OMTM, Volume 17

Supplemental Information

βT87Q-Globin Gene Therapy Reduces Sickle

Hemoglobin Production, Allowing for Ex Vivo

Anti-sickling Activity in Human Erythroid Cells

Selami Demirci, Bjorg Gudmundsdottir, Quan Li, Juan J. Haro-Mora, Tina Nassehi, Claire Drysdale, Morgan Yapundich, Jackson Gamer, Fayaz Seifuddin, John F. Tisdale, and Naoya Uchida

Figure S1. Sickling of HbA/HbS (AS) or HbS/HbS (SS) human red blood cells, and sHUDEP-2

cells with/without β T87Q-globin expression under deoxygenated conditions.

Figure S2. α -globin RNA transcripts in β T87Qglobin vector transduced sHUDEP-2 cells. The data were normalized using rRNA RNA levels (n=3), *P*<0.05.

Figure S3. Confirmation of RNA-Seq data by qPCR in (**A**) CD34+, and (**B**) sHUDEP-2 cells. Reference genes were selected from genes differentially expressed in either β T87Q-CD34+ or β T87Q-sHUDEP-2 cells (n=3), **P*<0.05, and ***P*<0.05. (**C**) Principal Component Analysis (PCA) for RNA-Seq data.