В

WCE

1.0

3

+

2

1

PD20

PD20 + D2^{wt}

+

0.57

4

siATRX #2

FANCD2

-ATRX

-Ku80

D

FANCD2-Null: 5' aaagactacacccttgaggcgaccg Clone #6.9: 5' aaagactacacccttgAaggcgaccg AD2-DKO

F

С

Α

SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure 1

IP experiments were performed from nuclear extracts (NE) of PD20+3xFLAG-FANCD2 (wild type) cells. (A) NBS1 co-IPs with ATRX. NEs (lane 1) were subjected to IP with mouse IgG (lane 2) or an anti-ATRX antibody (lane 3). NE and IP samples were analyzed for the presence of ATRX and NBS1 by western blot. (B) NBS1 co-IPs with FANCD2. NEs (lane 1) were subjected to IP with mouse IgG (lane 2) or an anti-FLAG antibody (lane 3). NE and IP samples were analyzed for the presence of FANCD2 and NBS1 by western blot. (C) Whole cell extracts (WCE) were prepared from PD20+D2 or PD20 cells that had been treated with control siRNA (lanes 1 and 3) or ATRX-#2 siRNA (lanes 2 and 4) and analyzed for the presence of ATRX and FANCD2. Ku-80, loading control. Immunoblot signals for FANCD2 in lanes 3 and 4 were analyzed by densitometry and normalized against Ku80 signals using ImageJ. The relative FANCD2 protein level values are provided underneath each corresponding lane. (D) Schematic of the CRISPR/Cas9 targeting of FANCD2 exon 9 in HCT116 cells. Sequencing data show a single base pair insertion (in red) in AD2-DKO clone #6.9. (E-F) FANCD2 and ATRX cooperate to promote replication fork restart and suppress new origin firing in a human fibroblast cell line after HU treatment. (E) ATRX and FANCD2 cooperate to mediate replication fork restart. Replication fork restart efficiencies were compared between WT (PD20+D2), FANCD2-deficient (PD20), ATRX-deficient (PD20+D2, siATRX) and FANCD2/ATRX double-deficient (PD20, siATRX) cells. (F) ATRX and FANCD2 act in concert to suppress new origin firing during replication blockade. The number of new replication sites originating during BioU labeling after HU treatment was compared between WT (PD20+D2), FANCD2-deficient (PD20), ATRX-deficient (PD20+D2, siATRX) and FANCD2/ATRX double-deficient (PD20, siATRX) cells.

(A) *FANCD2 foci formation occurs independently of ATRX during normal DNA replication and following replication stress.* HCT116 WT cells and two different ATRX^{-/0} clones (#94 and #15.1) were untreated or treated with 2 mM HU for 20 hr and analyzed for the presence of FANCD2 foci. Nuclei with > 5 foci were considered positive for FANCD2 foci formation. (**B and C**) ATRX foci formation occurs independently of FANCD2 during normal DNA replication and following replication stress. (**B**) PD20+D2 (FANCD2-proficient) and PD20 (FANCD2-deficient) fibroblast cells were untreated or treated with 2mM HU for 20 hr and analyzed for the presence of ATRX foci. Nuclei with > 5 foci were considered positive for ATRX foci formation. (**C**) Same experiment as in **B**, but performed in HCT116 WT and FANCD2^{-/-} cells. (**D**, accompanies Main Fig 4B) *ATRX is required for the HU-inducible CtIP foci formation*. HCT116 WT cells and a second ATRX^{-/0} clone (#15.1) were treated with 2 mM HU for 20 hours and analyzed for the presence of CtIP foci. Nuclei with > 5 foci were considered positive for CtIP foci formation.

Supplementary Figure 3

Model of the physical and functional FA-ATRX pathway interactions during the restart of HUstalled replication forks.

Supplementary Table 1

Summary of all P-values for results shown in Main Figures 2 to 6.

Supplementary Table 1

Figure	Samples	p-value (two tales)
2B	WT vs D2 ^{-/-} Day 5	0.001
	WT vs ATRX ^{-/0} Day 5	0.011
	WT vs AD2 ^{DKO} Day 5	0.0001
	ATRX ^{-/0} vs AD2 ^{DK0} Day 5	0.001
	D2 ^{-/-} vs AD2 ^{DKO} Day 5	0.016
2C	WT vs D2 ^{-/-} 150uM HU	0.000149
	WT vs ATRX ^{-/0} 150uM HU	0.022412
	WT vs AD2 ^{DKO} 150uM HU	0.010017
	ATRX ^{-/0} vs D2 ^{-/-} 150uM HU	ns
	ATRX ^{-/0} vs AD2 ^{DK0} 150uM HU	ns
	D2 ^{-/-} vs AD2 ^{DKO} 150uM HU	ns
	D2-/- vs AD2 ^{DKO}	ns
3B	WT vs D2-/-	ns
	WT vs ATRX ^{-/0}	ns
	WT vs AD2 ^{DKO}	ns
	ATRX ^{-/0} vs D2 ^{-/-}	ns
	ATRX ^{-/0} vs AD2 ^{DK0}	ns
	D2 ^{-/-} vs AD2 ^{DKO}	ns
	WT vs D2 ^{-/-} +HU	0.00063
	WT vs ATRX ^{-/0} +HU	0.00029
	WT vs AD2 ^{DKO} +HU	0.00227
	ATRX ^{-/0} vs D2 ^{-/-} +HU	ns
	ATRX ^{-/0} vs AD2 ^{DK0} +HU	ns
	D2 ^{-/-} vs AD2 ^{DKO} +HU	0.01368

3C	WT vs D2-/-	ns
	WT vs ATRX ^{-/0}	ns
	WT vs AD2 ^{DK0}	ns
	ATRX ^{-/0} vs D2 ^{-/-}	ns
	ATRX-/0 vs AD2 ^{DKO}	ns
	D2-/- vs AD2 ^{DKO}	ns
	WT vs D2 ^{-/-} +HU	0.00227
	WT vs ATRX ^{-/0} +HU	0.00288
	WT vs AD2 ^{DK0} +HU	0.02518
	ATRX ^{-/0} vs D2 ^{-/-} +HU	ns
	ATRX ^{-/0} vs AD2 ^{DKO} +HU	ns
	D2-/- vs AD2 ^{DKO} +HU	0.00728
3D	WT vs D2 ^{-/-} +HU	0.00205
	WT vs ATRX ^{-/0} +HU	0.00224
	WT vs AD2 ^{DKO} +HU	0.00681
	ATRX ^{-/0} vs D2 ^{-/-} +HU	ns
	ATRX ^{-/0} vs AD2 ^{DK0} +HU	ns
	D2-/- vs AD2 ^{DKO} +HU	0.00589
	WT vs D2 ^{-/-} +HU +Mirin	ns
	WT vs ATRX ^{-/0} +HU +Mirin	ns
	WT vs AD2 ^{DK0} +HU +Mirin	0.03137
	ATRX ^{-/0} vs D2 ^{-/-} +HU +Mirin	ns
	ATRX ^{-/0} vs AD2 ^{DK0} +HU +Mirin	ns
	D2 ^{-/-} vs AD2 ^{DK0} +HU +Mirin	0.00303
3E	WT vs D2 ^{-/-} +HU	0.00108
	WT vs ATRX ^{-/0} +HU	0.00204

	WT vs AD2-DK0 +HU	0.00049
	ATRX ^{-/0} vs D2 ^{-/-} +HU	ns
	ATRX ^{-/0} vs AD2 ^{DK0} +HU	ns
	D2 ^{-/-} vs AD2 ^{DKO} +HU	0.00165
	WT vs D2 ^{-/-} +HU +Mirin	ns
	WT vs ATRX ^{-/0} +HU +Mirin	ns
	WT vs AD2 ^{DK0} +HU +Mirin	0.0333
	ATRX ^{-/0} vs D2 ^{-/-} +HU +Mirin	ns
	ATRX ^{-/0} vs AD2 ^{DK0} +HU +Mirin	ns
	D2 ^{-/-} vs AD2 ^{DKO} +HU +Mirin	0.00150
4B	WT vs D2-/- +HU	0.00119
	WT vs ATRX-/0 +HU	0.00031
	WT vs AD2-DK0 +HU	0.00122
	ATRX-/0 vs D2-/- +HU	ns
	ATRX-/0 vs AD2-DK0 +HU	ns
	D2-/- vs AD2-DKO +HU	ns
4C	WT vs D2 ^{-/-}	0.0053
	WT vs ATRX ^{-/0}	0.02528
	WT vs AD2 ^{DKO}	0.01945
	ATRX ^{-/0} vs D2 ^{-/-}	ns
	ATRX ^{-/0} vs AD2 ^{DK0}	ns
	D2 ^{-/-} vs AD2 ^{DKO}	ns
4E	siControl vs siFANCD2	0.00414
	siControl vs siATRX	0.00233
	siControl vs siFANCD2+siATRX	0.00427

	siControl vs siRAD51	0.00920
	siATRX vs siFANCD2	ns
	siATRX vs siFANCD2+siATRX	ns
	siATRX vs siRAD51	0.00016
	siFANCD2 vs siFANCD2+siATRX	ns
	siFANCD2 vs siRAD51	0.00065
	siFANCD2+siATRX vs siRAD51	0.00173
5B	WT vs D2 Deficient	ns
	WT vs siDAXX	ns
	WT vs D2 Deficient + siDAXX	ns
	D2 Deficient vs siDAXX	ns
	D2 Deficient vs D2 Deficient + siDAXX	ns
	siDAXX vs D2 Deficient + siDAXX	ns
	WT vs D2 Deficient +HU	0.00002
	WT vs siDAXX +HU	0.00157
	WT vs D2 Deficient + siDAXX +HU	0.00002
	D2 Deficient vs siDAXX +HU	ns
	D2 Deficient vs D2 Deficient + siDAXX +HU	0.00326
	siDAXX vs D2 Deficient + siDAXX +HU	ns
5C	WT vs D2 Deficient	ns
	WT vs siDAXX	ns
	WT vs D2 Deficient + siDAXX	ns
	D2 Deficient vs siDAXX	ns
	D2 Deficient vs D2 Deficient + siDAXX	ns

	siDAXX vs D2 Deficient + siDAXX	ns
	WT vs D2 Deficient +HU	0.002269
	WT vs siDAXX +HU	0.002882
	WT vs D2 Deficient + siDAXX +HU	0.007286
	D2 Deficient vs siDAXX +HU	ns
	D2 Deficient vs D2 Deficient + siDAXX +HU	0.025182
	siDAXX vs D2 Deficient + siDAXX +HU	ns
6C	WT vs D2-/-	ns
	WT vs +FANCD2 ^{WT}	ns
	WT vs +FANCD2 ^{231R}	ns
	WT vs FANCL-/-	ns
	D2 ^{-/-} vs +FANCD2 ^{WT}	ns
	D2-/- vs +FANCD2 ^{231R}	ns
	D2 ^{-/-} vs FANCL ^{-/-}	ns
	+FANCD2 ^{WT} vs +FANCD2 ^{231R}	ns
	+FANCD2 ^{WT} vs FANCL-/-	ns
	+FANCD2 ^{231R} vs FANCL-/-	ns
	WT vs D2-/- +HU	0.00273
	WT vs +FANCD2 ^{WT} +HU	ns
	WT vs +FANCD2 ^{231R} +HU	0.00373
	WT vs FANCL-/- +HU	ns
	D2 ^{-/-} vs +FANCD2 ^{WT} +HU	0.00837
	D2-/- vs +FANCD2 ^{231R} +HU	ns
	D2-/- vs FANCL-/- +HU	0.00288
	+FANCD2 ^{WT} vs +FANCD2 ^{231R} +HU	0.00373
	+FANCD2 ^{WT} vs FANCL-/- +HU	ns

	+FANCD2 ^{231R} vs FANCL ^{-/-} +HU	0.002
6D	WT vs D2-/-	ns
	WT vs +FANCD2 ^{WT}	ns
	WT vs +FANCD2 ^{231R}	ns
	WT vs FANCL-/-	ns
	D2 ^{-/-} vs +FANCD2 ^{WT}	ns
	D2 ^{-/-} vs +FANCD2 ^{231R}	ns
	D2-/- vs FANCL-/-	ns
	+FANCD2 ^{WT} vs +FANCD2 ^{231R}	ns
	+FANCD2 ^{WT} vs FANCL ^{-/-}	ns
	+FANCD2 ^{231R} vs FANCL ^{-/-}	ns
	WT vs D2 ^{-/-} +HU	0.01613
	WT vs +FANCD2 ^{WT} +HU	ns
	WT vs +FANCD2 ^{231R} +HU	0.02381
	WT vs FANCL ^{-/-} +HU	ns
	D2 ^{-/-} vs +FANCD2 ^{WT} +HU	0.01507
	D2 ^{-/-} vs +FANCD2 ^{231R} +HU	ns
	D2 ^{-/-} vs FANCL ^{-/-} +HU	ns
	+FANCD2 ^{WT} vs +FANCD2 ^{231R} +HU	0.002