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Supplementary Figure 1: Additional results on identity selectivity and view invariance.  (a) 
Identity selectivity.  Identity tuning depth is defined as the index with half the maximum 
response when the responses to the 25 identities at the preferred head orientation were 
sorted. The distributions of identity tuning depths in most layers are more or less similar, 
where layer 7 gives a peakier distribution, somewhat compatible with AM, given in Figure 4G 
of the experimental study3.  (b) View invariance.  Head orientation tuning depth is defined as 
the ratio of the difference and sum of the average response to the frontal faces and that to 
the full (or half-profile) faces in the preferred direction.  The distributions of head orientation 
tuning depths for full-profile faces are significantly different from experimental data in 
particular for the conspicuous peaks at -1 and 1, which are probably due to the weak view 
tolerance for full faces in AlexNet-Face (see Results).  However, the distribution for half-
profile faces in layer 7 has a slightly more pronounced bell-like shape as observed in AM, 
given in Figure 4H of the experimental study3. 
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Supplementary Figure 2: Additional results on position- and size-invariant identity 
selectivities.  Position-invariant (or size-invariant) identity selectivity index is defined as the 
correlation coefficient between the population response vectors in the standard position (or 
size) and in the varied position (or size).  For position variation, since the normal image size 
would exceed the boundary, we modified the protocol so that we used half-size images (112 
pixels) and shifted the position upward, downward, leftward, or rightward by 28 or 56 pixels.  
(a) The distributions of position-invariant identity selectivity indices for different layers in 
AlexNet-Face model.  (b) Analogous distributions of size-invariant identity selectivity indices.  
(c) The mean position-invariance indices across different layers in comparison with the 
corresponding experimental data on ML, AL, and AM3.  Note that the comparison is only for 
reference due to the protocol modification.  The spuriously high value in layer 1 is probably 
due to the spatial homogeneity of local textural features.   (d) Analogous results on the 
mean size-invariance indices.  In (c) and (d), the ±2SD region of random cases (mean 
correlation coefficients between random response vectors drawn from Gaussian distribution) 
is highly concentrated to zero (red).       
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Supplementary Figure 3: Additional results on shape-appearance preference from AlexNet-
Face.  The plots show the distribution of the number of significantly tuned units for each 
feature dimension (blue: shape, red appearance) in each layer.  We used the same 
significance criterion as the experimental study1. Compare it with Figure 1H of the 
experimental study1.   
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Supplementary Figure 4: Additional results on decoding of facial features following the 
experimental study1.  Since the size of unit population affects the performance of decoding, 
we randomly selected a subpopulation of 100 units from each layer, which is comparable to 
the size in the experiment.  To decode a feature vector from the population responses for a 
chosen face image, we trained a linear regression model from the population responses to 
the remaining 1999 face images and predicted the feature vector for the chosen image.  
Using the leave-one-out approach, we continued this process for each of the 2000 images to 
decode the feature vectors for all images.  (a) Decoding performance measured by explained 
variances.  We calculated the ratio of explained variance in the actual feature values by the 
decoded feature values for each feature dimension (x-axis; 1–25: shape, 26–50: 
appearance).  Each plot compares the results from a model layer (blue) with those from AM 
(red) and ML (gray), replotted from Figure 2C of the experimental study1.  Note that all 
layers gave overall lower performance for shape dimensions than appearance dimensions, 
like AM and unlike ML.  (b) Quantified comparison between the model layers and the 
experimental data.  We calculated the root mean squared errors (RMSE) between the 
explained variances from each layer and from AM or ML.   The shaded regions show the 
±2SD range of the results from 100 cases with differently sampled 100-unit subpopulations.  
(c) Decoding performance measured by classification accuracy.  We repeatedly sampled a 
subset of the face images and performed the nearest-neighbor algorithm on the decoded 
feature vectors against the actual feature vectors.  Each plot shows the average decoding 
accuracy (red) as a function of the size of the subset of face images (2–40), along with the 
cases of decoding only the appearance dimensions (black) or the shape dimensions (purple), 
as well as the chance level (blue).  The shaded regions indicate the standard deviation 
estimated using bootstrapping.  Compare it with Figure 2D of the experimental study1.  
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Supplementary Figure 5: Additional results on ramp-flat tuning from AlexNet-Face, following 
the experimental method1.  (a) Tuning curves along the STA axes for randomly selected 100 
units  (red), along with their mean (black) and s.d. (gray shade), in each layer.  Each tuning 
curve was estimated by grouping the responses of the unit to the 2000 face images 
according to the distance between those faces and the mean face along the STA axis in the 
feature space.  (b) Tuning curves along the principal orthogonal axes to STA (red), along with 
their mean (black) and s.d. (gray shade), in each layer.  The principal orthogonal axis to a 
STA axis was obtained by first generating 2000 random feature vectors, next orthogonalizing 
these feature vectors with respect to the STA, and then taking the first principal component 
of these feature vectors.  The tuning curve was estimated by similarly grouping the 
responses of the unit in the direction of the obtained orthogonal axis.  After this, the tuning 
curve was fitted with a zero-centered Gaussian function (𝑘 ⋅ 𝑒!(#!/%!) + 𝑙) and normalized 
by the value of the center of fit (𝑘 + 𝑙).  We have not attempted the sparseness and noise 
matching unlike the experimental study1 since the result (c) shows that the strength of 
nonlinearity seems mostly constant in our case.  (c) The strength of nonlinearity of the tuning 
curve along the orthogonal axes to STA plotted against the sparseness: (∑ 𝑅'/𝑁(

')* )+/
(∑ 𝑅'+/𝑁(

')* ), where 𝑅'  are responses.  The strength of nonlinearity was quantified by the 
ratio of the Gaussian fit at the surround (𝑥	 = 	0.67) and the center (𝑥	 = 	0).  
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Supplementary Figure 6: Additional results on view tolerance in the shape-appearance face 
space representation from AlexNet-Face.  Plotted is the decoding accuracy for frontal faces 
(red) and profile faces (black), along with the chance level (blue), in each layer.  Using the 
same method as in Supplementary Figure 4c, we trained each decoder for 46 units (similar to 
the experiment) using both frontal and profile faces1.   
 

 

Supplementary Figure 7: Additional results on facial geometry tuning in the cartoon face 
space from AlexNet-Face.  Plotted is the distribution of the feature values that give the peak 
(a) or the trough (b) in each tuning curve from each model layer (blue), in comparison to the 
corresponding experimental data (gray), replotted from Figure 4 of the experimental study2.   
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Supplementary tables 

layer AlexNet-Face AF-5 AF-6 AF-8 AF-9 AF-h AF-d 

1 conv 11x11x3 conv 11x11x3 conv 11x11x3 conv 11x11x3 conv 11x11x3 conv 
11x11x3 

conv 
11x11x3 

2 norm – pool – 
conv 5x5x96 

norm – pool – 
conv 5x5x96 

norm – pool – 
conv 5x5x96 

norm – pool – 
conv 5x5x96 

norm – pool – 
conv 5x5x96 

norm – pool 
– 
conv 5x5x48 

norm – pool 
– 
conv 
5x5x192 

3 norm – pool – 
conv 3x3x256 

norm – pool – 
conv 3x3x256 

norm – pool – 
conv 3x3x256 

norm – pool – 
conv 3x3x256 

norm – pool – 
conv 3x3x256 

norm – pool 
– 
conv 
3x3x128 

norm – pool 
– 
conv 
3x3x512 

4 conv 3x3x384 pool – 
fc 4096 

conv 3x3x384 conv 3x3x384 conv 3x3x384 conv 
3x3x192 

conv 
3x3x768 

5 conv 3x3x384 drop – 
fc 4096 

pool – 
fc 4096 

conv 3x3x384 conv 3x3x384 conv 
3x3x192 

conv 
3x3x768 

6 pool – 
fc 4096 

 drop – 
fc 4096 

conv 3x3x256 conv 3x3x256 pool – 
fc 2048 

pool – 
fc 8192 

7 drop – 
fc 4096 

  pool – 
fc 4096 

conv 3x3x384 drop – 
fc 2048 

drop – 
fc 8192 

8    drop – 
fc 4096 

pool – 
fc 4096 

  

9     drop – 
fc 4096 

  

classif-
cation 
accuracy 

72.78% 65.96% 68.07% 69.04% 68.04% 64.15% 70.08% 

 
Supplementary Table 1: The architecture parameters of the trained CNN models used in this 
study.  Each layer combines one or more processes of either convolutional filtering (conv), 
full connection (fc), channel-wise normalization (norm), max pooling (pool), or drop out 
(drop).  The parameters for conv denote the width, height, and number of channels.  The 
parameter for fc denote the number of units.  The bottom row gives the classification 
accuracy of each model for held-out test data. 

 

 

 

 

 

 

 

 



 

 VGG-Face AlexNet-Face 
No. Layer RF Size RF Size Layer 

 relu1_1 3   
 relu1_2 5   

1 relu2_1 10 11 relu1 
 relu2_2 14   
 relu3_1 24   
 relu3_2 32   
 relu3_3 40   

2 relu4_1 60 51 relu2 
 relu4_2 76   

3 relu4_3 92 99 relu3 
4 relu5_1 132 131 relu4 
5 relu5_2 164 163 relu5 
 relu5_3 196   

6 relu6 224 224 relu6 
7 relu7 224 224 relu7 

 

Supplementary Table 2: The layers of VGG-Face network that were selected for our analysis 
and the corresponding layers of AlexNet-Face network.  Note the similarity between the 
indicated receptive field (RF) sizes of the corresponding layers. 
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