1 Additional file 1

2 Additional Methods.

3 Conjugation, radiolabeling and quality control

ERY974, KLH/CD3, KLH/KLH and IgG4 were conjugated with tertrafluorphenol-N-succinyl 4 5 desferal-Fe (N-suc-Df; ABX) as described before (1, 2). In short, antibodies were purified using Vivaspin-2 30,000 MWCO PES centrifugal concentrators (Sartorius) in 0.9% NaCl (Braun). 6 After pH adjustment to 9.0 using 0.1 M Na₂CO₃, a 4-fold excess of N-suc-Df was added for 30 7 minutes. Subsequently Fe³⁺ was removed using EDTA and the solution was purified using PD-8 10 column (GE Healthcare) and 0.9% NaCl as eluent. Quality of conjugated antibody was 9 assessed using size exclusion high-performance liquid chromatography as described before (1), 10 using a TSKgel G3000SW_{XL} column (Tosoh). Radiolabeling of antibodies with [⁸⁹Zr]Zr-oxalate 11 (PerkinElmer) was performed as described before (2). After 1 hour incubation, radiochemical 12 purity was above 95% for all experiments and purification was not performed. Molar activity for 13 all experiments was 72.8 MBq/nmol, unless stated otherwise. 14

Binding to GPC3 and CD3 ε was tested using an ELISA based method. Recombinant human GPC3 (10088-H08H; Sino Biologicals Inc.) or CD3 ε (10977-H08H; Sino Biologicals Inc.) were diluted in 0.05M Na₂CO₃ to a concentration of 0.1 µg/mL. Nunc-Immuno 96 well MicroWell MaxiSorp plates (Thermo Fisher Scientific) were coated with 100 µL recombinant protein at 4°C overnight. Wells were washed with 0.05% Tween20 in phosphate buffered saline (PBS; 140 mM/L NaCl, 9 mM/L Na2HPO4, 1.3 mM/L NaH2PO4, pH 7.4, UMCG). Next, wells were blocked with 0.5% bovine serum albumin (BSA), 0.05% Tween20 in PBS for 2 hours at

room temperature (RT). After blocking, wells were incubated with a concentration series (0.02 22 nM - 137.4 nM) of mAb diluted in 0.5% BSA/0.05% Tween20/PBS for 1 hour at RT. 23 Subsequently, wells were washed three times with 0.05% Tween20/PBS followed by 1 hour 24 incubation at RT of rabbit anti-human IgA, IgG, IgM, Kappa, Lambda HRP (1:8000; Agilent 25 DAKO). Again, wells were washed three times with 0.05% Tween20/PBS followed by addition 26 27 of 100 µL substrate SureBlue Reserve TMB microwell substrate (KPL Inc.). Reaction was stopped with 1 M hydrochloric acid (UMCG) and absorbance at 450 nm was determined with a 28 microplate reader (Bio-Rad). 29

T cell activation potency was determined using a co-culture of HepG2 cells with Jurkat cells that express a luciferase reporter driven by a Nuclear Factor of Activated T cells response element (Jurkat-NFAT; Promega). In a 96-well plate, 12,500 HepG2 cells and 75,000 Jurkat-NFAT effector cells were incubated overnight at 37°C with a concentration of ERY974 or Nsuc-Df-ERY974 ranging from 0.05 pM to 137.4 nM. After incubation, 75 µL Bio-Glo reagent (Promega) was added and bioluminescence was determined with a Synergy plate reader (Biotek).

36 Internalization of [⁸⁹Zr]Zr-N-suc-Df-ERY974

To determine internalization of [⁸⁹Zr]Zr-N-suc-Df-ERY974, 10⁶ HepG2 cells were incubated with 50 ng [⁸⁹Zr]Zr-N-suc-Df-ERY974 in 1 mL medium on ice for 1 hour. After initial binding, unbound [⁸⁹Zr]Zr-N-suc-Df-ERY974 was washed three times using 1% human serum albumin in PBS. Next, cells were incubated at 4°C or 37°C for 1, 2, or 4 hours. After incubation, cell membranes were stripped with 1 mL stripping buffer (0.05 M glycine, 0.1 M NaCl, pH 2.8) at 4°C. Radioactivity of the cell pellet (internalization) was expressed as percentage of radioactivity initially bound to cells.

44 Immunohistochemistry

Formalin-fixed paraffin-embedded 4 µm tissue slides were stained with immunohistochemistry 45 using 2 µg/mL rabbit monoclonal GPC3 antibody (SP86; Abcam) or isotype control (EPR25A; 46 Abcam), followed by rabbit EnVision HRP (Agilent). Human placenta and HepG2 tumor of 47 [⁸⁹Zr]Zr-N-suc-Df-ERY974 injected huNOG mice were used as positive control tissue 48 (Additional file 1 Fig. S10A). For CD3, tissues were stained using 0.15 µg rabbit monoclonal 49 CD3 antibody (SP162; Abcam) or isotype control (EPR25A; Abcam), followed by rabbit 50 EnVision HRP (Agilent). Human liver and HepG2 tumors of [⁸⁹Zr]Zr-N-suc-Df-ERY974 51 injected mice were used as positive control tissue (Additional file 1 Fig. S10B). CD3+ cells were 52 53 quantified using positive cell detection using QuPath (3).

54 Flow cytometry

HepG2, TOV-21G and SK-HEP-1 cells were harvested and suspended in 20 µg/mL of ERY974 or human IgG4 in 0.5% fetal bovine serum (FBS)/2 mM EDTA/PBS. Cells were incubated for 1 hour at 4°C, subsequently washed twice with 0.5% FBS/2 mM EDTA/PBS and incubated with PE-labeled goat anti-human IgG (1:50; Thermo Fisher Scientific) at for 1 hour 4°C. After two more washes with 0.5% FBS/2 mM EDTA/PBS, cells were measured using a BD Accuri C6 flow cytometer (BD Biosciences).

61 Additional Figure legends S1-S10

62 Fig. S1. Human CD3+ engraftment in huNOG mice. Percentage of human CD3+ of human

63 CD45+ cells in the experimental groups involving huNOG mice.

64

65 Fig. S2. In vitro characteristics of N-suc-Df-conjugated tracers. (A) Representative binding curve of N-suc-Df-ERY974 and ERY974 binding to human GPC3 protein. (B) Representative 66 binding curve of N-suc-Df-ERY974 and ERY974 binding to human CD3c protein. (C) Potency 67 of ERY974 and N-suc-Df-ERY974 to activate reporter T cells upon co-culture with HepG2 cells. 68 (**D**) Internalization up to 4 h of $[^{89}$ Zr]Zr-N-suc-Df-ERY974 in HepG2 cells at 4 and 37 °C (n =69 70 3). (E) Representative binding curve of N-suc-Df-KLH/CD3 and N-suc-Df-KLH/KLH to human GPC3 protein. (F) Representative binding curve of N-suc-Df-KLH/CD3 and N-suc-Df-71 KLH/KLH to human CD3ɛ protein. 72

73

Fig. S3. Tumor characteristics of HepG2, TOV-21G and SK-HEP-1. (A) Hematoxylin and 74 eosin (H&E), autoradiography and glypican-3 (GPC3) staining of HepG2, TOV-21G and SK-75 HEP-1 xenografts. Scale bar length represents 5 mm for HepG2, 1 mm for TOV-21G and 2.5 76 mm for SK-HEP-1, and 250 µm for the zoomed slides. Autoradiography and H&E were 77 performed on the same slide. For each cell line, flow cytometry was performed using ERY974 as 78 primary antibody (black), including IgG4 as control (red; right panel). (B) SDS-PAGE 79 autoradiography of different individual HepG2 (left), TOV-21G (middle) and SK-HEP-1 (right) 80 lysates and corresponding plasma samples. + represents activity matched [⁸⁹Zr]Zr-N-suc-Df-81 ERY974 tracer from injected solution. kDa = kilodalton. 82

83

Fig. S4. Influence of Fc γ R binding and radioactive dose on biodistribution of different tracers in mice. (A) Spleen uptake at 168 h after administration of 10 µg of [⁸⁹Zr]Zr-N-suc-Df-ERY974 (n = 6), [⁸⁹Zr]Zr-N-suc-Df-KLH/CD3 (n = 5), [⁸⁹Zr]Zr-N-suc-Df-KLH/KLH (n = 6) and [⁸⁹Zr]Zr-N-suc-Df-IgG4 (n = 5) expressed as median % injected dose per gram (%ID/g) with

4

88	interquartile range. (B) Spleen weight of $[^{89}$ Zr]Zr-N-suc-Df-ERY974 ($n = 6$), $[^{89}$ Zr]Zr-N-suc-Df-
89	KLH/CD3 ($n = 5$), [⁸⁹ Zr]Zr-N-suc-Df-KLH/KLH ($n = 6$) and [⁸⁹ Zr]Zr-N-suc-Df-IgG4 ($n = 5$)
90	expressed as median weight in mg with interquartile range. (C) Spleen weight of NOG mice
91	injected with 10 μ g of [⁸⁹ Zr]Zr-N-suc-Df-ERY974 labeled with 5 MBq (A _m : 14.6 MBq/nmol) at
92	72 h ($n = 2$), 120 h ($n = 2$) and 168 h ($n = 12$) after administration expressed as median weight
93	with interquartile range (IQR). A_m = molar activity. (D) Spleen uptake of NOG mice injected
94	with 10 µg of [⁸⁹ Zr]Zr-N-suc-Df-ERY974 labeled with 1 MBq (A_m : 14.6 MBq/nmol; $n = 6$) or 5
95	MBq (A_m : 72.8 MBq/nmol; $n = 12$) at 168 h expressed as median % injected dose per gram with
96	IQR. E) Spleen weight of NOG mice injected with 10 µg of [⁸⁹ Zr]Zr-N-suc-Df-ERY974 labeled
97	with 1 MBq (A _m : 14.6 MBq/nmol; $n = 6$) or 5 MBq (A _m : 72.8 MBq/nmol; $n = 12$) at 168 h
98	expressed as median weight with IQR. (F) Radioactivity dose of the spleen of NOG mice
99	injected with 10 µg of [⁸⁹ Zr]Zr-N-suc-Df-ERY974 labeled with 1 MBq (A _m : 14.6 MBq/nmol $n =$
100	6) or 5 MBq (A_m : 72.8 MBq/nmol; $n = 12$) at 168 h expressed as median dose with IQR. (G)
101	Hematoxylin and eosin (H&E 400x) staining of a NOG mice spleen injected with 1 MBq (A_m :
102	14.6 MBq/nmol) or 5 MBq (A _m : 72.8 MBq/nmol) of [⁸⁹ Zr]Zr-N-suc-Df-ERY974 at 168 h after
103	tracer administration. Scale bar length represents 250 µm. (H) Uptake of [⁸⁹ Zr]Zr-N-suc-Df-
104	ERY974 in spleen, bone, liver and blood in NOG ($n = 6$) and BALB/c ^{nu} ($n = 6$) at 168 h after
105	tracer administration expressed as median % injected dose per gram of tissue (%ID/g) with
106	interquartile range (IQR). (I) Uptake of $[^{89}$ Zr]Zr-N-suc-Df-ERY974 in spleen in NOG ($n = 6$)
107	and BALB/ c^{nu} ($n = 6$) at 168 h after tracer administration expressed as median % ID/g with IQR.
108	(J) Spleen weight of NOG ($n = 6$) and BALB/c ^{nu} ($n = 6$) mice at 168 h after tracer administration
109	expressed as median weight with IQR. (K) Pooled data of [89Zr]Zr-N-suc-Df-ERY974 uptake in

- spleen, femur, cortical femur, femur bone marrow of NOG (n = 18) and BALB/c^{nu} (n = 6) mice at 168 h after administration expressed as median %ID/g with IQR.
- 112

Fig. S5. Dose escalation of [89Zr]Zr-N-suc-Df-ERY974 in immunodeficient NOG mice 113 bearing different tumor xenografts. (A) Ex vivo biodistribution of [⁸⁹Zr]Zr-N-suc-Df-ERY974 114 in HepG2 at 168 h post injection with 10 µg in (n = 12), 2000 µg (n = 6), or 1000 µg GPC3 115 bivalent (n = 3), and in TOV-21G with 10 µg (n = 6) or 2000 µg (n = 2). Doses higher than 10 116 µg were supplemented with non-labeled ERY974 or GPC3 bivalent antibody. Data is expressed 117 as median %ID/g with interquartile range (IOR). ** P < 0.01 (Mann-Whitney U). (B) Uptake of 118 $[^{89}$ Zr]Zr-N-suc-Df-ERY974 dose groups in blood expressed as median %ID/g with IQR. *P \leq 119 0.05 (Mann-Whitney U). (C) Tumor-to-blood ratio of [⁸⁹Zr]Zr-N-suc-Df-ERY974 dose groups 120 expressed as median with IQR. $*P \le 0.05$; $**P \le 0.01$ (Mann-Whitney U). (D) Uptake of 121 $[^{89}$ Zr]Zr-N-suc-Df-ERY974 dose groups in liver expressed as median %ID/g with IQR. *P \leq 122 0.05 (Mann-Whitney U). 123

124

Fig. S6. Ex vivo biodistribution of different tracers in different mice models at 168 h after 125 tracer administration. (A) Biodistribution of 10 μ g [⁸⁹Zr]Zr-N-suc-Df-ERY974 in NOG (n = 126 12) and huNOG (n = 5) mice expressed as median % injected dose per gram of tissue (% ID/g) 127 with interquartile range (IQR). (B) Biodistribution of 10 µg [⁸⁹Zr]Zr-N-suc-Df-KLH/CD3 in 128 NOG (n = 5), huNOG (n = 4), or huNOG mice co-injected with 10 µg ERY974 (n = 3) expressed 129 as median % ID/g with IQR. (C) Biodistribution of 10 µg [⁸⁹Zr]Zr-N-suc-Df-KLH/KLH in NOG 130 (n = 6), huNOG (n = 6), or huNOG mice co-injected with 10 µg ERY974 (n = 3) expressed as 131 132 median % ID/g with IQR.

133

134Fig. S7. Binding to peripheral blood mononuclear sites of huNOG mice injected with135 $[^{89}Zr]Zr-N-suc-Df-ERY974$, $[^{89}Zr]Zr-N-suc-Df-KLH/CD3$ or $[^{89}Zr]Zr-N-suc-Df-$ 136KLH/KLH. Percentage of bound tracer to peripheral blood mononuclear cells (PBMCs) isolated137from blood from huNOG mice injected with $[^{89}Zr]Zr-N-suc-Df-ERY974$ (n = 3), $[^{89}Zr]Zr-N-suc-$ 138Df-KLH/CD3 (n = 4) or $[^{89}Zr]Zr-N-suc-Df-KLH/KLH (<math>n = 4$).

139

Fig. S8. CD3 immunohistochemistry in HepG2 tumors of huNOG mice injected with 140 [⁸⁹Zr]Zr-N-suc-Df-KLH/CD3 [⁸⁹Zr]Zr-N-suc-Df-[⁸⁹Zr]Zr-N-suc-Df-ERY974, or 141 KLH/KLH. (A) Intratumoral (top panel; scale bar length represents 100 µm) and stromal 142 (bottom panel; scale bar length represents 100 µm) CD3+ T cells in HepG2 tumors (middle 143 panel; scale bar length represents 5 mm) of huNOG mice injected with [89Zr]Zr-N-suc-Df-144 ERY974, [⁸⁹Zr]Zr-N-suc-Df-KLH/CD3 or [⁸⁹Zr]Zr-N-suc-Df-KLH/KLH. (B) Quantification of 145 T cell infiltrations expressed as CD3+ cells/mm². Lines represent median with interquartile 146 range. **P* < 0.05. 147

148

Fig. S9. CD3 immunohistochemistry in HepG2 tumors of huNOG mice co-injected with ERY974. (A) Intratumoral CD3+ T cells in HepG2 tumors of huNOG mice injected with $[^{89}Zr]Zr-N-suc-Df-KLH/CD3$ or $[^{89}Zr]Zr-N-suc-Df-KLH/KLH$ co-injected with ERY974. Scale bar length represents 100 µm. (B) Quantification of CD3+ T cells expressed as CD3+ cells/mm².

Fig. S10. Immunohistochemical staining validation. (A) Glypican 3 (GPC3) or isotype control staining on human placenta tissue or huNOG HepG2 tumors. Scale bar length represents

156	100 μ m for placenta and 2.5 mm for HepG2 tumor. (B) CD3 or isotype control staining on
157	human liver or huNOG HepG2 tumors. Scale bar length represents 50 μm for liver and 500 μm
158	for HepG2 tumor.
159	
160	References
161	1. Warnders FJ, Waaijer SJ, Pool M, Lub-de Hooge MN, Friedrich M, Terwisscha van
162	Scheltinga AG, et al. Biodistribution and PET imaging of labeled bispecific T cell-engaging
163	antibody targeting EpCAM. J Nucl Med. 2016;57(5):812-7.
164	2. Verel I, Visser GW, Boellaard R, Stigter-van Walsum M, Snow GB, van Dongen GA.
165	⁸⁹ Zr immuno-PET: comprehensive procedures for the production of ⁸⁹ Zr-labeled monoclonal
166	antibodies. J Nucl Med. 2003;44(8):1271-81.
167	3. Bankhead P, Loughrey MB, Fernandez JA, Dombrowski Y, McArt DG, Dunne PD, et al.
168	QuPath: open source software for digital pathology image analysis. Sci Rep. 2017;7(1):16878.