: 2846 Data file F:\LCMS\7yue\20180708\16444\BPI_16444_2_WT_POS.mgf

Click mouse within plot area to zoom in by factor of two about that point Or, Plot from 50 to 850 Da Full range Label all possible matches I Label matches used for scoring (1)

Monoisotopic mass of neutral peptide Mr(calc): 1374.6293 Fixed modifications: Carbamidomethyl (C) (apply to specified residues or termini only) Variable modifications:

S2 : Phospho (ST), with neutral losses 97.9769(shown in table), 0.0000 Ions Score: 13 Expect: 1

Matches: 11/184 fragment ions using 56 most intense peaks (<u>help</u>)

#	a	a ⁺⁺	a*	a* ⁺⁺	b	b++	b*	b * ⁺⁺	Seq.	у	y++	у*	y* ⁺⁺	#
1	74.0600	37.5337			102.0550	51.5311			Т					11
2	143.0815	72.0444			171.0764	86.0418			S	1176.6120	588.8096	1159.5854	580.2964	10
3	271.1765	136.0919	254.1499	127.5786	299.1714	150.0893	282.1448	141.5761	Κ	1107.5905	554.2989	1090.5640	545.7856	9
4	386.2034	193.6053	369.1769	185.0921	414.1983	207.6028	397.1718	199.0895	D	979.4956	490.2514	962.4690	481.7381	8
-5	533.2718	267.1395	516.2453	258.6263	561.2667	281.1370	544.2402	272.6237	F	864.4686	432.7380	847.4421	424.2247	7
6	648.2988	324.6530	631.2722	316.1397	676.2937	338.6505	659.2671	330.1372	D	717.4002	359.2037	700.3737	350.6905	6
7	749.3464	375.1769	732.3199	366.6636	777.3414	389.1743	760.3148	380.6610	Т	602.3733	301.6903	585.3467	293.1770	5
8	848.4149	424.7111	831.3883	416.1978	876.4098	438.7085	859.3832	430.1953	V	501.3256	251.1664	484.2990	242.6532	4
9	919.4520	460.2296	902.4254	451.7163	947.4469	474.2271	930.4203	465.7138	Α	402.2572	201.6322	385.2306	193.1190	3
10	1075.5531	538.2802	1058.5265	529.7669	1103.5480	552.2776	1086.5215	543.7644	R	331.2201	166.1137	314.1935	157.6004	2
11									R	175.1190	88.0631	158.0924	79.5498	1

65

66 Supplementary Figure 7. LC-MS/MS analysis of the upper band of wildtype

67 TglT sample in Phos-tag SDS-PAGE

- A fragment 77TSKDFDTVARR₈₇ belonging to TglT was identified. In which, the
- 69 molecular mass of residue S78 (underlined) calculates: (588.8096-554.2989) * 2 +
- 97.9769 (neutral losses, orange underline) + 18(1 water) = 184.9983Da (orange box
- 71 indicated that data used for calculation). The theoretical molecular mass of
- 72 phosphoserine is 185.07Da. Thus, S78 was phosphorylated.

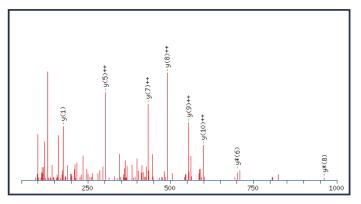
Mascot Search Results: Peptide View

9/10/2018

(MATRIX) SCIENCE/ Mascot Search Results

Peptide View

MS/MS Fragmentation of TSKDFDTVARR


Found in tr A0A045JBD4 A0A045JBD4_MYCTX, Nucleotidyl transferase of uncharacterised function (DUF1814) OS=Mycobacterium tuberculosis GN=B7R63_05680 PE=4 SV=1

Match to Query 6229: 1294.664742 from(432.562190,3+) intensity(176276.6094) Title: File4318 Spectrum726 scans: 2640 Data file F:\LCMS\7yue\20180708\16444\BPI_16444_1_WT.mgf

 Click mouse within plot area to zoom in by factor of two about that point

 Or, Plot from 50 to 1000 Da Full range

 Label all possible matches I babel matches used for scoring I

Monoisotopic mass of neutral peptide Mr(calc): 1294.6630 Fixed modifications: Carbamiddomethyl (C) (apply to specified residues or termini only) Ions Score: 24 Expect: 0.009 Matches: 8/112 fragment ions using 17 most intense peaks (help)

#	a	a ⁺⁺	a*	a* ⁺⁺	b	b++	b*	b *++	Seq.	у	y++	y*	y*++	#
1	74.0600	37.5337			102.0550	51.5311			Т					11
2	161.0921	81.0497			189.0870	95.0471			S	1194.6226	597.8149	1177.5960	589.3016	10
3	289.1870	145.0972	272.1605	136.5839	317.1819	159.0946	300.1554	150.5813	Κ	1107.5905	554.2989	1090.5640	545.7856	\$
4	404.2140	202.6106	387.1874	194.0974	432.2089	216.6081	415.1823	208.0948	D	979.4956	490.2514	962.4690	481.7381	8
5	551.2824	276.1448	534.2558	267.6316	579.2773	290.1423	562.2508	281.6290	F	864.4686	432.7380	847.4421	424.2247	1
6	666.3093	333.6583	649.2828	325.1450	694.3042	347.6558	677.2777	339.1425	D	717.4002	359.2037	700.3737	350.6905	6
7	767.3570	384.1821	750.3305	375.6689	795.3519	398.1796	778.3254	389.6663	Т	602.3733	301.6903	585.3467	293.1770	5
8	866.4254	433.7164	849.3989	425.2031	894.4203	447.7138	877.3938	439.2005	V	501.3256	251.1664	484.2990	242.6532	4
9	937.4625	469.2349	920.4360	460.7216	965.4575	483.2324	948.4309	474.7191	Α	402.2572	201.6322	385.2306	193.1190	3
10	1093.5636	547.2855	1076.5371	538.7722	1121.5586	561.2829	1104.5320	552.7696	R	331.2201	166.1137	314.1935	157.6004	2
11									R	175.1190	88.0631	158.0924	79.5498	1

73

74 Supplementary Figure 8. LC-MS/MS analysis of the lower band of wildtype TglT

75 sample in Phos-tag SDS-PAGE

76 A fragment 77TSKDFDTVARR87 belonging to TglT was identified. In which, the

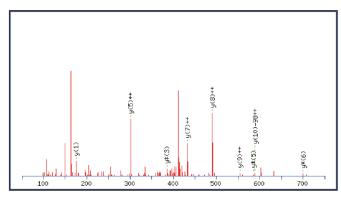
77 molecular mass of residue S78 (underlined) calculates: (597.8149-554.2989) * 2 +

18(1 water) = 105.032 Da (orange box indicated that data used for calculation). The

theoretical molecular mass of serine is 105.09Da. Thus, S78 was non-phosphorylated.

(MATRIX) Mascot Search Results

Peptide View


MS/MS Fragmentation of TSKDFDTVARR Found in tr|A0A045JBD4|A0A045JBD4_MYCTX, Nucleotidyl transferase of uncharacterised function (DUF1814) OS=Mycobacterium tuberculosis GN=B7R63 05680 PE=4 SV=1

Match to Query 6508: 1374.630132 from(459.217320,3+) intensity(881110.2500) Title: File4306 Spectrum688 scans: 2721 Data file F:\LCM\$\7yue\20180708\16444\BPI_16444_3_E146Q_PHOS.mgf

 Click mouse within plot area to zoom in by factor of two about that point

 Or, Plot from 50
 to 750
 Da
 Full range

 Label all possible matches
 Label matches used for scoring ®

Monoisotopic mass of neutral peptide Mr(calc): 1374.6293 Fixed modifications: Carbamidomethyl (C) (apply to specified residues or termini only) Variable modifications:

S2 : Phosphe (ST), with neutral losses 97,9769(shown in table), 0,0000 Ions Score: 12 Expect: 1

Matches : 9/184 fragment ions using 30 most intense peaks (help)

#	а	a ⁺⁺	a*	a*++	b	b ⁺⁺	b*	b* ⁺⁺	Seq.	у	y++	y*	y* ⁺⁺	#
1	74.0600	37.5337			102.0550	51.5311			Т					11
2	143.0815	72.0444			171.0764	86.0418			S	1176.6120	588.8096	1159.5854	580.2964	10
3	271.1765	136.0919	254.1499	127.5786	299.1714	150.0893	282.1448	141.5761	K	1107.5905	554.2989	1090.5640	545.7856	9
4	386.2034	193.6053	369.1769	185.0921	414.1983	207.6028	397.1718	199.0895	D	979.4956	490.2514	962.4690	481.7381	8
5	533.2718	267.1395	516.2453	258.6263	561.2667	281.1370	544.2402	272.6237	F	864.4686	432.7380	847.4421	424.2247	7
6	648.2988	324.6530	631.2722	316.1397	676.2937	338.6505	659.2671	330.1372	D	717.4002	359.2037	700.3737	350.6905	6
7	749.3464	375.1769	732.3199	366.6636	777.3414	389.1743	760.3148	380.6610	Т	602.3733	301.6903	585.3467	293.1770	-5
8	848.4149	424.7111	831.3883	416.1978	876.4098	438.7085	859.3832	430.1953	V	501.3256	251.1664	484.2990	242.6532	4
9	919.4520	460.2296	902.4254	451.7163	947.4469	474.2271	930.4203	465.7138	Α	402.2572	201.6322	385,2306	193.1190	3
10	1075.5531	538.2802	1058.5265	529.7669	1103.5480	552.2776	1086.5215	543.7644	R	331.2201	166.1137	314.1935	157.6004	2
11									R	175.1190	88.0631	158.0924	79.5498	1

81

82 Supplementary Figure 9. LC-MS/MS analysis of the upper band of TglT E146Q

83 sample in Phos-tag SDS-PAGE

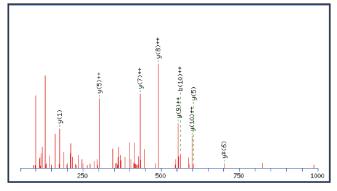
A fragment 77TSKDFDTVARR87 belonging to TglT was identified. In which, the

85 molecular mass of residue S78 (underlined) calculates: (588.8096-554.2989) * 2 +

97.9769 (neutral losses, orange underline) + 18(1 water) = 184.9983Da (orange box

87 indicated that data used for calculation). The theoretical molecular mass of

phosphoserine is 185.07Da. Thus, S78 was phosphorylated.


(MATRIX) Mascot Search Results

Peptide View

MS/MS Fragmentation of TSKDFDTVARR Found in tr|A0A045JBD4|A0A045JBD4_MYCTX, Nucleotidyl transferase of uncharacterised function (DUF1814) OS=Mycobacterium tuberculosis GN=B7R63_05680 PE=4 SV=1

Match to Query 5410: 1294.666782 from(432.562870,3+) intensity(582001.4375) Title: File4304 Spectrum623 scans: 2574 Data file F:\LCMS\7yue\20180708\16444\BPI 16444 3 E146Q.mgf

Click mouse within plot area to zoom in by factor of two about that point Or, Plot from 50 to 1000 Da Full range Label all possible matches I Label matches used for scoring I

Monoisotopic mass of neutral peptide Mr(calc): 1294.6630 Fixed modifications: Carbamidomethyl (C) (apply to specified residues or termini only) Ions Score: 21 Expect: 0.86

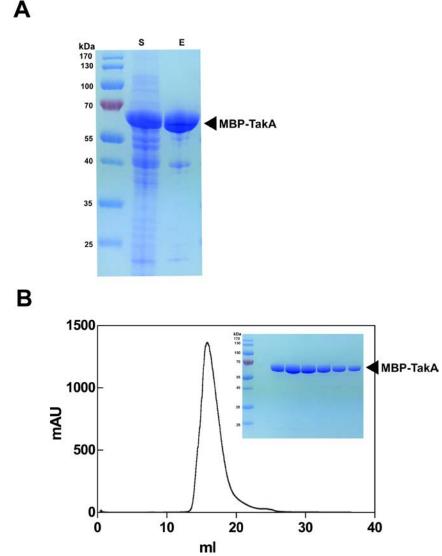
Matches: 9/112 fragment ions using 21 most intense peaks (help)

#	a	a ⁺⁺	a*	a*++	b	b++	b*	b* ⁺⁺	Seq.	у	y ⁺⁺	у*	y* ⁺⁺	#
1	74.0600	37.5337			102.0550	51.5311			Т					11
2	161.0921	81.0497			189.0870	95.0471			S	1194.6226	597.8149	1177.5960	589.3016	10
3	289.1870	145.0972	272.1605	136.5839	317.1819	159.0946	300.1554	150.5813	K	1107.5905	554.2989	1090.5640	545.7856	9
4	404.2140	202.6106	387.1874	194.0974	432.2089	216.6081	415.1823	208.0948	D	979.4956	490.2514	962.4690	481.7381	8
-5	551.2824	276.1448	534.2558	267.6316	579.2773	290,1423	562.2508	281.6290	F	864.4686	432.7380	847.4421	424,2247	7
6	666.3093	333.6583	649.2828	325.1450	694.3042	347.6558	677.2777	339.1425	D	717.4002	359.2037	700.3737	350.6905	6
7	767.3570	384.1821	750.3305	375.6689	795.3519	398.1796	778.3254	389.6663	Т	602.3733	301.6903	585.3467	293.1770	5
8	866.4254	433.7164	849.3989	425.2031	894.4203	447.7138	877.3938	439.2005	V	501.3256	251.1664	484.2990	242.6532	4
9	937.4625	469.2349	920.4360	460.7216	965.4575	483.2324	948.4309	474.7191	A	402.2572	201.6322	385.2306	193.1190	3
10	1093.5636	547.2855	1076.5371	538.7722	1121.5586	561.2829	1104.5320	552.7696	R	331.2201	166.1137	314.1935	157.6004	2
11									R	175.1190	88.0631	158.0924	79.5498	1

90

91 Supplementary Figure 10. LC-MS/MS analysis of the lower band of TglT E146Q

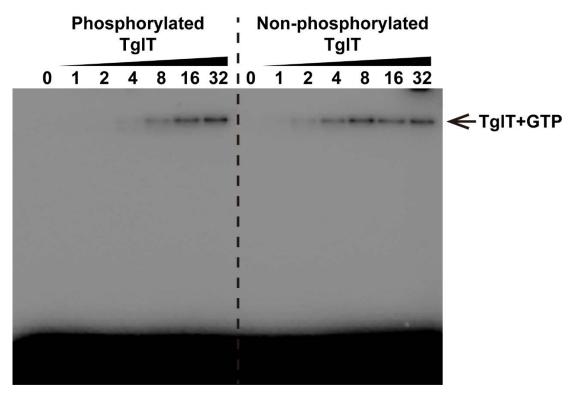
92 sample in Phos-tag SDS-PAGE


A fragment 77TSKDFDTVARR87 belonging to TglT was identified. In which, the

94 molecular mass of residue S78 (underlined) calculates: (597.8149-554.2989) * 2 +

18(1 water) = 105.032 Da (orange box indicated that data used for calculation). The

96 theoretical molecular mass of serine is 105.09Da. Thus, S78 was non-phosphorylated.


- 98
- 99
- 100
- 101
- 102

104 Supplementary Figure 11 Purification of MBP-TakA.

A. SDS-PAGE analysis of MBP-TakA purification using amylose resin (NEW 105 ENGLAND BioLabs). Left lane, molecular weight standards, the molecular mass 106 of the standard proteins are indicated. Middle lane, S stands for supernatant. Cells 107 lysate was clarified by centrifugation and the supernatant was loaded to SDS-108 PAGE. Right lane, E stands for elution. MBP-TakA was eluted from amylose 109 110 resin using an elution buffer containing 50mM Tris, pH=8.0, 150mM NaCl and 10mM maltose. 111 112 B. Size-exclusion chromatography was used as the final step of the purification. Average fraction absorbance (mAu) is plot as the function of elution volume (ml). 113 114 Right insert: SDS-PAGE analysis of the fractions corresponding to the elution

115 peak.

119 Supplementary Figure 12 Phosphorylation at residue S78 hindered GTP binding.

GTP binding assay showed non-phosphorylated TgIT exhibited higher binding affinity comparing to phosphorylated TgIT. Non-phosphorylated TgIT and phosphorylated TgIT proteins were verified by LC-MS/MS (Supplementary Fig.5 & Fig.16) prior to GTP binding assay. [α -³²P] GTP (3.3nM) was inoculated with increasing amount of phosphorylated TgIT and non-phosphorylated TgIT. Protein concentration series were 1µM, 2µM, 4µM, 8µM, 16µM and 32µM. The mixtures were analyzed by Native-PAGE and visualized by autoradiography.

- 127
- 128

Probability: 99.5		culosis} SCOP: d.377.1.1, a.4.5.83, l.1.1.1; Related PDB entries: 1ZEL_B /alue: 4.6E-16 Score: 124.39 Aligned Cols: 191 Identities: 15% Similarity: 0	.05
Q ss_pred		CCCCCCccccccccHHHHHHHHHHHHHHCCCEEEHHHHHHCCCCHHHHHHHH	
Q 1044	1	MCAKPYLIDTIAHMAIWDRLVEVAAEQHGYVTTRDARDIGVDPVQLRLLAGRGRLERV-GRGV	62 (207
Q Consensus	1	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	62 (207
		+ +.+.+++ .+ + .+ .+++++ . .+++ .+ +	
T Consensus	3	······································	72 (298
T 1ZEL_A	3	MVVSPAGADRRIPTWASRVVSGLARDRPVVVTKEDLTQRLTEAGCGRDPDSAIRELRRIGWLVQLPVKGT	72 (298
T ss_dssp		EEECTTCSC¢CCCGGGHHHHHHHHHHCCSSEEHHHHHHHHHHHHHHHHHH	
T ss_pred		cccCCCccCCCChHHHHHHHHHhhcCCceEEHHHHHHHHHHCCCCccHHHHHHHHHHCCCEEeCCCCce	
		N- termilnal wHTH domain —	
Q ss_pred		EecCCCCCCccHHHHHHHHHHhCCcEEehHHHHHHCCCCCCCC-eeEEEecCCCCCccCCCccE	
Q 1044	63	YRVPVLPRGEHDDLAAAVSWTLGRGVISHESALALHALADVNPS-RIHLTVPRNNHPRAAGGELY	126 (20
Q Consensus	63	** * * * * Y~~~~~~~~~~~~~~~~~~~~~~~~~~~~	126 (20
-			•
T Consensus	73	YnnnnnnnnpnnnnnlnnnnnyisnnSAlnnnGlt~q~pnnninvatannnnnnnnn	142 (29
T 1ZEL_A	73	WAFIPPGEAAISDPYLPLRSWLARDQNAGFMLAGASAAWHLGYLDRQPDGRIPIWLPPAKRLPDGLASYV	142 (29
T ss_dssp		EEECCTTCSEEECTTHHHHHHHHHHCTTCCCEECHHHHHHHHHTCCSSCCCSSEEEECCTTCCCCGGGTTTE	
T ss_pred		EEecCcccccCCChHHHHHHHHHCCCCCEEEeHHHHHHHCCCcccCCCCceEEEcCCCCCCCCcceE	
Q ss_pred		ЕЕЕесСССНhheEEECCEEcCCHHHHHHHHHHHCCCHHHHHHHHHHHHHHC-C	
Q 1044	127	RVHRRDLQAAHVTSVDGIPVTTVARTIKDCVKTGTDPYQLRAAIERAEAE-G	177 (20
Q Consensus	127	* ๛๛๛๛๛๛ๅ๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	177 (20
		.++++	
T Consensus	143	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	212 (29
T 1ZEL_A	143	SVVRIPWNAADTALLAPRPALLVRRRLDLVAWATGLPALGPEALLVQIATRPASFGPWADLVPHLDDLVA	212 (29
T ss_dssp		ЕЕЕСССССТТСННННSССННННННТТССТТТТТТSCBCCHHHHHHHHHHCGGGCCCHHHHGGGHHHHHH	
T ss_pred		EEEEechhhcccccCCCchhhhcccccceeecCeeEecCHHHHHHHHHHhCHHHhCcHHHHHHHHHHHHHH	
		kinase domain	
Q ss_pred		СССсССННННННһһс	
Q 1044	178	TLRRGSAAELRAALDET 194 (207)	
Q Consensus	178	~~~~L~~~l~~~ 194 (207)	
		.+ +.+. .++++	
T Consensus	213	~l~~L~~yl~~~ 226 (298)	
T 1ZEL_A	213	DCSDERLERLLSGR 226 (298)	
T ss_dssp		ТССНННННННТТЅ	
		сССНННННННсСС	

130 Supplementary Figure 13 Homology detection and structure prediction of TakA 131 (Rv1044) using HHpred server.

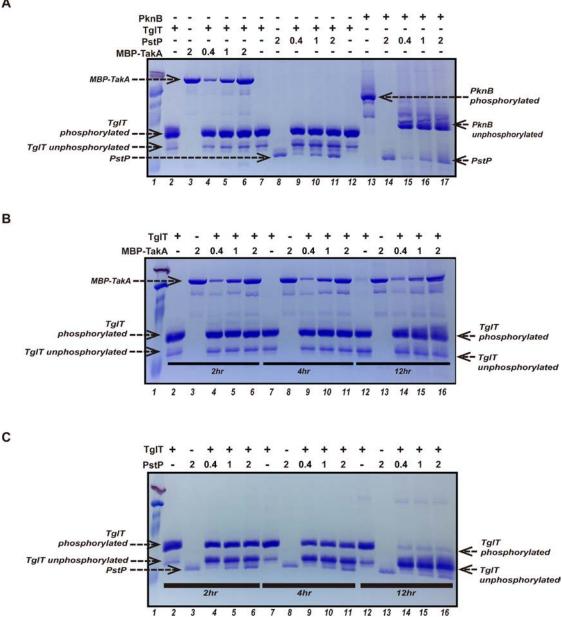
132 Amino acids sequence of TakA (Rv1044) was analyzed by HHpred server

133 <u>http://protevo.eb.tuebingen.mpg.de/hhpred</u>. The best hit was a hypothetic protein

134 Rv2827c from MTB, the antitoxin in the putative Rv2826c-Rv2827c TA pair. The

135 structure of Rv2827c is available, PDB ID: 1ZEL. The HHpred analysis gave a

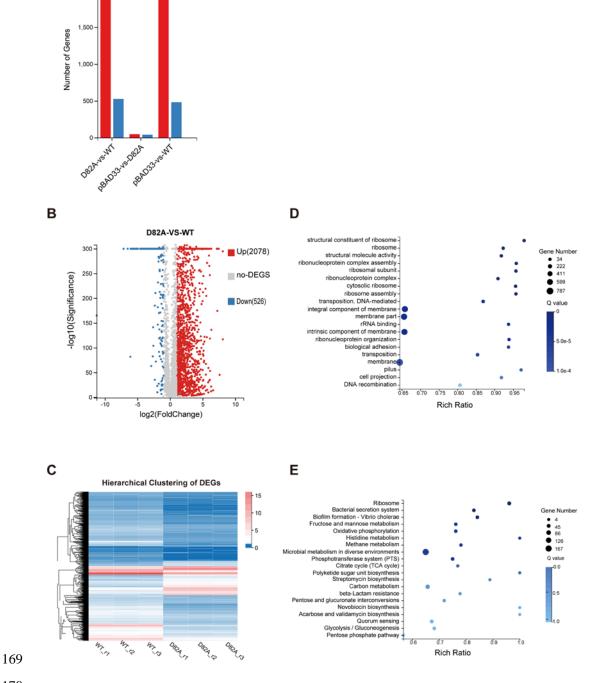
136 Probability: 99.59 for this hit, suggesting Rv1044 and Rv2827c share significant


137 structure homology. However, the sequence identity between the two proteins is

remote, 15%. HHpred predicted the secondary structures of Rv1044 and aligned the

139 structures. N-terminal wHTH domain and C-terminal kinase domain are indicated. We

- selected a set of residues (marked with red stars) according to the alignment. G71,
- 141 E72 and D74 are not conserved and located between the N-terminal HTH domain;
- 142 S93, H98 and P105 and D155 are conserved and located within the C-terminal kinase
- 143 domain. Mutagenesis study was performed on these residues, see Figure 5.
- 144
- 145



146 Supplementary Figure 14 Protein phosphatase assays suggest how TglT is 147 dephosphorvlated. 148

To investigate the mechanism of TglT dephosphorylation, we conducted protein 149 phosphatase assay as previously described¹. We incubated the phosphorylated TglT 150 alone, with TakA kinase and with Mtb Ser-Thr phosphatase PstP (Rv0018c), 151 respectively. The reactions were then analyzed by using Phos-tag SDS-PAGE. 152

A. The phosphorylated TglT (lane 2), the full-length MBP-TakA (lane 3), the catalytic 153 domain of PstP_{1-240aa} (lane 8) and the autophosphorylated catalytic domain of 154 PknB_{1-279aa} (lane 13) were expressed and purified. Increasing amount of MBP-155 TakA (0.4-2 μ M) were incubated with TgIT (5 μ M), lanes 4-6; increasing amount of 156 PstP1-240aa (0.4-2µM) were incubated with TglT(5µM), lanes 9-11. TglT was 157 158 incubated alone for 12 hours, lane 12. PstP1-240aa (0.4-2µM) catalyzed dephosphorylation of PknB_{1-279aa} (5µM) served as the positive control, lanes 14-17 159 160 Phosphatase assays with extended incubation time. The phosphorylated TglT (5µM) B.

- 161 was incubated with increasing amount of MBP-TakA ($0.4-2\mu M$). The incubation 162 time of the reactions were 2 hours (lanes 2-6), 4 hours (lanes 7-11) and 12 hours 163 (lanes 12-16) as indicated.
- 164 C. Phosphatase assays with extended incubation time. The phosphorylated TglT (5 μ M) 165 was incubated with increasing amount of PstP_{1-240aa} (0.4-2 μ M). The incubation 166 time of the reactions were 2 hours (lanes 2-6), 4 hours (lanes 7-11) and 12 hours
- 167 (lanes 12-16) as indicated.
- 168

Α

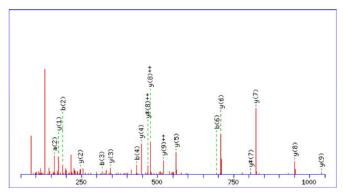
2,000

Up Dowr

Supplementary Figure 15 RNA-seq analysis of differentially expressed genes 171 (DEGs) of bacteria expressing wildtype TgIT and mutant D82A. 172

A. DEGs analyses of bacteria expressing wildtype TglT vs D82A mutant, empty 173 vector pBAD33 vs D82A mutant and pBAD33 vs wildtype TglT. The x axis 174 represents pairwise between each group. The y axis means DEG numbers. Red 175 color represents up-regulated DEGs, and blue color represents down-regulated 176 177 DEGs. Compared with the wildtype TglT, the transcriptional profiles of the blank

- 178 control (emptor vector) and D82A mutant show only minor variations that were not179 statistically significant.
- B. Scatter plot of DEGs between bacteria expressing wildtype TglT and mutant D82A.
 The x axis represents log2 transformed fold change, whereas the y axis represents
 -log10 transformed significance. Red points are up-regulated DEGs; blue points
- are down-regulated DEGs; and gray points are non-DEGs.
- C. Hierarchical clustering of DEGs. Gradient color barcode at the right top indicates
 log2(FC) value. FC is Fold-Change of expression in TglT and D82A, from high
 (red) to low (blue). The x axis represents samples, whereas the y axis represents
 DEGs.
- D. GO functional enrichment of DEGs. 20 most enriched terms are displayed. The x axis represents the Rich Ratio, whereas the y axis represents GO term. Lower the Q value, more significant enrichment. Point size indicates DEGs number. Rich Ratio is the quotient of the number of DEGs over total gene number, larger the value, the more significant.
- E. KEGG-database-based pathway enrichment analysis. The top 20 enriched pathways are plotted. X axis represents Rich Ration. The y axis represents pathways, whereas the x axis represents Rich Ratio (the quotient of DEGs numbers over all gene numbers annotated in the pathway). The color indicates the Q value, lower the Q value, more significant. Point size indicates DEG number (bigger dot indicates larger number).
- 199

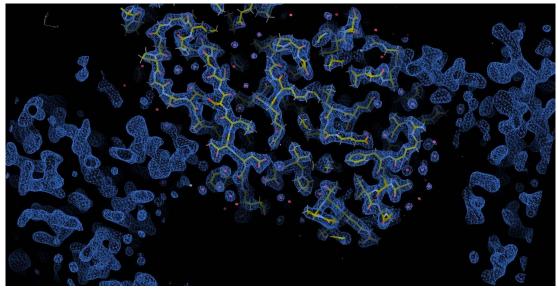

Peptide View

MS/MS Fragmentation of TSKDFDTVAR

Found in tr[A0A045JBD4]A0A045JBD4_MYCTX, Nucleotidyl transferase of uncharacterised function (DUF1814) OS=Mycobacterium tuberculosis GN=B7R63_05680 PE=4 SV=1

Match to Query 2782: 1138.562968 from(570.288760,2+) intensity(20893570.0000) Title: File8725 Spectrum1329 scans: 3198 Data file F:\DATA\2019\1yue\20190114\17872\BP1_17872_1045MBP.mgf

Click mouse within plot area to zoom in by factor of two about that point Or, Plot from 50 to 1050 Da Full range Label all possible matches O Label matches used for scoring \odot


Monoisotopic mass of neutral peptide Mr(calc): 1138.5619 Fixed modifications: Carbamidomethyl (C) (apply to specified residues or termini only) Ions Score: 49 Expect: 0.00012

Mat	Matches : 18/100 fragment ions using 49 most intense peaks (help)													
#	а	a ⁺⁺	ส*	a* ⁺⁺	b	b ⁺⁺	b*	b* ⁺⁺	Seq.	У	\mathbf{y}^{++}	y*	y* ⁺⁺	#
1	74.0600	37.5337			102.0550	51.5311			Τ					10
2	161.0921	81.0497			189.0870	95.0471			8	1038.5215	519.7644	1021.4949	511.2511	9
3	289.1870	145.0972	272.1605	136.5839	317.1819	159.0946	300.1554	150.5813	K	951.4894	476.2483	934.4629	467.7351	8
4	404.2140	202.6106	387.1874	194.0974	432.2089	216.6081	415.1823	208.0948	D	823.3945	412.2009	806.3679	403.6876	7
5	551.2824	276.1448	534.2558	267.6316	579.2773	290.1423	562.2508	281.6290	F	708.3675	354.6874	691.3410	346.1741	6
6	666.3093	333.6583	649.2828	325.1450	694.3042	347.6558	677.2777	339.1425	D	561.2991	281.1532	544.2726	272.6399	5
7	767.3570	384.1821	750.3305	375.6689	795.3519	398.1796	778.3254	389.6663	Т	446.2722	223.6397	429.2456	215.1264	. 4
8	866.4254	433.7164	849.3989	425.2031	894.4203	447.7138	877.3938	439.2005	V	345.2245	173.1159	328.1979	164.6026	3
9	937.4625	469.2349	920.4360	460.7216	965.4575	483.2324	948.4309	474.7191	A	246.1561	123.5817	229.1295	115.0684	2
10									R	175.1190	88.0631	158.0924	79.5498	1

201

Supplementary Figure 16. LC-MS/MS analysis of the non-phosphorylated TglT, co-expressed with MBP.

- A fragment 77TSKDFDTVARR87 belonging to TglT was identified. In which, the
- 205 molecular mass of residue S78 (underlined) calculates: 1038.5215-951.4894 + 18(1
- water) = 105.0321Da (orange box indicated that data used for calculation). The
- theoretical molecular mass of serine is 105.09Da. Thus, S78 was non-phosphorylated.
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216

217

Supplementary Figure 17 Final 2Fo-Fc map of the crystal structure of wildtype
 TgIT.

An overview of final 2Fo-Fc map (contour 1.5s, blue mesh) of the crystal structure of

221 wildtype TglT is superimposed with final stick model of wildtype TglT, colored by

atom type. There is one molecular in asymmetric unit; the models of the symmetryrelated molecules are not shown.

225 Supplementary Tables

226 Supplementary Table 1 Dali search of TglT structure agaist PDB90 database^a (top

No.	Chain ^b	Zc	rmsd	lali ^d	nres ^e	%id ^f	Description
1:	4ok0-A	14.4	4.1	199	225	16	MOLECULE: PUTATIVE;
2:	4ok0-B	14.4	4.2	204	227	16	MOLECULE: PUTATIVE;
3:	408s-A	14.1	4.1	204	232	15	MOLECULE: PUTATIVE;
							MOLECULE:
		11.0		1.50	1.54	10	AMINOGLYCOSIDE
4:	5cfu-A	11.3	3.6	153	174	10	NUCLEOTIDYLTRANSFER
							SE (2")-IA;
							MOLECULE:
_							AMINOGLYCOSIDE
5:	5cft-A	11.2	3.4	151	175	10	NUCLEOTIDYLTRANSFER
							SE (2")-IA;
							MOLECULE:
							AAD(2"),GENTAMICIN
6:	5cfs-A	11.1	3.5	152	176	10	2"-
							NUCLEOTIDYLTRANSFER
							SE,GE
7:	4xje-A	11.1	3.8	153	175	11	MOLECULE: AADB;
	5						MOLECULE:
							2"-AMINOGLYCOSIDE
8:	4wql-A	11.1	3.7	153	175	10	NUCLEOTIDYLTRANSFER
							SE;
							MOLECULE:
							2"-AMINOGLYCOSIDE
9:	4wqk-A	10.6	3.7	156	175	12	NUCLEOTIDYLTRANSFER
							SE;
					1		MOLECULE:
10:	4e8j-B	9.6	3.0	133	158	11	LINCOSAMIDE
							RESISTANCE PROTEIN;
					1		MOLECULE:
11:	2ewr-A	9.5	3.3	139	156	9	HYPOTHETICAL
							PROTEIN TM1012;
					1		MOLECULE:
12:	2fcl-A	9.4	3.3	140	157	9	HYPOTHETICAL
							PROTEIN TM1012;
					1		MOLECULE:
13:	4e8i-B	9.2	3.0	134	158	11	LINCOSAMIDE
							RESISTANCE PROTEIN;
14:	4fo1-B	9.2	3.1	134	158	11	MOLECULE:

227 **30 Z-score hits).**

							LINCOSAMIDE
							RESISTANCE PROTEIN;
							MOLECULE:
15:	4wh5-B	9.1	3.0	133	158	11	LINCOSAMIDE
							RESISTANCE PROTEIN;
							MOLECULE:
16:	4fo1-A	9.1	3.1	134	158	11	LINCOSAMIDE
							RESISTANCE PROTEIN;
							MOLECULE:
17:	4wh5-A	9.1	2.9	132	158	11	LINCOSAMIDE
							RESISTANCE PROTEIN;
							MOLECULE:
18:	4e8j-A	9.1	2.9	132	158	11	LINCOSAMIDE
							RESISTANCE PROTEIN;
							MOLECULE:
19:	4e8i-A	9.1	3.1	135	158	11	LINCOSAMIDE
							RESISTANCE PROTEIN;
							MOLECULE: PUTATIVE
20:	4wse-B	8.9	4.8	176	495	9	POLY(A) POLYMERASE
				_			CATALYTIC SUBUNIT;
							MOLECULE:
	41 0 4	0.5	2.0	100	1.61		PUTATIVE
21:	4hx0-A	8.5	2.9	132	161	8	NUCLEOTIDYLTRANSFERA
							SE
							TM1012;
22:	1	7.4	5.2	110	207	10	MOLECULE:DNA POLYMERASE
22:	4tur-A	/.4	3.2	116	327	10	BETA;
							MOLECULE:PUTATIVE
23:	4p37-A	7.3	4.8	165	498	10	POLY(A) POLYMERASE
25.	-p37-11	1.5	 0	105	-70	10	CATALYTIC SUBUNIT;
				_			MOLECULE:DNA
24:	5j29-A	7.3	5.1	117	326	10	POLYMERASE BETA;
							MOLECULE:DNA
25:	4p2h-A	7.3	4.1	112	324	10	POLYMERASE BETA;
			_			1	MOLECULE: DNA
26:	4yn4-A	7.3	4.9	117	327	10	POLYMERASE
	-						BETA;
							MOLECULE: DNA
27:	4pgq-A	7.3	4.2	114	324	10	POLYMERASE
							BETA;
						1	MOLECULE: DNA
28:	5j0v-A	7.3	4.1	113	326	10	POLYMERASE
							BETA;

29:	5j0u-A	7.3	4.1	113	326	10	MOLECULE: POLYMERASE BETA;	DNA
30:	4mf8-A	7.3	4.7	114	318	11	MOLECULE: POLYMERASE BETA;	DNA

^a PDB90 is a non-redundant subset of Protein Data Bank structures with less than 90% sequence

- identity to each other.
- ^b PDB code and chain ID
- 231 ^c Dali Z-score
- ^d The number of aligned C-alpha atoms
- ^e The number of C-alpha atoms in the database structure
- 234 ^f Amino acids sequence identity
- 235

Vector name	Description s	Name of the protein expressed	Expression inducer	Antibiotic resistance	Oligo sequences
pET28a	Expression plasmid	None	IPTG	kanamycin	
pET28a-n-6His- Rv1044	Expressing antitoxin TakA with N-terminal 6×Histag	His-TakA	IPTG	kanamycin	Forward: GTCGCATATGTGT GCAAAACCGTAT CT Reverse: TCTGCTCGAGTC ACGCCGATGCTC GCTTC
pETDuet-1	Expression plasmid	None	IPTG	ampicillin	
pETDuet-1- Rv1044 no tag	Expressing antitoxin TakA for neutralizing toxicity	TakA	IPTG	ampicillin	Forward: GTCGCCATGGGC TTGTGTGCAAAA CCGTATC Reverse:TCTGAAG CTTTCACGCCGA TGCTCGCTTCGG CCG
pET28a-n-6His- Rv1045	Expressing TglT protein with N- terminal- 6×His	His-TglT	IPTG	kanamycin	Forward: GTCGCATATGAC CAAGCCCTATTC Reverse: TCTGCTCGAGTC

237 Supplementary Table 2 Plasmids used in this study.

					ATCTTTTCGTCGC
					CCGAT
pET28a-n-6His- Rv1045-G62A	Expressing TgIT G62A mutant with N-terminal- 6×His	His-TglT- G62A	IPTG	kanamycin	Forward: CTGTTGGTCAAA GCCGGATCGTCG CTG Reverse: CAGCGACGATCC GGCTTTGACCAA CAG
pET28a-n-6His- Rv1045-S78A	Expressing TglT S78A mutant with N-terminal- 6×His	His-TglT- S78A	IPTG	kanamycin	Forward: GATTCGCGGACC GCCAAAGACTTC G Reverse: CGAAGTCTTTGG CGGTCCGCGAAT C
pET28a-n-6His- Rv1045-S78D	Expressing TglT S78D mutant with N-terminal- 6×His	His-TglT- S78D	IPTG	kanamycin	Forward: CCGATTCGCGGA CCGACAAAGACT TCGAC Reverse: GTCGAAGTCTTT GTCGGTCCGCGA ATCGG
pET28a-n-6His- Rv1045-D82A	Expressing TgIT D82A mutant with N-terminal- 6×His	His-TglT- D82A	IPTG	kanamycin	Forward: CTCCAAAGACTT CGCAACGGTCGC ACGTC Reverse: GACGTGCGACCG TTGCGAAGTCTT TGGAG
pET28a-n-6His- Rv1045-E146Q	Expressing TgIT E146Q mutant with N-terminal- 6×His	His-TglT- E146Q	IPTG	kanamycin	Forward: CAACTGTTCCGA TCCAGGTCTCCT CCGTC Reverse: GACGGAGGAGA CCTGGATCGGAA CAGTTG

pET28a-n-6His- Rv1045-K189N	Expressing TglT K189N mutant with N-terminal- 6×His	His-TglT- K189N	IPTG	kanamycin	Forward: CAAATCGCGCAG AACCTGCACGCA GTAAC Reverse: GTTACTGCGTGC AGGTTCTGCGCG ATTTG
pET28a-n-6His- Rv1045-D208A	Expressing TglT D208A mutant with N-terminal- 6×His	His-TglT- D208A	IPTG	kanamycin	Forward: ACCGCGCTCACG CACTGGTGGACT TGCAGCTTCTT Reverse: AAGAAGCTGCA AGTCCACCAGTG CGTGAGCGCGGT
pBAD33	Arabinose- inducible expression plasmid	None	L-arabinose	chloramphe nicol	
pBAD33-c- 6His-Rv1045	Expressing TglT toxin with C- terminal- 6×His	TglT-His	L-arabinose	chloramphe nicol	Forward: GTCG GGTACCAAGAAG GAGATATACATAT G ATGACCAAGCCC TATTCGTC Reverse: TCTGAAGCTTTC A GTGGTGGTGGTGGTG GTGGTGTCTTTT CGTCGCCCGATC
pBAD33-c- 6His-Rv1045- G62A	Expressing TglT G62A mutant with C-terminal- 6×His	TglT-G62A- His	L-arabinose	chloramphe nicol	Forward: CTGTTGGTCAAA GCCGGATCGTCG CTG

					Reverse: CAGCGACGATCC GGCTTTGACCAA CAG
pBAD33-c- 6His-Rv1045- S78A	Expressing TgIT S78A mutant with C-terminal- 6×His	TglT-S78A- His	L-arabinose	chloramphe nicol	Forward: GATTCGCGGACC GCCAAAGACTTC G Reverse: CGAAGTCTTTGG CGGTCCGCGAAT C
pBAD33-c- 6His-Rv1045- S78D	Expressing TgIT S78D mutant with C-terminal- 6×His	TglT-S78D- His	L-arabinose	chloramphe nicol	Forward: CCGATTCGCGGA CCGACAAAGACT TCGAC Reverse: GTCGAAGTCTTT GTCGGTCCGCGA ATCGG
pBAD33-c- 6His-Rv1045- D82A	Expressing TgIT D82A mutant with C-terminal- 6×His	TgIT-D82A- His	L-arabinose	chloramphe nicol	Forward: CTCCAAAGACTT CGCAACGGTCGC ACGTC Reverse: GACGTGCGACCG TTGCGAAGTCTT TGGAG
pBAD33-c- 6His-Rv1045- E146Q	Expressing TgIT E146Q mutant with C-terminal- 6×His	TglT- E146Q-His	L-arabinose	chloramphe nicol	Forward: CAACTGTTCCGA TCCAGGTCTCCT CCGTC Reverse: GACGGAGGAGA CCTGGATCGGAA CAGTTG
pBAD33-c- 6His-Rv1045- K189N	Expressing TglT K189N mutant with C-terminal- 6×His	TglT- K189N-His	L-arabinose	chloramphe nicol	Forward: CAAATCGCGCAG AACCTGCACGCA GTAAC Reverse: GTTACTGCGTGC

					AGGTTCTGCGCG ATTTG
pBAD33-c- 6His-Rv1045- D208A	Expressing TgIT D208A mutant with C-terminal- 6×His	TglT- D208A-His	L-arabinose	chloramphe nicol	Forward: ACCGCGCTCACG CACTGGTGGACT TGCAGCTTCTT Reverse: AAGAAGCTGCA AGTCCACCAGTG CGTGAGCGCGGT
pET28a-c- FLAG-Rv1045	Expressing TglT with C-terminal FLAG tag	TglT-FLAG	IPTG	kanamycin	Forward: GTCGCCATGGGA GTGACCAAGCCC TATTC Reverse: TCTGCTCGAGTC ACTTGTCGTCAT CGTCTTTGTAGT CTCTTTTCGTCG CCCG
pBAD/Myc-His A	Expression plasmid	None	L-arabinose	ampicillin	
pBAD/Myc- His-Rv1044	Expressing C-terminal Myc and 6xHis tagged TakA	TakA-Myc	L-arabinose	ampicillin	Forward: GTCGCCATGGGA TTGTGTGCAAAA CCGTATCT Reverse: TCTGAAGCTTCG CCGATGCTCGCT TC

pMAL-c5X	Expression vector for producing MBP fusion protein	MBP	IPTG	ampicillin	
pMAL-Rv1044	Expressing N-terminal MBP-tagged TakA	MBP-TakA	IPTG	ampicillin	Forward: GTCGCATATGTTG TGTGCAAAACCG Reverse: TCTGGAATTCTC ACGCCGATGCTC GCTTCGG
pMAL-Rv1044- G71A	Expressing N-terminal MBP-tagged TakA with G71A mutant	MBP-TakA G71A	IPTG	ampicillin	Forward: GCTGCCGCGTGC AGAGCACGACG AT Reverse: ATCGTCGTGCTC TGCACGCGGCAG C
pMAL-Rv1044- E72A	Expressing N-terminal MBP-tagged TakA with E72A mutant	MBP-TakA E72A	IPTG	ampicillin	Forward: CTGCCGCGTGGT GCGCACGACGAT C Reverse: GATCGTCGTGCG CACCACGCGGCA G
pMAL-Rv1044- D74A	Expressing N-terminal MBP-tagged TakA with D74A mutant	MBP-TakA D74A	IPTG	ampicillin	Forward: CGTGGTGAGCAC GCCGATCTCGCA G Reverse: CTGCGAGATCGG CGTGCTCACCAC G
pMAL-Rv1044- S93A	Expressing N-terminal MBP-tagged TakA with	MBP-TakA S93A	IPTG	ampicillin	Forward: GTTATCTCGCATG AGGCAGCCTTGG CGCTTCATG

	S93A mutant				Reverse: CATGAAGCGCCA AGGCTGCCTCAT GCGAGATAAC
pMAL-Rv1044- H98A	Expressing N-terminal MBP-tagged TakA with H98A mutant	MBP-TakA H98A	IPTG	ampicillin	Forward: CCTTGGCGCTTG CAGCCCTCGCTG A Reverse: TCAGCGAGGGCT GCAAGCGCCAA GG
pMAL-Rv1044- D105A	Expressing N-terminal MBP-tagged TakA withD105A mutant	MBP-TakA D105A	IPTG	ampicillin	Forward: CTGACGTGAACG CGTCGCGCATCC ATCTCA Reverse: TGAGATGGATGC GCGACGCGTTCA CGTCAG
pMAL- Rv1044D155A	Expressing N-terminal MBP-tagged TakA with D155A mutant	MBP-TakA D155A	IPTG	ampicillin	Forward: CACCATCAAAGC CTGCGTGAAGAC GG Reverse: CCGTCTTCACGC AGGCTTTGATGG TG
pYC601	Shuttle vector containing anhydrotetra cycline (ATC)- inducible promoter	None	Anhydrotetra cycline (ATC)	hygromycin	
pYC601- Rv1044/1045	Expressing TakA and TglT	TakA-TglT	Anhydrotetra cycline (ATC)	hygromycin	Forward: TCCGCATGCGGA GGAATCAGTTGT GTGCAAAACCGT ATCT Reverse: GTCCCCAATTAAT TAGCTAATCATCT

					TTTCGTCGCCCG AT
pYC601- Rv1044	Expressing TakA alone	TakA	Anhydrotetra cycline (ATC)	hygromycin	Forward: TCCGCATGCGGA GGAATCAGTTGT GTGCAAAAACCGT ATCT Reverse: GTCCCCAATTAAT TAGCTAATCACG CCGATGCTCGCT TCG

240 Supplementary Table 3 The sequence upstream of predicted *Rv1044* gene used in this

study

The promoter sequence of predicted <i>Rv1044</i>	GGGTCCCAACCGAGCGGCAGCAGAAGTCC
	CGCGCGTTCCATCGAGCTGAGGATGCGGTG
	GAGGGTCACCGCGTCGCCCGC
	GGCGGGCAGGCCGAGGGTGCTCAGGTATC
	GGGAGAAATCTGCGACCGACCACGGTTCG
	AAGGGCACCGTCGTCGGCAGAC
	CGATATCCGAGTCAACCGGTGGTGGTTCGG
	GTTTGCCGATCGCCGCCGCAACCACCGGGT
	TGTGGACCAGCCCGAAGAAT
	TGATGGGCGCACATCGCCACGTTCACACGC
	CACGCAGGAGTCCCGGGCTTCAGGTCGGC
	CGCCGTGAGCTGTCGCGGTCA
	GGTGCTTTCCGCGCCATCCGCCGTCACCTC
	TGCCATGGTCCATCTACGGTATCTGCGACA
	AGGGCAGCGTCGATGCCTCG
	ACATGCAGAGTCGGTGTTCGCTTCACGCGA
	ACTAGGCGCGCCTAGCCTGGACGAGTCCCC
	GGGCCGACATTCGCCCGAGG
	CCTTGGCCTCCATCACCTAATTGTGTGCAA
	AACCGTATCTAATTGATACGATTGCGCAC
	•

References

2451Boitel, B. *et al.* PknB kinase activity is regulated by phosphorylation in two Thr residues and246dephosphorylation by PstP, the cognate phospho-Ser/Thr phosphatase, in Mycobacterium247tuberculosis. *Molecular microbiology* **49**, 1493-1508 (2003).