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1. Survey of C. sativum genome 

1.1 Introduction 

The survey was conducted for the coriander (Coriandrum sativum) genome size, 

heterozygosity rate, and repeat sequence ratio estimation. The coriander was diploid 

speices with the genome size about 2.484 Gb reported in the Kew website 

(https://www.kew.org). Here, we estimated the coriander genome size using Kmer, which 

is a popular method used nearly almost every species genome sequencing project 

(Marcais and Kingsford, 2011). In our study, we constructed two small fragment of the 

libraries, and then carried out Illumina HiSeq PE sequencing. The mainly analyses were 

about sequencing data quality control and genome feature assessment.  

1.2 Experimental method  

The qualified DNA sample was randomly interrupted into a length of 350 bp 

fragment using Covaris ultrasonic crusher. Then the fragment was repaired the end, 

added A Tail, plus sequencing joints, purification, PCR amplification steps to complete 

the entire library preparation. Finally, the well-constructed library was sequenced by 

Illumina HiSeq. 

1.3 Sequencing data output and quality control  
1.3.1 Data description  

The production of sequencing data is through the DNA extracting, building, and 

sequencing multiple steps. However, the invalid data generated in these steps can cause 

serious interference to the advanced analysis of biological information data, such as the 

deviation of the length of the database during the construction phase, and the situation of 

sequencing errors in the sequencing phase. So, we must eliminate these ineffective data 

filtering by some methods to ensure the normal conduct of bioinformatics analysis.  

1.3.1.1 Raw data 

The original image data obtained by sequencing base calling into sequence data, 

which we called raw data or raw reads with the FASTQ format. FASTQ file was the 

original file, which contained the reads sequence and reads sequencing quality.  

1.3.1.2 Clean data 



The original sequencing data contained the adapter, low-quality bases, and an 

undefined base (N). These can cause significant disruption to subsequent bioinformatics 

analyses. Using filtering methods to remove these interference information, then the data 

is valid data, which we called clean data or clean reads. The finally file has the same data 

format as raw data.  
1.3.2 Methods of data filtering 

Filter mainly from the following three aspects:  

1) The reads containing the adapter sequence needs to be filtered out;  

2) When the content of N contained in single-ended sequencing read exceeds that 10% 

length of read.  

3) The pair needs to be removed when the single-end sequencing read contains low 

quality (< 5) base exceeds 20% of the read length. 
1.3.3 Quality control 

1.3.3.1 Sequencing data statistics  

We obtained the high quality clean data after a serials strict filtering of sequencing 

data. Furthermore, we statistic the output data, including sequencing read quantity, data 

yield, sequencing error rate, Q20 content, Q30 content, GC content and so on 

(Supplementary Table 1). 

1.3.3.2 Sequencing quality assessment 

1) GC content distribution check: This is mainly detection of GC separation 

phenomena. The proportion of A and T should be nearly equal, C and G should also be 

equal according to the principle of base complementarity. The N content reflects the 

quality of sequencing data.  

2) Sequencing data quality check: The quality of sequencing data will be mainly 

distributed above Q20, so as to ensure the normal conduct of subsequent analysis. 

According to the characteristics of sequencing technology, the base quality at the end of 

sequencing fragment is generally lower than that of the front end.  

3) Sequencing error rate distribution: The sequencing error rate is related to the 

quality of the base. According to the characteristics of sequencing technology, the error 

rate at the end of sequencing fragment will be high, and the error rate of large segment 

library sequencing is higher than that of small fragment library sequencing.  



1.3.3.3 Sequencing data evaluation and conclusion 

The original sequencing data of coriander samples is 139.87G. The sequencing data 

with the high quality (Q20≥90%, Q30≥85%), and sequencing error rate is low (<0.05%). 

The nucleotide library comparison results did not reveal any contamination in the sample. 

1.4 K-mer analysis 
1.4.1 K-mer analysis principle 

Before genome assembly, genomic characteristics can be estimated by sequencing of 

sequences. We use K-mer method to estimate the genome size and hybridization rate, that 

is, from a continuous sequence to iteratively select the length of K base sequence. If the 

length of each sequence is L, then the k-mer length is K, then we can get the L-K+1 

k-mer, here we take k= 17 to analyze.  
1.4.2 K-mer analysis results 

According to the results of the survey analysis, the main peak near 

depth=51(Supplementary Figure 1). The genome size obtained by (Kmer-number/depth) 

is about 2,151.47 Mb, and the corrected genome size is 2,130.29 Mb. The genomic 

heterozygosity rate was 0.47%, and the repeat sequence ratio was 80.58% 

(Supplementary Table 2). 

1.5 Conclusion  

The 139.87G sequencing data of coriander genome was analyzed by Kmer=17, and 

the estimated genome size was 2,151.47 Mb, corrected to 2,130.29 Mb, the 

heterozygosity rate was 0.47%, and the repeat sequence ratio was 80.58%. From the 

analysis of each indicator, it is indicated that the sequence of coriander genome is a 

complex genome, and the corresponding strategy can be used for further genome 

assembly.  

 

2. Preliminary genome assembly 

2.1 Data error correction 

We can assume that the kmer with low frequency is due to sequencing errors when 

the amount of sequencing is large enough. The process of error correction is first 

establishment a kmer frequency table with some data. After setting cutoff, the kmer can 

be divided into high frequency and low frequency kmer. For reads with low-frequency 



kmer, we can make the kmer of the entire reads high by changing some bases. Then we 

think that we have corrected some errors caused by sequencing. Because the large 

segment is in the process of cyclization during the construction of the library, and only 

plays a role in the assembly process. The large segments do not need to participate in this 

error correction process, so data correction is usually performed on small segment library 

data. The corrected data will be used for subsequent genome assembly. 

2.2 10X genomics assisted third generation data assembly 

(1) Extraction of genomic DNA (>50Kb) 

(2) Third-generation database construction: 1) Third generation database: DNA 

adaptor with hairpin structure attached to both ends of double-stranded DNA. 2) First, the 

Pacbio data is self-corrected. Generally, the accuracy of the data can reach 99.999% after 

error correction. 3) Conducting the genome assemble using the third generation data after 

error correction. The assembly uses the Overlap-Layout-Consensus (OLC) algorithm, 

which is spliced by the overlap relationship between long reads. 4) For the assembly 

results obtained in the above step, all third generation data were sequenced for mapping. 

The assembly results were further corrected to improve the accuracy of the results, and 

finally obtained the contig sequence. 

(3) 10X Genomics library construction: The gel beads are connected with: 1) 

illuminaP5 connector. 2) 16 base Barcode. 3) Illumina read 1 sequencing primers. 4) 

10-bp random sequence primers. 

The Barcode primer combines DNA and enzyme mixtures through two intersections, 

one at the intersection, and the second intersection with oil droplets, which are then 

collected and placed on a special 96-plate for 10X Genomics library preparation. After 

PCR amplification, break the oil droplets, mix different Barcode amplification sequences, 

break into appropriate fragments, and add P7 linker for illumina sequencing. 

(4) Compare the obtained linked-reads with the contig of the third-generation 

sequencing. 

(5) For contig/scaffold, where the actual distance is relatively close, there are many 

linked-reads that support their connection. For contig/scaffold, which is far away from 

actual distance, linked-reads support is missing and cannot be connected. 

2.3 Assembly results 



2.3.1 Sequencing data statistics 

The coriander genome was sequenced using the third-generation sequencing 

technology Pacbio platform with a total sequencing capacity of 197.45 Gb, and a 

coverage depth of 92.69X (calculated according to the estimated genome size of 2,130.29 

Mb). In addition, 10X Genomics library and second generation small fragments were 

constructed and sequenced using the illumina platform (Supplementary Table 3).  
2.3.2 Assembly result statistics 

Assembly results were selected from scaffolds above 100 bp. The contig N50 of the 

coriander genome reached 612.62 Kb, and the scaffold N50 reached 2.15 Mb (Table 1).  
2.3.3 Genomic base composition 

The results showed that the ratio of four bases A, T, G, and C is normal. The ratio of 

GC is 34.83%, and the ratio of N is 1.34%, which is an acceptable range (<10%) 

(Supplementary Table 4-5). 

2.4 Assembly results evaluation 
2.4.1 Sequence consistency assessment 

In order to evaluate the accuracy of the assembly, the small fragment library reads 

were selected using BWA software (http://bio-bwa.sour ceforge.net/) to compare the 

assembled genomes (Jo and Koh, 2015), and the ratio of reads was counted. Cover the 

extent and depth of the genome, assess the integrity of the assembly and the uniformity of 

sequencing. The results showed that the alignment rate of all small fragments reads to the 

genome is about 97.98%, and the coverage rate is about 99.49%, indicating that the 

genomes of reads and assembly are well consistent (Supplementary Figure 2a, 

Supplementary Table 4). 

Single Nucleotide Polymorphisms (SNPs) refer to genetic markers formed by single 

nucleotide variations in the genome, which are numerous and polymorphic. We use tools 

such as samtools (http://samtools.s ourceforge.net/) to sort the BWA alignment results by 

chromosome coordinates, remove duplicate reads, perform SNP Calling, and filter the 

original results to obtain SNP statistics (Etherington et al., 2015; Li et al., 2009). The 

ratio of SNP in the coriander genome is 0.0939%, and the ratio of homozygous SNP is 

0.0005% (Supplementary Table 5). It is generally believed that the homozygous SNP 

ratio can reflect the correct rate of genome assembly. This result indicates that the 

assembly has a high single base correct rate.  



The assembled genomic sequence was plotted with 10K for windows without 

recalculating GC content and mean depth. Based on this graph, the sequencing data can 

be analyzed for GC bias and contamination of the sample. The results showed that the 

sample is not contaminated according to the distribution of GC content and average depth. 

The GC content is concentrated around 35%, and there is no obvious separation of the 

scatter plots, indicating that it is no other external pollution in the genome 

(Supplementary Figure 2b). 
2.4.2 Sequence integrity assessment  

2.4.2.1 CEGMA assessment 

The integrity of genome assembly is evaluated by the CEGMA, which is the abbreviation 

of Core Eukaryotic Genes Mapping Approach (http://korflab.ucdavis.edu/Datasets/ ) 

(Parra et al., 2007). The evaluation selected the conserved genes (248 Core Eukaryotic 

Genes) present in six eukaryotic model organisms to form a core gene library. Then, we 

combined several softwares, such as tblastn, genewise, and geneid to evaluate the 

assembled genome integrity (Birney et al., 2004). According to the statistical result, we 

assembled 239 Core Eukaryotic Genes with a ratio of 96.37% (Supplementary Table 6), 

indicating that the assembly was relative complete. 

2.4.2.2 BUSCO assessment 

We also used the Benchmarking Universal Single-Copy Orthologs (BUSCO, 

http://busco.ezlab.org/) program to evaluate the integrity of genome assembly (Seppey et 

al., 2019; Waterhouse et al., 2019). The evaluation of assembled genome by using a 

single-copy orthologous gene pool in conjunction with tblastn, augustus, and hmmer 

programs. According to the BUSCO assessment statistical results, 4, 956 orthologous 

single-copy genes assembled 94% of complete single-copy genes (Supplementary Table 

7), indicating that the assembly results were complete. 

2.5 Conclusion 

Using 577.88G sequencing data of coriander genome, the sequencing depth was 

271.27 X. Then the coriander genome was denovo assembly, and the results were as 

follows: contig total length 2,118.31 Mb, contig N50 length reached 612.62 Kb. The 

scaffold has a total length of 2,147.13 Mb, and the scaffold N50 has a length of 2.15 Mb. 

A variety of methods were used to evaluate the assembled genome, and the results 



showed that the genome has a good consistency, integrity and accuracy. 

 

3. Hi-C technology assisted genome assembly 

3.1 Introduction 

The Hi-C technology was used for assisted C. sativum genome assembly. The 

libraries were sequenced using Illumina HiSeq PE150. These analyses mainly contained 

the data quality control, mapping the reference genomes, clustering, sorting, orientation, 

accuracy assessment for the genome with chromosomal information. 

3.2 Experimental procedure 
3.2.1 Hi-C biotin labeling and genomic DNA extraction 

(1) Using the cell cross-linking agent paraformaldehyde to make the DNA and the 

cell combined; 

(2) After the cell lysis, using the restriction enzyme to deal with the cross-linked 

DNA, which cause a gap on both sides of the cross-linking point; 

(3) At the end of the repairing, adding biotin label the end of the oligonucleotide; 

(4) Using the nucleic acid ligase, make the adjacent DNA fragments linked; 

(5) The protease digests the protein at the junction to de-crosslink the protein and 

DNA. Genomic DNA was extracted and the DNA was randomly broken into fragments of 

350 bp by Covaris crusher and then recovered. 
3.2.2 Library construction 

Capture DNA with biotin under the adsorption of avidin magnetic beads, and follow 

the procedure to the DNA fragments. The steps of end-repair, addition of A, linker 

ligation, and PCR amplification and purify complete the entire library preparation. 

Constructed library was sequenced using Illumina HiSeq PE150. 
3.2.3 Library Check 

After the library was constructed, using Qubit 2.0 start preliminary quantification, 

and the library was diluted to 1 ng/µl. Then test the insert size of the library followed by 

Agilent 2100. If the insert size was as expected, starting accurate quantification to the 

effective concentration of the library by Q-PCR (the library effective concentration > 2 

nM) to ensure the library quality. 



3.2.4 Sequencing 

After the library was qualified, the different libraries were pooled according to the 

effective concentration and the target data volume, and then using Illumina HiSeq PE150 

to sequence. 

3.3 Bioinformatics analysis 

The main steps of Hi-C technology are as follows: 

(1) Quality control of the raw data to obtain clean data; 

(2) Mapping the clean data to the genome for comparison analysis; 

(3) According to the comparison results, clustering, sorting, orienting, assisting the 

genome to anchor the chromosome. 

3.4 Sequencing data quality control 
3.4.1 Original sequencing data 

Please refer to the section 1.3.1. 
3.4.2 Sequencing data statistics  

Please refer to the section 1.3.2. 
3.4.3 Sequencing data quality assessment 

The total of sequencing data for Hi-C is 278.90 Gb with the high sequencing quality 

(Q20 ≥ 90%, Q30 ≥ 85%). The GC distribution is normal, and the sample is not 

contaminated (Supplementary Table 8). The Hi-C construction library has a relative high 

quality. The finally valid read pairs was 3,385,763, and the data effect rate was 33.04% 

(Supplementary Table 9). 

3.5 Hi-C technology assisted genome assembly 

Hi-C technology obtained spatially connected DNA fragments, interactions between 

distantly located DNA fragments at physical locations by special experimental techniques. 

According to the interaction probability inside the chromosome is higher than that of 

between the two chromosomes, the contig or scaffold were divided into different 

chromosomes. According to the interaction probability decreases with the increase of the 

interaction distance on the same chromosome, sorting and orienting the contig or scaffold 

of the same chromosome. 
3.5.1 Comparison with draft genome 

Efficient high-quality sequencing data was compared to the draft genome by BWA 

software. We removed the repeat data and no paired data by SAMTOOLS (parameter: 



rmdup), and obtained the high quality data (Etherington et al., 2015; Li et al., 2009). At 

the same time, we extracted the reads near the cleavage site for assisted genome 

assembly. 

The sample alignment rate reflected the similarity between the sample sequencing 

data and the reference genome. The sequencing depth and coverage can directly reflect 

the homogeneity and the homology with the reference sequence. The alignment of the 

individual samples showed that their similarity to the draft genome met the requirements, 

while at the same time having very high sequencing depth and coverage. 
3.5.2 Clustering 

The short reads obtained by sequencing were first compared to the draft genome, 

and the reads were compared to contigs or scaffolds. If there were reads pairs captured by 

Hi-C technology on the two contigs, then there was an interaction between the two 

contigs. The more the number of reads interacting on two contigs, the stronger the 

interaction, and the more likely they were to be grouped together (Supplementary Figure 

3a). 

The number of reads with interaction between contigs was the number of 

interactions. The contigs were clustered according to the number of interactions, and the 

number of chromosomes of the species was divided into the specified number of classes. 
3.5.3 Sorting and Orientation 

According to the results of clustering grouping, the positions of the strengths of each 

two contig interactions and the interaction reads were sorted and oriented (Supplementary 

Figure 3b). 
3.5.4 Assembly result statistics 

Finally, a total of 1.774 Gb, accounting for 83.77% of the assembled genome, was 

anchored the 11 chromosomes by the Hi-C (Supplementary Table 10). The GC content 

was about 34.83%, accounting for the finally assembled genome (Supplementary Table 

11).  

 

4. Genome prediction and annotation 

4.1 Analysis process and method 



4.1.1 Genome prediction process 

Structural prediction of genes usually involves multiple prediction methods, mainly 

homologous prediction, De novo prediction and other evidence-supported predictions. 

The method of homologous prediction is to compare the encoded protein sequence of a 

known homologous species with the genomic sequence of a new species (the number of 

homologous species is usually no more than 5), by blast (http://blast.ncbi. 

nlm.nih.gov/Blast.cgi), genewise (http://www.ebi.ac.uk/~birney/wise2/) and other 

comparison software predicts gene structure in the genome (Birney et al., 2004; Camacho 

et al., 2009). De novo predicts the use of software that relies on the statistical 

characteristics of genomic sequence data (such as codon frequency, exon-intron 

distribution) to predict gene structure. The commonly used softwares are Augustus 

(http://bioinf.uni-greifswald.de/augustus/), GlimmerHMM 

(http://ccb.jhu.edu/software/glimmerhmm/) (Stanke and Morgenstern, 2005), SNAP 

(http://homepage.mac.com/iankorf/), etc (Korf, 2004). Other evidence supports 

predictions that use EST or cDNA data from homologous species to predict gene 

structure by blat (http://genome.ucsc.edu/cgi-bin/hgBlat) (Kent, 2002). Combining the 

above prediction results and the transcriptome comparison data, the gene sets predicted 

by various methods are integrated into one non-redundant, and more complete gene set 

using the IntegrationModeler (EVM, http://evidencemodeler.sourceforge.net/) integration 

software (Haas et al., 2008). Finally, combined with the results of transcriptome assembly, 

the EVM annotation results were corrected using PASA 

(http://pasa.sourceforge.net/)(Haas et al., 2003). The UTR and variable splice 

information were added to obtain the final gene set. 
4.1.2 Genome annotation analysis 

The genome annotation mainly includes three aspects: repeated sequence annotation, 

gene annotation (including gene structure prediction and gene function prediction), and 

non-coding RNA (ncRNA) annotation. 

The method of repetitive sequence annotation is divided into two types: homologous 

sequence alignment and de novo prediction. The homologous sequence alignment method 

is based on a repeat sequence database (RepBase, http://www.girinst.org/repbase), using 

the Repeatmasker and repeatproteinmask (http://www.repeatmasker.org/) software to 



identify and know Repeat sequences with similar sequences (Bao et al., 2015; 

Tarailo-Graovac and Chen, 2009). The de novo prediction method firstly constructed the 

repeat sequence database by using LTR_FINDER 

(http://tlife.fudan.edu.cn/ltr_finder/)(Xu and Wang, 2007), Piler 

(http://www.drive5.com/piler/)(Edgar and Myers, 2005), RepeatScout 

(http://www.repeatmasker.org/)(Price et al., 2005), RepeatModeler 

(http://www.repeatmasker.org/RepeatModeler.html), then predicted by the Repeatmasker 

software. For the other method of de novo predictions, the TRF 

(http://tandem.bu.edu/trf/trf.html) software can detect tandem repeats in the 

genome(Benson, 1999). 

We conducted the gene function annotation by comparing with a known protein 

database to obtain functional information of the gene. The Commonly protein databases 

are SwissProt (http://www.uniprot.org/) (Bairoch, 2005), TrEMBL 

(http://www.uniprot.org/)(Bairoch and Apweiler, 2000), KEGG 

(http://www.genome.jp/kegg/)(Ogata et al., 1999) and InterPro 

(https://www.ebi.ac.uk/interpro/)(Mulder and Apweiler, 2008). 

Non-coding RNA annotations include tRNA, rRNA, miRNA and snRNA. According 

to the structural characteristics of tRNA, tRNAscan-SE 

(http://lowelab.ucsc.edu/tRNAscan-SE/) software is used to search for tRNA sequences in 

the genome (Chan and Lowe, 2019). Due to the rRNA is highly conserved, it is possible 

to select closely related species rRNA sequence as a reference sequence to search rRNA 

by Blast program. According to the Rfm family's covariance model, INFERNAL 

(http://infernal.janelia.org/) software was used to predict miRNAs and snRNAs 

(Nawrocki and Eddy, 2013).  

4.2 Analysis results 
4.2.1 Repeat sequence annotation 

 Repeat sequences can be divided into two major categories: tandem repeats and 

interspersed repeats. The tandem repeat sequence includes a microsatellite sequence, a 

small satellite sequence, etc. The scattered repeat sequence is also called a transposon 

element, and includes a DNA transposon and a retrotransposon transposed by DNA-DNA. 

Common retrotransposon classes are LTR, LINE and SINE. Based on the Lenovo repeat 



sequence prediction tool and the existing repbase repeat sequence library, the cope seed 

genome was subjected to repeat annotation, and the results showed that the genome 

contained 70.59% of the repeat sequence (Supplementary Table 12). Furthermore, we 

classified the TEs, and the results showed that most of them belonged to the LTR 

(66.71%) (Supplementary Table 13). 

Based on the alignment of the genome with Repbase, we plot the frequency of the 

different type repeat sequence (Supplementary Figure 4a). 
4.2.2 Gene structure annotation 

We conducted the denovo prediction of the genetic structure using the software 

Augustus, GlimmerHMM, SNAP, Geneid and Genscan. The homologous species include 

A. thaliana, C. sativus, S. lycopersicum, S. tuberosum, D. Carota, O. sativa and L. sativa. 

A total of 40747 genes were predicted in the coriander genome. The detailed statistical 

information is shown in Supplementary Table 14. Supplementary Figure 4b shows the 

support of each evidence for the gene set.  

We further conducted the analyses of genetic structure in C. sativum and above 

mentioned 7 representative species. Among these examined species, C. sativum has the 

more genes (40,747) than other 7 species (Supplementary Table 15, Supplementary 

Figure 4c).  
4.2.3 Gene function annotation 

 A total of 40,747 genes were predicted in the C. sativus genome (Table 5). The gene 

annotation was obtained by alignment of the known protein libraries, including NR, 

Swiss-Prot, KEGG, InterPro. Finally, a total of 37772 (92.7%) of the genes in the C. 

sativus genome can be predicted to function. Among of them, 25722 genes were 

annotated by all of these four databases (Supplementary Table 16, Supplementary Figure 

5a). 
4.2.4 Non-encoded RNA annotation 

Non-coding RNA refers to RNA that does not translate proteins, such as rRNA, 

tRNA, snRNA, miRNA. miRNA can degrade its target gene or inhibit the translation of a 

target gene into a protein, and has the function of silencing the gene. The tRNA and 

rRNA are directly involved in the synthesis of proteins. The snRNA is mainly involved in 

the processing of RNA precursors and is the main component of RNA splicing. The 

ncRNA information of the coriander genome obtained by comparison with known 



ncRNA libraries or structural prediction is shown in Supplementary Table 17. 

 

5. RNA-seq 

5.1 Introduction  

 The samples of C. sativum and D. carota collected from 3 different growth stages, 

including 30d, 60d and 90d after sowing. In addition, the four tissues (root, stem, leaf, 

and flower) of C. sativum were also used for RNA-Seq analyses. Each sample was set as 

three replications. The RNA was isolated from leaves using RNA kit (Tiangen, Beijing, 

China) according to manufacturer’s instructions. 

5.2 Database construction and sequencing  

From the RNA sample to the final data acquisition, each step of sample detection, 

database construction and sequencing will have an effect on the quality and quantity of 

the data. The quality of data will directly affect the results of subsequent analysis. In 

order to guarantee the accuracy and reliability of the sequencing data, we strictly control 

each step of sample detection, database construction and sequencing, which can radically 

ensure the high quality data.  
5.2.1 Total RNA sample detection  

The following four methods for RNA sample detection:  

(1) Agarose Gel Electrophoresis analyses the degree of RNA degradation and test 

whether existing contamination or not.  

(2) Nanodrop test the purity of RNA（OD260/280）. 

(3) Qubit accurately quantified RNA concentration.  

(4) Agilent 2100 accurately detects RNA integrity. 
5.2.2 Library construction  

When the samples were qualified, using the magnetic beads with Oligo (dT) to 

enrich the Eukaryote mRNA by the base A-T pairing and the combination of the mRNA 

ploy A tail. After, adding fragmentation buffer is to break mRNA into short fragments. 

Next using mRNA as a template, a single-strand cDNA was synthesized by using random 

hexamers, and then the double-stranded cDNA was synthesized by adding buffer, dNTPs 

and DNA polymeraseⅠ. Finally using AMPure XP beads purified double-stranded 



cDNA. The purified double-stranded cDNA was subjected to terminal repairing. After 

adding tail A and connecting the sequencing linker, adopting AM Pure XP beads choose 

the size of fragments. Last, performing PCR enrichment was to obtain the final cDNA 

library.  
5.2.3 Library inspection  

When library construction was finished, we needed taking on preliminary 

quantification by using Qubit 2.0, and the library was diluted until 1 ng/ul. Then, using 

Agilent 2100 detected the insert size of the library. If the insert size was as expected, 

using Q-PCR to take on accurate quantification for the effective concentration of the 

library (the library’s effective concentration> 2 nM) to ensure the library’s quality. 
5.2.4 Sequencing  

After library inspection was qualified, we needed to take on HiSeq sequencing for 

the different libraries according to the effective concentration and the target data volume 

which were pooled. 

5.3 Bioinformatic analysis  

After obtaining the sequenced reads and referencing the relevant species and the 

genome, the bioinformatics analysis processing as follows: 
5.3.1 Oringinal sequences data  

The original image data files obtained by High-throughput sequencing (Illumina 

HiSeqTM) transformed the original sequencing sequences after analyzed by CASAVA 

Base Calling. We called it Raw Data or Raw Reads. The results stored were stored in 

FASTQ file format. It contained the sequencing (reads) information and its corresponding 

sequencing quality information. 
5.3.2 Sequencing data quality assessment  

5.3.2.1 Check the distribution of sequence error rate  

The error rate of each base sequencing is obtained by the Phred score (Formula 1: 

Qphred = -10log10(e)). The Phred value is obtained by a rate model during the base call 

(Base Calling) process. The model can predict accurately the error rate of the base calling. 

The sequencing error rate is related to the base quality and is affected by many factors 

such as the sequencer itself, sequencing reagents, and samples. 

5.3.2.2 Check A/T/G/C content 

The GC content distribution test is used to detect the phenomenon whether exist 



separation between AT and GC or not. This phenomenon may be caused by sequencing or 

library construction and may affect subsequent quantitative analysis. 

In the transcriptome sequencing at the Illumina sequencing platform, the 6 bp 

random primer used in reverse transcription into cDNA causes a preference for the first 

few positions nucleotide composition. This preference has nothing to do with the 

sequenced species and laboratory environment, but it can affect the degree of 

homogeneity of transcriptome sequencing (Hansen et al., 2012). In addition, in each 

sequencing circle, the G and C bases and A and T base contents should be equal, and the 

whole sequencing process is stable and horizontal. But for the Strand-Specific library 

construction, it exists the G and C base separation. For Illumina sequencing, due to 

random primer amplification bias and other reasons, it is normal that the first six-seven 

base for each read appear fluctuation. 

5.3.2.3 Sequencing data filtering  

The original sequencing sequence from sequencing contains low-quality reads with 

connectors. In order to ensure the quality of information analysis, we must filter to the 

raw reads and then gain the clean reads. And the subsequent analysis is based on the 

clean reads. 

The steps for data processing are as follows: 

(1) Removing the reader with adapter; 

(2) Removing N (N means that the base information not clear) the proportion of reads 

lager than 10%; 

(3) Remove the low-quality reads (the bases of Qphred <= 20 account for more than 50% 

of the whole read length of reads). 

5.3.2.4 Summary of sequencing data quality  

The clean data of four tissues (root, stem, leaf, and flower) of C. sativum were totally 

79.26Gb (Supplementary Table 34). The clean data of 3 different growth stages (30d, 60d 

and 90d) of C. sativum and D. carota were totally 69.22Gb and 68.70Gb, respectively 

(Supplementary Table 35). 
5.3.3 Alignment analysis of reference sequence  

We select the software HISAT in order to perform genomic positioning analysis for 

the filtered sequence (Kim et al., 2015). HISAT can effectively compare the spliced reads 



in RNA-Seq sequencing data, which is the highest and most accurate alignment software. 

The total mapped ratios of four tissues were almost more than 90%, and the uniquely 

mapped ratios were more than 80% (Supplementary Table 36). Similar, there was the 

same trends for the 3 different growth stages (30d, 60d and 90d) of C. sativum and D. 

carota (Supplementary Table 37-38). This indicated that there was no contamination and 

the reference genome is selected appropriately. 
5.3.4 Alternative splicing analysis  

Alternative Splicing (AS) is a common expression pattern in most eukaryotic cells. 

After the gene is transcribed into an mRNA precursor, the intron is removed by the RNA 

cleavage, while the exon is retained in the mature mRNA. An RNA can have multiple 

exon splicing forms, thus allowing a gene to translate different proteins at different times 

and in different environments, thereby increasing the complexity or adaptability of the 

system under physiological conditions.  

rMATS (http://rnaseq-mats.sourceforge.net/index.html) is a variable AS analysis 

software for RNA-Seq data (Shen et al., 2014). It can not only classify AS events, but 

also perform differential analysis of AS events between different samples. For each 

comparison group that performs differential shear analysis, we first count the types and 

quantities of AS events that occur. Then we calculate the expression levels of each type of 

variable shear events, and finally variable for each type. The AS event is analyzed for 

difference. In the quantification process, rMATs took two quantitative methods: Junction 

Count only, reads on target and junction counts. The difference between them is that the 

Junction Count only quantifies the reads that are all aligned to the Alternative spliced 

exon. We performed a difference analysis for each type of AS event. The FDR < 0.05 is 

used as the screening criterion for the differential AS event. 
5.3.5 Novel transcript prediction 

 Put together the genomic localization results of all sequencing reads data, assemble 

them with Cufflinks (Trapnell et al., 2010), and then compare them with known gene 

models using Cuffcompare, which can: (1) discover new genes (relative to the original 

gene annotation files); (2) Discover new exon regions of known genes; (3) Optimize the 

initiation and termination positions of known genes. The new gene and new exon region 

prediction results are annotation files in GTF format.  



5.3.6 Gene expression level analysis  

In RNA-seq analysis, we estimate gene expression levels by counting the number of 

sequencing reads that are located in the genomic region or exon region. The Reads count 

is not only related to the length of the gene and the depth of sequencing, but also can able 

to comprise to the true expression level of the gene. In order to make the different genes 

and different experiments comparable, FPKM is currently the most commonly used 

method for estimating gene expression levels (Trapnell et al., 2010), which expected 

number of Fragments Per Kilobase of transcript sequence per Millions base pairs 

sequenced, and took into account the effect of sequencing depth and gene length 

(Supplementary Table 39-41). 

We adopt the model union and the HTSeq software to analysis the gene expression 

level (Anders et al., 2015). In general, the FPKM value of 0.1 or 1 is used as a threshold 

for judging whether or not a gene is expressed. We compare the gene expression levels 

under different experimental conditions by FPKM profiles of all genes. For replicate 

samples under the same experimental conditions, the final FPKM is the average of all 

replicates. 
5.3.7 RNA-seq quality assessment 

The correlation of gene expression levels between samples is an important indicator 

to test the reliability of the experiment and whether the sample selection is reasonable. 

The closer the correlation coefficient is to 1, the higher the similarity in expression 

patterns between samples. Here, we require that the biological repeat sample R2 be at 

least greater than 0.8 (Supplementary Figure 19). 
5.3.8 Differential expression analysis 

5.3.8.1 Identification of differentially expressed genes 

The input data of gene differential expression analysis is the readcount data obtained 

in the gene expression level analysis. The analysis is mainly divided into three parts: 

1) Normalize the readcount; 

2) Calculating the hypothesis test probability (pvalue) according to the model; 

3) Finally, multiple hypothesis test calibration is performed to obtain the FDR value 

(error discovery rate). We used the DESeq software to conduct the DEGs analyses with 

the padj<0.05 (Anders and Huber, 2010). 

5.3.8.2 Differential gene cluster analysis 



Cluster analysis is used to determine the expression patterns of differential genes 

under different experimental conditions; genes with similar expression patterns may have 

similar functions or participate in the same metabolic process or cellular pathway. 

Therefore, by clustering genes with the same or similar expression patterns, it can be used 

to speculate on the function of an unknown gene or the new function of a known gene. 

The FPKM values of differential genes under different experimental conditions were used 

for hierarchical clustering analysis (Supplementary Figure 20). Different color regions 

represented different clustering group information. The gene expression patterns in the 

same group were similar and may have similarities. Function or participate in the same 

biological process. 

In addition to the differential gene expression FPKM hierarchical cluster analysis, 

we also clustered the relative expression level values of log2 (ratios) of the differential 

genes by three methods: H-cluster, K-means and SOM. Different clustering algorithms 

divide the differential gene into several clusters, and the genes in the same cluster have 

similar expression levels under different processing conditions. 
5.3.9 Differential gene GO enrichment analysis 

Gene Ontology (GO, http://www.geneontology.org/) is an international standard 

classification system for gene function. GO is divided into three parts: molecular function 

(Molecular Function), biological process (Biological Process), and cell composition 

(Cellular Component). The principle of GO enrichment analysis is hypergeometric 

distribution. The hypergeometric distribution relationship between these differential 

genes and some specific branches in the GO classification is calculated according to the 

selected differential genes, and a specific p-value is obtained through hypothesis 

verification.  

The software used in our analysis of GO enrichment analysis is GOseq (Young et al., 

2010), which is based on the Wallenius non-central hyper-geometric distribution. 

Compared to the ordinary hyper-geometric distribution, this distribution is characterized 

by the fact that the probability of extracting an individual from a certain category is 

different from the probability of extracting an individual from outside a certain category, 

and the probability is different. It is estimated by estimating the length of the gene, so that 

the probability of GO term being enriched by differential genes can be calculated more 



accurately. 
5.3.10 Differential gene KEGG enrichment analysis 

Pathway significant enrichment analyses can determine the most important 

biochemical metabolic pathways and signal transduction pathways involved in 

differentially expressed genes. KEGG (Kyoto Encyclopedia of Genes and Genomes) is a 

system for analyzing gene function and genomic information databases. It provides 

excellent integration of metabolic pathways, including metabolism of carbohydrates, 

nucleosides, amino acids, etc. Pathway significant enrichment analysis uses 

hypergeometric tests, and find pathway that was significantly enriched in differentially 

expressed genes compared to the entire genome background. It indicates that the 

differential gene is significantly enriched in the pathway when FDR ≤ 0.05. We used 

KOBAS (2.0) for pathway enrichment analysis (Xie et al., 2011). 

 

6 Comparative genomic analyses 

6.1 Materials and Methods 
6.1.1 Gene family identification and analysis 

Gene family is a group of genes that are derived from the same ancestor and consist 

of two or more copies of a gene through gene duplication and species differences. They 

have distinct similarities in structural and function, encoding similar proteins product. 

The identification of gene families is an important aspect of evolutionary analysis. The 

OrthoMCL (http://orthomcl.org/orthomcl/) process is used for gene family identification 

in this study (Fischer et al., 2011). The specific steps are as follows: 

Step 1: Filter the gene set of each species. Firstly, when a gene has multiple 

alternative splicing transcripts, only the longest transcript in the coding region is retained 

for further analysi. Secondly, excluded genes that encode proteins less than 50 amino 

acids. 

Step 2: Obtain the similarity relationship between protein sequences of all species by 

blastp, and the e-value defaults to 1e-5. 

   Step3: Use OrthoMCL software to compare the results and cluster the results using 

1.5 expansion coefficient. 

    Then, the single-copy gene families and multi-copy gene families can be obtained, 



which are relatively conserved among species. Single-copy gene family refers to a gene 

family with only one gene copy in all species. Multi-copy gene family refers to the large 

number of duplication of the genomes during evolution. Some of these repetitive DNA 

sequences continue to turn out evolutionary differences and become new genes that are 

different from the original sequences. While some of them are remained in the form of 

structure and function that remain essentially the same, and become multi-copy gene 

families.  
6.1.2 Phylogenetic analysis and divergence time estimation 

In the study of biological evolution and systematic classification, a tree-like branch is 

commonly used to summarize the kinship between various organisms. The graph of this 

tree branch becomes a phylogenetic tree, and one of the main content of phylogenetic 

analysis is the construction of a phylogenetic tree. When constructing the phylogenetic 

tree, we performed multiple sequence alignments on all single-copy genes, and then 

combined all the alignment results to construct a phylogenetic tree called super alignment 

matrix. Here, we performed the construction of 13 species phylogenetic trees (ML TREE) 

by the maximum likelihood method using RAxML software 

(http://sco.h-its.org/exelixis/web/software/raxml/index.html) (Stamatakis, 2014). 

    Finally, we identified 519 single-copy gene families and used to estimate divergence 

time using mcmctree (http://abacus.gene.ucl.ac.uk/software/paml.html) in the PAML 

software package (Yang, 1997; Yang, 2007). The time correction points are as follows, C. 

sativum and M. truncatula (107-125Mya), B. rapa and P. trichocarpa (107.0-109.0Mya), 

B. rapa and M. truncatula (107-109Mya), O. sativa and N. nucifera (140- 200Mya), B. 

rapa and A. thaliana (20.4-30.9Mya). The time correction points are all taken from the 

TimeTree website (http://www.timetree.org/) (Kumar et al., 2017). The parameters of 

mcmctree are set as follows, burn-in=5,000,000, sample-number=1,000,000, 

sample-frequency=50.  
6.1.3 Gene family expansion and contraction analysis 

Expansion and contraction of a gene family means that a gene family exhibits 

significant differences in the number of genes among one or several species (more genes 

represent expansion, and less genes represent contraction). The gene family expansion 

and contraction analysis based on mathematical statistical tests. Based on the cluster 



analysis results of the gene family, and filtering the gene family with abnormal gene 

numbers in individual species. The gene family expansion and contraction analysis were 

performed using CAFE software (http://sourceforge.net/projects/cafehahnlab/)(De Bie et 

al., 2006). 
6.1.4 Positive selection analysis 

The probability of positively selected is detected by calculating the Ka/Ks using the 

maximum likelihood ratio. Ka/Ks refers to the ratio of non-synonymous mutation rate to 

synonymous mutation rate. Ka/Ks>1, it is considered to have positive selection effect; 

Ka/Ks=1, it is considered to have neutral selection; Ka/Ks <1, it is considered that there 

is a purification selection effect. Multi-sequence alignment of protein sequences of 

single-copy gene families of species in the selection analysis was performed by 

MUSCLE software. The protein sequence alignment results were filtered by Gblocks 

software (http://molevol.cmima.csic.es/castresana/Gblocks.html) to remove the 

low-quality alignment region (Talavera and Castresana, 2007). Then, the multi-sequence 

alignment result of the corresponding CDS is generated by using the filtered protein 

sequence alignment result as a template. For each gene family, we detect whether the 

gene family was positively selected in the foreground branch by using a branch-site 

model in the codeml tool in PAML. The likelihood ratio test of two hypotheses is being 

chosen to determine if there is a positive selection rather than simply looking for a gene 

with ka/ks >1. 
6.1.5 Inference of gene collinearity 

Genomic sequences and annotations of referring plants, including grape, coffee, 

lettuce, and carrot. 

Collinear genes were inferred using ColinearScan (Wang et al., 2006), a statistically 

well-supported algorithm and software. Blastp search was performed to find putative 

homologous genes within a genome or between genomes. A loose criterion was used to 

perform the search, with E-value set to be >= 1e-5. To our experience, a loose threshold 

here will accommodate the much diverged collinear genes and their fast and unbalanced 

divergence, but will not jeopardy the inference of genomic homology, in that homologs 

produced by paleo-polyploidy tens of million years ago could be much diverged. When 

running ColinearScan, Maximal gap length between genes in collinearity along a 



chromosome sequence was set to be 50 genes apart, which was also used in many 

previous publications (Wang et al., 2017a; Wang et al., 2017b; Wang et al., 2016a; Wang 

et al., 2016b; Wang et al., 2005; Wang et al., 2015). For large gene families leads to 

difficulty to infer gene colinearity, familiar with > 30 genes were removed from the 

analysis before running ColinearScan. 

To see directly the homology within and between genomes, homologous gene 

dotplots were produced using MCSCANX toolkits (Wang et al., 2012). Dotplots were 

used to aid to find homologous blocks produced by different polyploidization events 

(Wang et al., 2017a). Synoymous nucleotide substitution rates (Ks) were estimated 

between homologous genes, and with the Ks median of a collinear block was shown in 

the dotplots to help to group blocks produced by different events.  
6.1.6 Construction of the event-related collinear gene table 

To construct the table with the grape genome as a reference, all grape genes were 

listed in the first column. Each grape gene may have two extra collinear genes in its 

genome due to hexaploidy, and we assigned two other columns in the table to list this 

information. For a grape gene, when there was a corresponding collinear gene in an 

expected location, a gene ID was filled in a cell of the corresponding column in the table. 

When it was missing, often due to gene loss or translocation in the genome, we filled in 

the cell with a dot. For the coffee genome, without extra duplications, we assigned one 

column. While for the carrot or coriander genome, each affected by the two 

paleo-terapoidization events, we assigned four columns. Therefore, the table had 39 

columns, reflecting layers and layers of tripled and then fourfold homology due to 

recursive polyploidies across the genomes. The coffee genome as the reference was 

constructed similarly.  
6.1.7 Ks calculation, distribution fitting, and correction 

Synonymous nucleotide substitutions on synonymous sites (Ks) were estimated by 

using the Nei-Gojobori approach (Nei and Gojobori 1986) implemented by using the 

Bioperl Statistical module.  

Kernel smoothing density function ksdensity (width is generally set to 0.05) in 

Matlab was used to estimate the probability density of each Ks list to obtain the density 

distribution curve. Then, Gaussian multi-peak fitting of the curve was inferred by using 



the gaussian approximation function Gaussian in the fitting toolbox cftool. We set 

squared-R , a parameter to evaluate the fitting goodness, to be at least 95%, used the 

smallest number of normal distributions to represent the complex Ks distribution, and the 

principle one was used to represent the corresponding evolutionary event.  

To correct the evolutionary rates of ECH-produced duplicated genes, the Maximum 

likelihood Estimate µ  from inferred Ks means of ECH-produced duplicated genes were 

aligned to have the same value of that of grape, which has been evolved the slowest. 

Supposing a grape duplicated gene pair to have Ks value is a random variable 

( )2，!G G GX µ σ ，and for a duplicated gene pair in another genome the Ks to be 

( )2，!i i iX µ σ , we got the relative difference: 

( )= -i G Gr µ µ / µ . 

To get the corrected ( )2，- - -!i correction i corrrction i correctionX µ σ ，we defined the 

correction coefficient as: 
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( )2 2，- !i correction i i i iX λ µ λ σ  

To calculate Ks of homologous gene pairs between two plants, i, j，suppose the Ks 

distribution is ( )2，!ij ij ijX µ σ , we adopted the algebraic mean of the correction 

coefficients from two plants, 

( ) 2= +ij i jλ λ λ / ， 

then, 

( )2 2，- !ij correction ij ij ij ijX λ µ λ σ . 



Specifically, when one the plant is grape, for the other plant, i, we have 

( )2 2，- !iG correction i iG i iGX λ µ λ σ . 

Based on the fact that carrot and coriander shared two extra polyploidizations after 

the split with lettuce, and the different evolutionary rates of these two polyploidizations, 

we need to re-correct their evolutionary rates to keep the same pace. Here, accoding to 

the result that coriander with the slower rate during both the two extra polyploidizations, 

we re-corrected the evolutionary rates suffered in carrot with coriander as the reference. 

The specific way to re-correct the evolutionary rates related to the extra events just fitted 

the above re-corrections of the ECH events.  
6.1.8 Evolutionary tree construction 

Trees of homologous genes in three genomes were constructed by implementing the 

maximal likelihood approach in PHYML (Guindon et al., 2005) and the 

neighboring-joining approach in PHYLIP using default parameter settings (Retief, 2000; 

Shimada and Nishida, 2017). 

6.2 Results 
6.2.1 Gene collinearity within and among genomes 

Homologous collinearity of existing genomes is an important clue to reveal the evolution 

of complex genomes. Using ColinearScan (Wang et al., 2006), we inferred collinear genes 

within and between coriander and other reference genomes, which provides a function for 

evaluating the statistical significance of blocks of colinear genes (Supplementary Table 

18-19, Supplementary Figure 6). For the blocks with four or more colinear genes, we 

found the most duplicated genes in coriander (7,214 pairs), and the fewest in grape (1,895 

pairs) (Supplementary Table 18). The blocks reside in coriander is similar to that in the 

carrot genome, and there are more collinearity regions in the coriander than in other 

genomes. For the collinear regions contain more than 10 gene pairs, coriander (3,829 

pairs reside in 186 blocks) has larger number than grape and coffee have 1,232 pairs and 

1,301 pairs reside in 54, and 45 blocks, respectively. This suggests that coriander may 

have experienced more polyploidy events.  

    In addition, the results also indicated that the collinearity between genomes is much 

better than within genomes (Supplementary Table 18-19). For example, there were only 

84 colinear gene pairs reside in longest duplicated block in coriander. However, 210, 886, 



101, 121 colinear gene pairs reside in longest duplicated block between coriander and 

coffee, carrot, lettuce, and grape, respectively (Supplementary Table 18). Therefore, 

based on the above comparisons, we can get a clearer understanding of the polyploid 

scale of coriander by comparing the homologous structure between the coriander and the 

reference genome. 
6.2.2 Trajectory of two paleo-tetraploidization events 

By constructing the homologous dotplot between genomes (Supplementary Figure 

7-10), and comparing the homologous chromosome regions of coriander, grape and 

coffee, we found that after the differentiation of coriander and coffee, two consecutive 

whole genome tetraploid events have occurred. 
6.2.3 Distinguishing orthologous and out-paralogous regions 

Through genome structure analysis, we distinguished the orthologous and 

out-paralogous, and the correspondence of orthology chromosomes have displayed 

(Supplementary Table 20-22,25-27).  
6.2.4 Trees of collinear genes support ancient paleo-tetraploidization 

We constructed 524 and 683 groups of homologous gene evolutionary trees with one 

grape gene and one coffee gene as outgroups, each containing at least two carrot genes 

and at least two coriander genes. In the homologous gene trees with grape and coffee as 

the outgroup, 78.1% (409/524) and 76.9% (525/683) respectively correspond to the 

expected topology (Supplementary Figure 18). 
6.2.5 Multiple alignment  

With the grape genome as a reference, we produced a table to store inter- and 

intra-genomic homology information. First, we filled in all grape gene IDs in the first 

column of the table, then added gene IDs from coffee and other genome column by 

column, species by species according to the colinearity inferred by multiple alignments. 

As noted above, in the absence of gene loss the grape genes would have one colinear 

orthologous genes in coffee, 3 orthologous genes in lettuce, and 4 in coriander and carrot. 

When a legume species contained a gene showing colinearity with a grape gene, a gene 

ID was filled into an appropriate cell in the table. When a legume species did not have an 

expected colinear gene, often due to gene loss or translocation or insufficient assembly, a 

dot (signifying missing) was filled into an appropriate cell. For grape, coffee, lettuce, 

coriander, and carrot there have 13 (1+1+3+4x2) columns in the table. Moreover, due to 



the ECH, each chromosomal segment would repeat three times in each genome. Based on 

homology inferred in grape, we therefore extended the table to 39 columns. Finally, we 

constructed a table of colinear genes reflecting three polyploidizations and all salient 

speciations. In partial summary, the table summarized results of multiple-genome and 

event-related alignment, reflecting layers of tripled and/or doubled homology due to 

recursive polyploidizations (Figure 4).  

The genomic alignment table for four genomes with grape as a reference is not 

complete – in particular, it cannot include genes retained or newly generated in coffee. 

That is, genes specific to coffee and absent from the grape genome are not represented. 

Therefore, the grape-reference homology table was supplemented by a genomic 

homology table with coffee as reference (Supplementary Figure 12).  
6.2.6 Local alignment 

Using as reference the grape chromosomes 8, 6 and 13, which were produced by the 

ECH, we displayed the alignment of a region from 12.3 to 13.5 Mb on grape 

chromosome 8, 4.1 to 5.5 Mb on chromosome 6, 1.7 to 3.1 Mb on chromosome 13, along 

with its corresponding regions from all other genomes. Chromosome numbers are shown 

after the names of plants, and locations on chromosomes also are shown. The gene is 

shown by a rectangle and its position corresponds to the position of the gene that is 

collinear on chromosomes 8, 6 and 13 of the grape (Figure 4a,b). 

In addition, using as reference the coffee chromosomes 6, 8 and 4, which were 

produced by the ECH, we displayed the alignment of a region from 8.2 to 8.8 Mb on 

coffee chromosome 6, 24.1 to 27.2 Mb on coffee chromosome 8, 1.8 to 2.2 Mb on coffee 

chromosome 4, along with its corresponding regions from all other genomes. 

Chromosome numbers are shown after the names of plants, and locations on 

chromosomes also are shown. The gene is shown by a rectangle and its position 

corresponds to the position of the gene that is collinear on chromosomes 6, 8 and 4 of the 

coffee (Supplementary Figure 13). 
6.2.7 Genomic fractionation 

We analyses the Coriandrum sativum gene loss rates and gene translocation compare 

with the grape, coffee, and carrot. Using the grape as reference genome, Coriandrum 

sativum gene loss rates from 0.59 (grape chromosomes 8) to 0.77 (grape chromosomes 16) 



(Supplementary Table 31, Supplementary Figure 14a). Using the coffee as reference 

genome, Coriandrum sativum gene loss rates from 0.51 (coffee chromosomes 6) to 0.66 

(coffee chromosomes 9) (Supplementary Table 32, Supplementary Figure 14b). Using the 

carrot as reference genome, Coriandrum sativum gene loss rates from 0.46(carrot 

chromosomes 6) to 0.64 (carrot chromosomes 9) (Supplementary Table 33, 

Supplementary Figure 14c). 

Furthermore, the observed distribution of gene loss and translocation numbers were 

fitted by using different density curves of geometry distribution (Supplementary Figure 

14). The F-test was used, and the P-value were 0.893, 0.903, and 0.915 for C. sativum 

compared with coffee, carrot, and grape, respectively (Supplementary Table 28). The 

retation of duplicated genes reside in C. sativum subgenome was detected using the the 

grape, coffee, and carrot as references, respectively (Supplementary Figure 15-17).   
6.2.8 Evolutionary rate divergence and dating 

We characterized the synonymous substitution divergence (Ks) between each 

colinear gene pair, which showed a clear bimodal structure with two distinct sets, one 

with Ks distribution peaking at 0.40 (±0.31) and another peaking at 0.75(±0.53) (Figure 

3c), indicating at least two large-scale genomic duplication events (Supplementary Figure 

11a,b; Supplementary Table 23). We also inferred colinear genes and characterized Ks 

distribution in other plant genomes. The peaks with larger Ks values in all grape, coffee, 

lettuce, and carrot genomes correspond to the ECH, as repeatedly reported previously 

(Jaillon et al., 2007; Paterson et al., 2012; Wang et al., 2016).  

To date the hexaploidization event in the coriander lineage, we performed 

evolutionary rate correction to the evolutionary rates of coffee, lettuce and carrot 

duplicates (Supplementary Figure 11c,d; Supplementary Table 24). Here, different from 

previous practice ( Wang et al., 2015a, 2017), we performed a two-step rate correction. 

Based on the fact that carrot and coriander shared two extra polyploidizations after the 

split with lettuce, and the different evolutionary rates of these two polyploidizations, so 

we conducted two rounds correction of their evolutionary rates to keep the same pace. In 

the first step, we managed to correct evolutionary rate by aligning the Ks distributions of 

coriander, coffee, lettuce and carrot ECH duplicates to that of grape ECH duplicates, 

which have the smallest Ks values. Then, accoding to the result that coriander with the 



slower rate during both the two extra polyploidizations, we re-corrected the evolutionary 

rates suffered in carrot with coriander as the reference. The specific way to re-correct the 

evolutionary rates related to the extra events just fitted the above re-corrections of the 

ECH events. 

Eventually, we found that the coriander paralogs had a corrected Ks distribution 

peaking at 0.42(±0.23) and 0.50(±0.28) for alpha and beta events, respectively. Assuming 

that the ECH occurred 115–130 Mya with Ks distribution peaking at 1.053 (Vekemans et 

al., 2002; Jiao et al., 2012), these two events have occurred 45-52, 54-61 Mya. Notably, 

the lettuce hexaploidy-produced paralogs had a corrected Ks distribution peaking at 

0.66(±0.20) (73-82Mya), showing that the Asteraceae-common hexaploidy (ACH) was 

older than the two paleo-tetraploidization events in coriander. In addition, the 

coriander-carrot split was inferred to have occurred 24–28 mya, and they split 98-111 

mya from lettuce (Supplementary Fiugre 11c,d).  
6.2.9 Positive selection analysis 
    Positive selection means that in a single-copy gene family, a certain gene is affected 

by environmental or human factors during the evolution process. In order to adapt to the 

environment changing, a centain gene occur non-synonymous mutation at the amino acid 

level. The Ka/Ks value was calculated to detect the probability of being positively 

selected. C. sativum is the foreground branch of the positive selection analysis, and the 

other 12 representative species (L. sativa, O. sativa, A. thaliana, P. trichocarpa, S. 

indicum, D. carota, S. tuberosum, A. chinensis, C. canephora, B. rapa, M. truncatula, N. 

nucifera) as a background branch. By likelihood ratio detection, 81 positively selected 

candidate genes were identified in C. sativum (p-value<0.01, FDR < 0.05). 
6.2.10 Analysis of functional genes 

Terpenoid biosynthesis pathways analyses 

    The pathways of terpenoid backbone biosynthesis manily contained eight 

subpathways in Arabidopsis according to the KEGG. We firstly searched the genes of 

Arabidopsis from these subpathways, including 23 genes in Sesquiterpenoid and 

triterpenoid biosynthesis, 34 genes in Steroid biosynthesis, 40 genes in N-Glycan 

biosynthesis, 6 genes in Zeatin biosynthesis, 5 genes in Monoterpenoid biosynthesis, 9 

genes in Diterpenoid biosynthesis, 20 genes in Carotenoid biosynthesis, and 22 genes in 



Ubiquinone and other terpenoid-quinone biosynthesis (Supplementary Table 44). Then, 

we inferred homologous genes of these pathways with A. thaliana in other 6 

representative species using Blast program (e-value<1e-5, identify>50%, score >200). 

The results showed that almost every node in the regulatory pathway has one or more 

gene copy among all the 7 species. These eight subpathways contained 801 genes in the 7 

species (Supplementary Table 45). 

Furthermore, we detected the expression level of these candidate genes in C. sativum 

by RNA-Seq with three replications. The samples used for RNA-Seq were not only from 

the different tissues, including root, stem, leaf, and flower, but also contained the 

different development periods, including 30, 60, and 90 days after sowing of C. sativum. 

We detected the expression for 113 genes of eight subpathways in C. sativum 

(Supplementary Table 46-48, Supplementary Figure 21,22). In conclusion, this study 

systematically analyzed the gene copy and gene expression of this regulatory pathway in 

coriander, which laid a foundation for the better study of the gene function of the 

pathway in coriander. 

TPS gene family analyses 

 The genes in the gene family are key enzymes in the regulatory network of synthetic 

terpenoids and play important regulatory roles in the synthesis of various terpenoids, 

including monoene, diene, sesquiterpene and polyene (Aubourg et al., 2002; Chen et al., 

2011; Yahyaa et al., 2015). The scent is a volatile oil substance, and the main 

constituents are these olefinic materials (Martin et al., 2010; Savoi et al., 2016).  

We compared the ratio of the number of TPS genes to the whole genome genes in 

each species. It was found that there was no obvious distribution in the classification, 

but there was obvious species preference. At the same time, we also analyzed the ratio 

of the number of TPS genes in each species to the number of candidate TPS genes, and 

found similar rules to the former (Figure 6). 

For C. sativum, the vast majority of TPS genes were distributed in the TPS-a and 

TPS-b groups, 12 and 11 respectively. The number of genes in the TPS-c, TPS-e, TPS-f 

and TPS-g groups was small, followed by 2, 2, 1 and 1. Previous studies have shown that 

TPS-a genes mainly encode cadinene synthase isozyme, TPS-b genes mainly encode 

Myrcene synthase, TPS-c genes mainly encode Ent-copalyl diphosphate synthase, and 



TPS-e genes mainly encode Ent-kaur-16-ene synthase, the TPS-f gene mainly encodes 

S-linalool synthase, and the TPS-g gene mainly encodes Linalool synthase and Myrcene 

synthase (Aubourg et al., 2002). In this study, we conducted the RNA-Seq analyses in 

different tissues, including root, stem, leaf, and flower (Figure 7b). The results showed 

than there were more genes with the higher expression level than other 3 tissues. 

Furthermore, we also conducted the RNA-Seq analyses in different development periods, 

including 30d, 60d, and 90d after sowing of C. sativum (Figure 7b). We found that 

several TPS genes were still high expressed in these 3 development periods, such as 

Cs02G02594.1, Cs06G00661.1. However, there were also 11 genes with no expression 

among all three periods. Interestingly, we found that the Cs06G00661.1 gene, which had 

high expression level whenever in different tissues and different development periods. It 

was belonged to the Tps-g group, so it may play important roles in encoding Linalool 

synthase and Myrcene synthase. Therefore, this study laid the foundation for further 

study of the gene function in each TPS group of coriander 
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