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1 Introduction

In this Supplementary Information, we provide extended discussion and data to support the results

presented in the main text. The content is organized to roughly mirror the organization of the

paper. In Sec. 2, we present experimental evidence that human reaction times – in addition to

depending on higher-order network features – also reflect differences in fine-scale structure at

the level of individual nodes. Just as for the higher-order effects presented in the main text, we

demonstrate that these fine-scale phenomena are accurately predicted by our maximum entropy

model. In Sec. 3, we present the mixed effects models that were used to estimate the cross-cluster

surprisal and modular-lattice effects. In Sec. 5, we demonstrate that the cross-cluster surprisal

and modular-lattice effects cannot simply be explained by recency by directly controlling for the

recency of stimuli. In Sec. 4, we use Hamiltonian walks to experimentally control for recency.

In Sec. 6, we show that the cross-cluster surprisal and modular-lattice effects persist even when

considering all 1500 trials for each subject. In Sec. 7, we show that the probability of an error

on the serial response tasks increases for between- versus within-cluster transitions in the modular

graph, indicating that the free energy framework can be used to predict human behaviors beyond

reaction times. In Sec. 8, we present the mixed effects models that were used to estimate the effects

of violations in the ring graph. In Sec. 9, we show that the effects of network violations cannot be

explained by recency alone. In Sec. 10, we discuss why the forgetting of past stimuli altogether

cannot explain the higher-order network effects that we examine in the main text. In Sec. 11, to

aid in the reconstruction of our gradient descent algorithm for estimating the inverse temperature

β from subjects’ reaction times, we derive an analytic form for the gradient of the RMS prediction
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error of our model with respect to β. In Sec. 12, we discuss the relationship between our model

and the successor representation in reinforcement learning.

2 The effects of node heterogeneity on human expectations

In the main text, we demonstrated that human expectations depend critically on the higher-order

network structure of transitions. In addition to these higher-order phenomena, it has long been

known that human expectations also reflect differences in the fine-scale structure of transition

networks.1, 2 For instance, humans are surprised by rare transitions, represented in a transition

network by edges with low probability weight.3 Here, we provide empirical evidence showing that

people’s expectations also depend on the local topologies of the nodes that bookend a transition,

and that these fine-scale effects are consistently predicted by our maximum entropy model.

In order to clearly study the effects of higher-order network structure, in the main text we

focused on networks with uniform edge weights and node degrees. Here, to study the effects of

node heterogeneity, we instead consider a set of Erdös-Rényi random graphs with the same number

of nodes (N = 15) and edges (30) as in our previous modular and lattice graphs. To ensure that

the random walks are properly defined, we set the transition probability Aij of each edge in the

graph to 1/ki, where ki is the degree of node i. Since the probabilitiesAij decrease as the degree ki

increases, one should suspect that high-degree (or hub) nodes yield decreased anticipations – and

therefore increased reaction times – at the next step of a random sequence. Indeed, using Eq. (6)

from the main text, we find that our model analytically predicts decreased expectations following

a high-degree node (Supplementary Fig. 1a). Furthermore, across 177 human subjects, we find a
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Supplementary Fig. 1: The effects of node degree on reaction times.

a, The average expectation Âij plotted with respect to the degree of the preceding node i

across a range of inverse temperatures β. As expected, expectations decrease as the degree

of the preceding node increases; and for β = 10, we have Âij ≈ Aij = 1/ki. The lines

and shaded regions represent averages and 95% confidence intervals over 1000 randomly-

generated Erdös-Rényi networks. b, People exhibit sharp increases in reaction time following

nodes of higher degree, with Spearman’s correlation rS = 0.23. The data is combined across

177 subjects, each of whom was asked to respond to a sequence of 1500 stimuli drawn from

a random Erdös-Rényi network. Each data point represents the average reaction time for

one node of a graph, and so each subject contributes 15 points. The line and shaded region

represent the best fit and 95% confidence interval, respectively. c, The average expectation

Âij plotted with respect to the degree of the current node j across the same range of inverse

temperatures as in a. d, People exhibit a steady decline in reaction times as the current node

degree increases, with Spearman’s correlation rS = −0.10. Source data are provided as a

Source Data file.
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strong positive correlation between people’s reaction times and the degree of the preceding node

in the sequence (Supplementary Fig. 1b).

Interestingly, while people’s anticipations exhibit a sharp decline if the preceding node has

high-degree, our model predicts that these hub nodes instead yield increased anticipations on the

current step (Supplementary Fig. 1c). Thus, while hub nodes give rise to marked increases in

reaction times on the subsequent step, these high-degree nodes actually yield faster reactions on

the current step2 (Supplementary Fig. 1d). This juxtaposition of effects from one time step to the

next highlights the complex ways in which the network structure of transitions can affect people’s

mental representations. Additionally, the success of our model in predicting these competing phe-

nomena further strengthens our conclusion that mental errors play a crucial role in shaping people’s

internal expectations.

3 Measuring higher-order network effects

In order to extract the effects of higher-order network structure on subjects’ reaction times, we

use linear mixed effects models, which have become prominent in human research where many

measurements are made for each subject.4, 5 To fit our mixed effects models and to estimate the

statistical significance of each effect we use the fitlme function in MATLAB (R2018a). In what

follows, when referring to our mixed effects models, we adopt the standard R notation.6
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3.1 Cross-cluster surprisal effect

We first measure the cross-cluster surprisal effect (Fig. 2a) using a mixed effects model with the

formula ‘RT ∼ log(Trial) ∗ Stage + Target + Recency + Trans Type + (1 + log(Trial) ∗ Stage +

Recency + Trans Type | ID)’, where RT is the reaction time, Trial is the trial number between

501 and 1500, Stage is the stage of the experiment (either one or two), Target is the target button

combination, Recency is the number of trials since last observing a node,7 Trans Type is the type of

transition (either within-cluster or between-cluster), and ID is each subject’s unique ID. We remark

that our inclusion of Recency in the model is intended to distinguish the graph effects that we are

interested in studying from the possible confound of recency, an effect that we directly control for

in Sec. 5. The mixed effects model is summarized in Supplementary Table 1, reporting a 35 ms

increase in reaction times for between-cluster transitions relative to within-cluster transitions (Fig.

2a). This result is measured from the reaction time data for all 173 subjects that observed random

walks in the modular graph.

3.2 Modular-lattice effect

We next measure the modular-lattice effect (Fig. 2b) using a mixed effects model of the form

‘RT ∼ log(Trial) ∗ Stage + Target + Recency + Graph + (1 + log(Trial) ∗ Stage + Recency | ID)’,

where Graph represents the type of transition network, either modular or lattice. Note that we

only include Graph as a fixed effect because the corresponding mixed effect is not statistically

significant. The mixed effects model is summarized in Supplementary Table 2, reporting a 23 ms

increase in reaction times in the lattice graph relative to the modular graph (Fig. 2b). This result is
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Effect Estimate (ms) t-value Pr(>|t|) Significance

(Intercept) 1418.9± 73.1 19.42 < 0.001 ∗ ∗ ∗

log(Trial) −92.1± 9.2 −9.96 < 0.001 ∗ ∗ ∗

Stage −551.5± 85.0 −6.48 < 0.001 ∗ ∗ ∗

Recency 1.4± 0.1 23.57 < 0.001 ∗ ∗ ∗

Trans Type 34.9± 6.0 5.77 < 0.001 ∗ ∗ ∗

log(Trial):Stage 67.0± 11.4 5.89 < 0.001 ∗ ∗ ∗

Supplementary Table 1: Mixed effects model measuring the cross-cluster surprisal ef-

fect. A mixed effects model fit to the reaction time data for the modular graph with the goal

of measuring the cross-cluster surprisal effect. We find a significant 35 ms increase in reac-

tion times (173 subjects) for between-cluster transitions versus within-cluster transitions (grey).

The significance column represents p-values less than 0.001 (∗ ∗ ∗), less than 0.01 (∗∗), and

less than 0.05 (∗). Source data are provided as a Source Data file.

measured from the reaction time data for the 72 subjects that observed random walks in both the

modular and lattice graphs.

4 Cross-cluster surprisal with Hamiltonian walks

Throughout the main text, we assume that people’s reaction times reflect their internal represen-

tations of the transition structure. To justify this assumption, we must show that the higher-order

network effects cannot simply be explained by recency. Here, we measure the cross-cluster sur-

prisal effect while experimentally controlling for recency using Hamiltonian walks. In contrast

to random walks, Hamiltonian walks visit each node in the transition graph exactly once, thereby

9



Effect Estimate (ms) t-value Pr(>|t|) Significance

(Intercept) 1436.5± 48.4 29.67 < 0.001 ∗ ∗ ∗

log(Trial) −97.2± 6.1 −15.89 < 0.001 ∗ ∗ ∗

Stage −555.2± 59.3 −9.36 < 0.001 ∗ ∗ ∗

Recency 1.7± 0.1 29.94 < 0.001 ∗ ∗ ∗

Graph 22.8± 5.8 3.95 < 0.001 ∗ ∗ ∗

log(Trial):Stage 71.4± 8.4 8.48 < 0.001 ∗ ∗ ∗

Supplementary Table 2: Mixed effects model measuring the modular-lattice effect. A

mixed effects model fit to the reaction time data for the modular and lattice graphs with the goal

of measuring the modular-lattice effect. We find a significant 23 ms increase in reaction times

overall (72 subjects) in the lattice graph relative to the modular graph (grey). The significance

column represents p-values less than 0.001 (∗ ∗ ∗), less than 0.01 (∗∗), and less than 0.05 (∗).
Source data are provided as a Source Data file.

guaranteeing that each node is visited once every 15 trials. We run a new experiment in which each

subject (out of 120 subjects) is presented with a sequence of 1500 stimuli drawn from the modular

graph: The first 700 nodes reflect a standard random walk, while the remaining 800 trials consist

of 8 repeated segments of 85 stimuli specified by a random walk followed by 15 stimuli speci-

fied by a Hamiltonian walk. The initial 700 random walk trials are meant to constitute a learning

phase in which the subject builds an internal representation of the modular graph. Since, in the

modular graph, Hamiltonian walks do not obey the same transition probabilities as random walks,

the sequences of 85 random walk trials between each Hamiltonian sequence are meant to help the

subject maintain their learned representation. Within the set of Hamiltonian walks through the
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Effect Estimate (ms) t-value Pr(>|t|) Significance

(Intercept) 1420.8± 162.3 8.75 < 0.001 ∗ ∗ ∗

log(Trial) −101.4± 22.7 −4.48 < 0.001 ∗ ∗ ∗

Recency 0.6± 0.1 5.00 < 0.001 ∗ ∗ ∗

Trans Type 35.6± 13.7 2.59 0.010 ∗∗

Supplementary Table 3: Mixed effects model measuring the cross-cluster surprisal ef-

fect in Hamiltonian walks. A mixed effects model fit to subjects’ reaction times in Hamiltonian

walks on the modular graph with the goal of measuring the cross-cluster surprisal effect. We

find a significant 36 ms increase in reaction times (120 subjects) for between-cluster transi-

tions versus within-cluster transitions (grey). The significance column represents p-values less

than 0.001 (∗ ∗ ∗), less than 0.01 (∗∗), and less than 0.05 (∗). Source data are provided as a

Source Data file.

modular graph, the probability of transitioning from one cluster boundary node to the adjacent one

(if not already visited) is 1, whereas the probability of transitioning from the latter boundary node

to each of the adjacent non-boundary nodes is 1/3. To eliminate this difference, we randomly se-

lected one fixed Hamiltonian walk for each subject. This fixed walk was entered at a different node

depending on where the preceding walk terminated, and we randomly switched between forward

and backward traversals for each walk.8

We measure the cross-cluster surprisal within the Hamiltonian trials using a mixed effects

model with the formula ‘RT ∼ log(Trial) + Target + Recency + Trans Type + (1 + log(Trial) +

Recency + Trans Type | ID)’, where each of the variables has been defined previously. The model

is summarized in Supplementary Table 3, reporting a 36 ms increase in reaction times for between-
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cluster transitions relative to within-cluster transitions within Hamiltonian trials (p = 0.010),

matching (within errors) the effect size reported in the original experiment that only included ran-

dom walks (see Supplementary Table 1). This result is measured from the reaction time data for

all 120 subjects that observed random walks with Hamiltonian walks interspersed in the modular

graph. This result indicates that the cross-cluster surprisal effect cannot be explained by recency

alone, and must therefore must be at least partially driven by people’s internal representations of

the transition structure.

4.1 Removing Hamiltonian trials before the first cross-cluster transition

The purpose of the Hamiltonian walk experiment described above is to experimentally control for

the effects of recency on people’s reaction times. However, when thinking carefully about the

transition from a random walk to a Hamiltonian walk, it becomes clear that recency might still

have a noticeable impact. Consider, for example the last few trials of a random walk preceding

a transition to a Hamiltonian walk – the corresponding stimuli are likely to belong to the same

module in the modular graph. When the sequence converts to a Hamiltonian walk, the first few

stimuli are also likely to belong to the same module, thereby inducing a decrease in reaction times

due to recency. Therefore, in order to more thoroughly control for recency effects, we considered

only trials after the first cross-cluster transition within each Hamiltonian walk. We carry out this

restricted analysis using the same form for the mixed effects model as that described above: ‘RT ∼

log(Trial) + Target + Recency + Trans Type + (1 + log(Trial) + Recency + Trans Type | ID)’.

The model, which is summarized in Supplementary Table 4, estimates a significant cross-cluster

surprisal effect of 28 ms (p = 0.043), again matching within errors the effect size found in the
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Effect Estimate (ms) t-value Pr(>|t|) Significance

(Intercept) 1536.6± 178.0 8.63 < 0.001 ∗ ∗ ∗

log(Trial) −116.3± 24.8 −4.68 < 0.001 ∗ ∗ ∗

Recency 0.4± 0.1 3.00 0.003 ∗∗

Trans Type 28.2± 13.9 2.03 0.043 ∗

Supplementary Table 4: Mixed effects model measuring the cross-cluster surprisal ef-

fect in restricted Hamiltonian walks. A mixed effects model fit to subjects’ reaction times

after the first cross-cluster transition within each Hamiltonian walk. We find a significant 28 ms

increase in reaction times (120 subjects) for between-cluster transitions versus within-cluster

transitions (grey). The significance column represents p-values less than 0.001 (∗ ∗ ∗), less

than 0.01 (∗∗), and less than 0.05 (∗). Source data are provided as a Source Data file.

original random walk data.

4.2 Decreasing cross-cluster surprisal with increasing Hamiltonian trials

As discussed above, the first 700 trials of each sequence were drawn from a random walk to allow

subjects to build an internal representation of the random walk transition structure. Since the

transition probabilities reflected in the Hamiltonian walks differ from those in the random walks,

we expect subjects’ representations of the transition structure to shift as they observe increasing

numbers of Hamiltonian trials. Therefore, to further establish the notion that people’s reactions

are primarily driven by their internal representations, here we show that the strength of the cross-

cluster surprisal decreases as subjects observe increasing numbers of Hamiltonian trials. To do so,

we use a mixed effects model with the formula ‘RT ∼ log(Trial)∗Trans Type+Target+Recency+

13



Effect Estimate (ms) t-value Pr(>|t|) Significance

(Intercept) 1394.1± 188.8 7.39 < 0.001 ∗ ∗ ∗

log(Trial) −96.1± 26.4 −3.64 < 0.001 ∗ ∗ ∗

Recency 0.4± 0.1 3.02 0.003 ∗∗

Trans Type 640.3± 271.9 2.35 0.019 ∗

log(Trial):Trans Type −87.2± 38.7 −2.25 0.024 ∗

Supplementary Table 5: Mixed effects model measuring the decrease in cross-cluster

surprisal with increasing Hamiltonian trials. A mixed effects model fit to subjects’ reaction

times in Hamiltonian walks on the modular graph with the goal of measuring the dependence

of the cross-cluster surprisal on increasing trial number. We find a significant decrease in

the strength of the cross-cluster surprisal with increasing trials (grey), indicating that the intro-

duction of Hamiltonian walks weakens people’s internal representations of the random walk

structure (120 subjects). The significance column represents p-values less than 0.001 (∗ ∗ ∗),
less than 0.01 (∗∗), and less than 0.05 (∗). Source data are provided as a Source Data file.

(1 + log(Trial) + Recency + Trans Type | ID)’, where the only difference with the formula above

is that here we include an interaction term between log(Trial) and Trans Type. The results of

the fitted model are summarized in Supplementary Table 5, reporting a significant decrease in the

strength of the cross-cluster surprisal with increasing Hamiltonian trials (p = 0.024).

4.3 Experimental setup and procedures

Subjects performed a self-paced serial reaction time task, as described in the Methods section of the

main text. The only difference between this experiment and the original random walk experiments

is that the 1500 trials were split into 700 trials drawn as a random walk and a subsequent 800 trials

14



divided into 8 segments of 85 random walk trials followed by 15 Hamiltonian walk trials, all drawn

from the modular graph. In total, we recruited 120 subjects to perform this Hamiltonian walk

experiment, and they were paid up to $5 each for an estimated 30 minutes: $3.50 for completing

the task and $1.50 for correctly responding on at least 90% of the trials.

5 Controlling for recency in random walks

In the previous section, we showed that cross-cluster surprisal remains significant during Hamilto-

nian walks, which experimentally control for the recency of stimuli. Building upon this result, in

this section we measure the cross-cluster surprisal and modular-lattice effects in our initial random

walk data while filtering our data based on stimulus recency.

5.1 Cross-cluster surprisal effect while controlling for recency

In order to control for recency, we filter our data to only include trials in which the current stimulus

was last seen a specific number of trials in the past. For example, when studying trials with

a recency of four, we only consider reaction times from our experiments for which the current

stimulus was last seen four trials previously. After filtering the data, we then estimate the cross-

cluster surprisal effect using a mixed effects model of the form ‘RT ∼ log(Trial)∗Stage+Target+

Trans Type+(1+log(Trial)∗Stage+Trans Type | ID)’. Supplementary Fig. 2a shows the estimated

increase in reaction times for within-cluster versus between-cluster transitions after controlling for

recency. Specifically, we consider recency values of two (the minimum) through nine, and we also

consider trials with recency greater than or equal to 10, for which the effects of recency should be

small. We remark that we do not include trials of recency three in our analysis because, due to the
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Supplementary Fig. 2: Cross-cluster surprisal while controlling for recency.

a, Increase in reaction times for between-cluster versus within-cluster transitions in the mod-

ular graph after controlling for the recency of stimuli. We note that, due to the topology of

the modular graph, there do not exist between-cluster transitions with recency three. We find

significant cross-cluster surprisal effects for all recency values besides eight. b, Increase in

reaction times for between- versus within-cluster transitions after controlling for the number

of times that the current stimulus has appeared in the previous 10 trials. We observe signifi-

cant cross-cluster surprisal for all numbers of recent stimulus appearances besides two. Effect

sizes (represented by bar plots), standard deviations (represented by error bars), and p-values

are estimated using mixed effects models. The results are measured for all 173 subjects that

observed random walks in the modular graph. Source data are provided as a Source Data file.

topology of the modular graph, there do not exist between-cluster transitions with recency three.

We find significant effects for all recency values besides eight.
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In addition to controlling for the recency of stimuli, we also study the cross-cluster sur-

prisal while controlling for the number of appearances of the current stimulus in the last 10 trials.

In particular, we filter our data to only include trials for which the current stimulus was seen a

specified number of times in the previous 10 trials, and for each set of filtered data we estimate

the cross-cluster surprisal using a mixed effects model of the same form as above. We observe

a significant increase in reaction times for between- versus within-cluster transitions for all trials

except for those for which the stimulus appeared twice in the last 10 trials (Supplementary Fig.

2b). Together, these results demonstrate that the cross-cluster surprisal effect cannot be explained

by recency alone, and therefore must stem, at least in part, from people’s internal representations

of the transition structure.

5.2 Modular-lattice effect while controlling for recency

We next consider the modular-lattice effect after controlling for recency. Filtering the data from the

modular and lattice graphs to only include trials of a given recency, we estimate the difference in

reaction times between the two graphs using a mixed effects model of the form ‘RT ∼ log(Trial) ∗

Stage + Target + Graph + (1 + log(Trial) ∗Stage | ID)’. Supplementary Fig. 3a shows that we find

a significant increase in reaction times for the lattice graph relative to the modular graph for all

recency values considered besides three, nine, and ≥ 10. Additionally, in Supplementary Fig. 3b,

we control for the number of appearances of the current stimulus in the previous 10 trials. Using

a mixed effects model of the same form as that above, we find a significant modular-lattice effect

in two of the four conditions. Together, these results demonstrate that the difference in reaction

times between the modular and lattice graphs persists after controlling for the recency of stimuli,
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Supplementary Fig. 3: Modular-lattice effect while controlling for recency.

a, Difference in reaction times between the lattice and modular graphs after controlling for the

recency of stimuli. We observe a significant increase in reaction times for the lattice graph

relative to the modular graph for all recency values besides three, nine, and ≥ 10. b, Differ-

ence in reaction times between the lattice and modular graphs after controlling for the number

of times the current stimulus has appeared in the previous 10 trials. We find a significant

modular-lattice effect for one and two stimulus appearances in the last 10 trials. Effect sizes

(represented by bar plots), standard deviations (represented by error bars), and p-values are

estimated using mixed effects models. The results are measured for all 72 subjects that ob-

served random walks in both the modular and lattice graphs. Source data are provided as a

Source Data file.

indicating that people are better able to anticipate transitions in the modular graph than in the lattice

graph.
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6 Measuring network effects including early trials

Throughout the above analysis of the serial response tasks, we purposefully omitted the first 500

trials for each subject, choosing instead to focus on the final 1000 trials. We did this in order

to allow the subjects to build an internal representation of each network structure before probing

their anticipations of transitions. Here, we show that this data processing step is not necessary to

observe higher-order network effects; that is, we show that there exist significant network effects

even if we include the first 500 trials in our analysis.

6.1 Cross-cluster surprisal effect with early trials

We first consider the cross-cluster surprisal effect defined by an increase in reaction times for

transitions between clusters relative to transitions within clusters in the modular graph. Using

a mixed effects model of the same form as that used in the previous analysis in Sec. 3 (i.e.,

‘RT ∼ log(Trial) ∗Stage + Target + Recency + Trans Type + (1 + log(Trial) ∗Stage + Recency +

Trans Type | ID)’), and including all 1500 trials for each subject, we find a significant 35 ms in-

crease in reaction times for between- versus within-cluster transitions (Supplementary Table 6).

We note that this effect is even larger than that observed in our previous analysis (Supplementary

Table 1).

6.2 Modular-lattice effect with early trials

We next consider the modular-lattice effect defined by an increase in reaction times in the lattice

graph relative to the modular graph. Using a mixed effects model of the same form as that used
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Effect Estimate (ms) t-value Pr(>|t|) Significance

(Intercept) 1340.0± 44.4 30.19 < 0.001 ∗ ∗ ∗

log(Trial) −88.7± 5.0 −17.04 < 0.001 ∗ ∗ ∗

Stage −473.1± 47.6 −9.93 < 0.001 ∗ ∗ ∗

Recency 1.5± 0.1 24.65 < 0.001 ∗ ∗ ∗

Trans Type 35.4± 6.0 5.94 < 0.001 ∗ ∗ ∗

log(Trial):Stage 60.4± 5.5 11.06 < 0.001 ∗ ∗ ∗

Supplementary Table 6: Mixed effects model measuring the cross-cluster surprisal ef-

fect including the first 500 trials. A mixed effects model fit to all of the reaction time data,

including the first 500 trials for each subject, for the modular graph with the goal of measuring

the cross-cluster surprisal effect. We find a significant 35 ms increase in reaction times (173

subjects) for between-cluster transitions versus within-cluster transitions. The significance col-

umn represents p-values less than 0.001 (∗ ∗ ∗), less than 0.01 (∗∗), and less than 0.05 (∗).
Source data are provided as a Source Data file.

in the previous analysis in Sec. 3 (i.e., ‘RT ∼ log(Trial) ∗ Stage + Target + Recency + Graph +

(1 + log(Trial) ∗ Stage + Recency | ID)’), and including all 1500 trials for each subject, we find a

significant 16 ms increase in reaction times in the lattice versus the modular graph (Supplementary

Table 7). These results demonstrate that higher-order network effects studied in the main text exist

throughout the entire serial response task.
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Effect Estimate (ms) t-value Pr(>|t|) Significance

(Intercept) 1357.0± 30.3 44.79 < 0.001 ∗ ∗ ∗

log(Trial) −87.8± 3.4 −26.06 < 0.001 ∗ ∗ ∗

Stage −490.7± 25.3 −19.38 < 0.001 ∗ ∗ ∗

Recency 2.0± 0.1 32.35 < 0.001 ∗ ∗ ∗

Graph 16.3± 5.4 3.00 0.003 ∗∗

log(Trial):Stage 62.7± 3.5 17.76 < 0.001 ∗ ∗ ∗

Supplementary Table 7: Mixed effects model measuring the modular-lattice effect in-

cluding the first 500 trials. A mixed effects model fit to all of the reaction time data, including

the first 500 trials for each subject, for the modular and lattice graphs with the goal of measur-

ing the modular-lattice effect. We find a significant 16 ms increase in reaction times overall (72

subjects) in the lattice graph relative to the modular graph. The significance column represents

p-values less than 0.001 (∗ ∗ ∗), less than 0.01 (∗∗), and less than 0.05 (∗). Source data are

provided as a Source Data file.

7 Network effects on error trials

Thus far we have focused on predicting human reaction times as a proxy for people’s anticipations

of transitions. Another way to probe anticipation is by studying the trials on which subjects respond

incorrectly; one might expect that the probability of an erroneous response should increase with

decreasing anticipation. Here, we test this hypothesis for between- versus within-cluster transitions

in the modular graph and for all transitions in the modular graph versus the lattice graph.
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7.1 Cross-cluster surprisal effect on errors

First, we consider the cross-cluster surprisal effect on errors defined by an increase in task errors

for transitions between clusters relative to transitions within clusters in the modular graph. We

employ a mixed effects model with formula ‘Error ∼ log(Trial) + Stage + Target + Recency +

Trans Type+(1+log(Trial) | ID)’, where Error indicates whether the subject provided an incorrect

(‘1’) or correct (‘0’) response. Note that, relative to our measurement of the cross-cluster surprisal

for reaction times in Sec. 3, we have removed the fixed effect interaction between log(Trial) and

Stage as well as the mixed effects for the variables Stage, Recency, and Trans Type because they

are not statistically significant in this setting. We find a significant increase in errors for between-

versus within-cluster transitions (Supplementary Table 8), suggesting yet again that subjects have

weaker anticipation for cross-cluster transitions than for within-cluster transitions.

7.2 Modular-lattice effect on errors

Second, we consider the modular-lattice effect on errors defined by an increase in task errors for

the lattice graph relative to the modular graph. We employ a mixed effects model with formula

‘Error ∼ log(Trial)+Stage+Target+Recency+Graph+(1+log(Trial)+Recency+Graph | ID)’,

where each of the variables has been defined previously. We again note that we have removed the

interaction between log(Trial) and Stage because it was not statistically significant in our prediction

of task errors. Inspecting the mixed effects model described in Supplementary Table 9, we do not

find a significant difference in the number of task errors between the modular and lattice graphs.

One possible explanation for this lack of an effect is that people’s task accuracy is predominantly
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Effect Estimate t-value Pr(>|t|) Significance

(Intercept) 0.005± 0.012 0.39 0.697

log(Trial) 0.004± 0.002 2.14 0.032 ∗

Stage 0.015± 0.007 2.14 0.032 ∗

Recency < 0.001 16.52 < 0.001 ∗ ∗ ∗

Trans Type 0.004± 0.002 2.83 0.005 ∗∗

Supplementary Table 8: Mixed effects model measuring the cross-cluster effect on task

errors. A mixed effects model fit to predict error trials for the modular graph with the goal of

measuring the cross-cluster effect on task errors. We find a significant increase in task errors

(173 subjects) for between-cluster transitions relative to within-cluster transitions (grey). The

significance column represents p-values less than 0.001 (∗ ∗ ∗), less than 0.01 (∗∗), and less

than 0.05 (∗). Source data are provided as a Source Data file.

impacted by very poorly anticipated transitions. Thus, while anticipation in the lattice graph is

lower than that in the modular graph on average, it could be the case that the significant decrease

in anticipation for cross-cluster transitions in the modular graph yields a similar number of task

errors overall.

8 Measuring the effects of network violations

We study the effects of violations of varying topological distance in the ring graph using a mixed

effects model with the formula ‘RT ∼ log(Trial)+Target+Recency+Top Dist+(1+log(Trial)+

Recency + Top Dist | ID)’, where Top Dist represents the topological distance of a transition, ei-

ther one for a standard transition, two for a short violation, or three for a long violation. The results
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Effect Estimate t-value Pr(>|t|) Significance

(Intercept) 0.026± 0.009 3.05 0.002 ∗∗

log(Trial) 0.002± 0.001 1.47 0.142

Stage 0.003± 0.003 0.98 0.325

Recency < 0.001 14.62 < 0.001 ∗ ∗ ∗

Graph −0.004± 0.003 −1.34 0.180

Supplementary Table 9: Mixed effects model measuring the modular-lattice effect on

task errors. A mixed effects model fit to predict error trials for the modular and lattice graphs

with the goal of measuring the modular-lattice effect on task errors. We do not find a significant

change in errors based on the graph (grey; 72 subjects). The significance column represents

p-values less than 0.001 (∗ ∗ ∗), less than 0.01 (∗∗), and less than 0.05 (∗). Source data are

provided as a Source Data file.

of fitting this mixed effects model are summarized in Supplementary Table 10, reporting increases

in reaction times over standard transitions of 38 ms for short violations and 63 ms for long viola-

tions. Second, to measure the difference in reaction times between long and short violations, we

implemented a model of the same form, but restricted Top Dist to only include short violations of

topological distance two and long violations of topological distances three and four. This model

is summarized in Supplementary Table 11, reporting a 28 ms increase in reaction times for long

violations relative to short violations. This result is measured from all 78 subjects that observed

random walks with violations in the ring graph.
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Effect Estimate (ms) t-value Pr(>|t|) Significance

(Intercept) 1352.7± 79.2 17.07 < 0.001 ∗ ∗ ∗

log(Trial) −101.1± 10.2 −9.96 < 0.001 ∗ ∗ ∗

Recency 2.1± 0.1 16.20 < 0.001 ∗ ∗ ∗

Top Dist (short vs. no violation) 37.9± 8.4 4.50 < 0.001 ∗ ∗ ∗

Top Dist (long vs. no violation) 63.3± 7.8 8.07 < 0.001 ∗ ∗ ∗

Supplementary Table 10: Mixed effects model measuring the effects of violations rela-

tive to standard transitions. A mixed effects model fit to the reaction time data for the ring

graph with the goal of measuring the effects of violations relative to standard transitions. We

find a significant increase in reaction times of 38 ms (78 subjects) for short violations and 63

ms for long violations (grey), even after accounting for recency effects. The significance col-

umn represents p-values less than 0.001 (∗ ∗ ∗), less than 0.01 (∗∗), and less than 0.05 (∗).
Source data are provided as a Source Data file.

9 Controlling for recency: Network violations

In the main text, we attribute the observed increase in reaction times for network violations to

subjects’ internal representations of the transition structure. Alternatively, these effects could be

due to the fact that standard transitions are more likely than network violations to yield a stimulus

that has been seen recently. To show that the effects of network violations are not simply driven by

recency, we directly control for the recency of stimuli in our data. Because the violations data is

more sparse than the standard random walk data (we only observe 50 violations per subject, split

between 20 short violations and 30 long violations), and because the network violations often yield

stimuli with large recency values (for example, 69% of violations yield stimuli with recency greater
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Effect Estimate (ms) t-value Pr(>|t|) Significance

(Intercept) 1380.9± 156.1 8.84 < 0.001 ∗ ∗ ∗

log(Trial) −97.1± 21.3 −4.57 < 0.001 ∗ ∗ ∗

Recency 0.7± 0.3 2.67 0.008 ∗∗

Top Dist (long vs. short violation) 28.4± 11.2 2.54 0.011 ∗

Supplementary Table 11: Mixed effects model measuring the effects of long versus

short violations. A mixed effects model fit to the reaction time data for the ring graph with

the goal of measuring the effects of long versus short violations. We find a significant 28 ms

increase in reaction times (78 subjects) for long violations relative to short violations (grey),

even after accounting for recency effects. The significance column represents p-values less

than 0.001 (∗ ∗ ∗), less than 0.01 (∗∗), and less than 0.05 (∗). Source data are provided as a

Source Data file.

than 10), we separate our data based on ranges of recency values that provide an approximately

even distribution of violations (see Supplementary Fig. 4a). After separating the data by recency,

we estimate the effects of short and long violations using a mixed effects model of the form ‘RT ∼

log(Trial) + Target + Top Dist + (1 + log(Trial) | ID)’. We note that, in comparison to the model

used in Sec. 8, we have removed the mixed effect of Top Dist because the filtered datasets are not

large enough to provide a significant estimate. In Supplementary Fig. 4a, we see that, within each

recency range other than recency greater than 40, at least one of either the short or long violations

generates a significant increase in reaction times relative to standard transitions. Additionally, in

Supplementary Fig. 4b, we filter the violations data by the number of appearances of the current

stimulus in the previous 10 trials. Network violations yield significant increases in reaction times
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Supplementary Fig. 4: Comparing standard transitions to network violations while

controlling for recency.

a, Difference in reaction times between standard transitions and short violations (blue) or long

violations (red) in the ring graph after controlling for the recency of stimuli. We observe at least

one significant effect of network violations for all recency ranges less than 40. b, Increase in

reaction times for short (blue) and long (red) network violations after controlling for the number

of times the current stimulus has appeared in the previous 10 trials. For long violations, we find

a significant increase in reaction times across all numbers of recent stimulus appearances.

For short violations, we find a significant increase in reaction times across all numbers of

recent stimulus appearances besides zero. Effect sizes (represented by bar plots), standard

deviations (represented by error bars), and p-values are estimated using mixed effects models.

The results are measured for all 78 subjects that observed random walks with violations in the

ring graph. Source data are provided as a Source Data file.
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across all conditions other than short violations with zero appearances in the last 10 trials. Together,

these results demonstrate that the effects of network violations cannot simply be explained by

recency, therefore suggesting that subjects maintain an internal representation of the transition

structure.

We repeat the above analysis to measure the difference in reaction times between short and

long violations while controlling for recency. We observe a significant increase in reaction times

for long violations relative to short violations in two of the seven recency ranges (Supplementary

Fig. 5a). However, we do not report a significant difference in reaction times after controlling for

the number of appearances of stimuli in the previous 10 trials (Supplementary Fig. 5b). We remark

that, given the noisy nature of reaction times and the small number of measurements per subject,

the large standard deviations in our estimates are not surprising. Nevertheless, these results provide

tentative evidence that recency alone cannot explain the difference in reaction times between long

and short network violations.

10 The forgetting of stimuli cannot explain network effects

In the derivation of our model, the central mathematical object is the memory distribution P (∆t),

which represents the probability that a person recalls the stimulus that occurred at time t − ∆t

instead of the stimulus that they were trying to recall at time t. Generally, this memory distribution

is intended to reflect the erroneous shuffling of past stimuli in a person’s memory. Alternatively,

one could imagine errors in memory that reflect the forgetting of past stimuli altogether, a process

that has recently been shown to impact human reinforcement learning9, 10 and to facilitate flexible
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Supplementary Fig. 5: Comparing short versus long network violations while

controlling for recency.

a, Difference in reaction times between short and long network violations after controlling for

the recency of stimuli. We find significant increases in reaction times for long violations in

the recency ranges 21-30 and 31-40. b, Difference in reaction times between short and long

network violations after controlling for the number of times the current stimulus has appeared

in the previous 10 trials. Effect sizes (represented by bar plots), standard deviations (repre-

sented by error bars), and p-values are estimated using mixed effects models. The results

are measured for all 78 subjects that observed random walks with violations in the ring graph.

Source data are provided as a Source Data file.

and generalizable decision making.11 Here we argue that this second form of cognitive errors – that

is, the simple forgetting of stimuli – cannot explain the higher-order network effects described in

the main text.
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Consider a sequence of stimuli reflecting a random walk of length T on a network defined

by the transition matrix A, where Aij represents the probability of transitioning from stimulus i to

stimulus j. Given a running tally nij(T ) of the number of times each transition has occurred, we

recall that the most accurate prediction for the transition structure is given by the maximum like-

lihood estimate ÂMLE
ij (T ) = nij(T )/

∑
k nik(T ). Now suppose that a human learner forgets each

observed transition at some fixed rate. On average, this process of estimating A after forgetting

some number of transitions uniformly at random is equivalent to estimating A at some prior time

Teff. In other words, forgetting observed transitions at random simply introduces additional white

noise into the transitions estimates ÂMLE
ij (T ). As discussed in the main text, maximum likelihood

estimation provides an unbiased estimate of the transition structure, and therefore cannot explain

the fact that people’s representations depend systematically on higher-order network organization.

Similarly, the addition of white noise to ÂMLE(T ) will also yield an unbiased (although less accu-

rate) estimate of the transition structure. Therefore, while the forgetting of past stimuli plays an

important role in a number of cognitive processes,9–11 this mechanism cannot be used to explain

the higher-order network effects observed in human experiments and predicted by our model.

11 Gradient of RMS error with respect to inverse temperature β

Given a sequence of nodes xt, we recall that our prediction for the reaction time at time t is given

by r̂(t) = r0 + r1a(t), where a(t) = Âxt−1,xt(t − 1) is the predicted anticipation of node xt. The

gradient of the RMS error RMSE =
√

1
T

∑
t(r(t)− r̂(t))2 with respect to the inverse temperature
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β is given by

∂RMSE
∂β

=
−r1

T

1

RMSE

∑
t

(r(t)− r̂(t)) ∂a(t)

∂β
, (S1)

where the derivative of the anticipation is given by

∂Âij(t)

∂β
=

1∑
k ñik(t)

(
∂ñij(t)

∂β
− Âij(t)

∑
`

∂ñi`(t)

∂β

)
. (S2)

Recalling Eq. (8) from the main text, the derivative of the transition counts can be written

∂ñij(t)

∂β
=

t−1∑
t′=1

t′−1∑
∆t=0

∂Pt′(∆t)

∂β
[i = xt′−∆t] [j = xt′+1] , (S3)

where Pt′(∆t) represents the probability of accidentally remembering the node xt′−∆t instead of

the target node xt′ . Taking one more derivative, we have

∂Pt′(∆t)

∂β
= Pt′(∆t)

(
−∆t+

t′−1∑
∆t′=0

Pt′(∆t
′)∆t′

)
. (S4)

Taken together, Eqs. (S1)-(S4) define the derivative of the RMS error with respect to the inverse

temperature β, thus completing the description of our gradient descent algorithm.

12 Connection to the successor representation

In the limit of an infinitely-long sequence of nodes, we showed in the main text that the transition

estimates in our model take the following concise analytic form,

Â = (1− e−β)A(I − e−βA)−1, (S5)

where A is the true transition structure, β is the inverse temperature in our memory distribution,

and I is the identity matrix. Interestingly, this equation takes a similar form to the successor
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representation from reinforcement learning,

M = A(I − γA)−1, (S6)

where γ is the future discount factor, which tunes the desired time-scale over which a person

wishes to make predictions.12, 13 Put simply, starting at some node i, the successor representation

Mij counts the future discounted occupancy of node j. Identifying γ = e−β , we notice that

the successor representation is equivalent to an unnormalized version of our transition estimates.

Moreover, the same mathematical form crops up in complex network theory, where it is known as

the communicability between nodes in a graph.14–16

The relationship between the transition estimates in our model and the successor representa-

tion is fascinating, especially given the marked differences in the concepts that the two models are

based upon. In our model, people attempting to learn the one-step transition structure A instead

arrive at the erroneous estimate Â due to natural errors in perception and recall. By contrast, given

a desired time-scale γ, the successor representation defines the optimal prediction of node occu-

pancies into the future.12, 13 Interestingly, the successor representation has been linked to grid cells

and abstract representations in the hippocampus,16, 17 decision making in reward-based tasks,18, 19

and the temporal difference and temporal context models of learning and memory.12, 13, 20 The suc-

cessor representation assumes that humans are making predictions multiple steps into the future;

however, our results show that a similar mathematical form can instead represent a person who

simply attempts to predict one step into the future, but misses the mark due to natural errors in

cognition. This biologically-plausible hypothesis of erroneous predictions highlights the impor-

tance of thinking carefully about the impact of mental errors on human learning.9–11

32



References

1. Fiser, J. & Aslin, R. N. Statistical learning of higher-order temporal structure from visual

shape sequences. J. Exp. Psychol. 28, 458 (2002).

2. Kahn, A. E., Karuza, E. A., Vettel, J. M. & Bassett, D. S. Network constraints on learnability

of probabilistic motor sequences. Nat. Hum. Behav. 2, 936 (2018).

3. Saffran, J. R., Aslin, R. N. & Newport, E. L. Statistical learning by 8-month-old infants.

Science 274, 1926–1928 (1996).

4. Schall, R. Estimation in generalized linear models with random effects. Biometrika 78, 719–

727 (1991).

5. Baayen, R. H., Davidson, D. J. & Bates, D. M. Mixed-effects modeling with crossed random

effects for subjects and items. J. Mem. Lang. 59, 390–412 (2008).
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