Supplementary Information for:

Three previously characterized resistances to yellow rust are encoded by a single locus *Wtk1*

Valentyna Klymiuk^{1,2,3}, Andrii Fatiukha^{1,2}, Dina Raats^{1,2}, Valeria Bocharova^{1,2}, Lin Huang^{1,2}, Lihua Feng^{1,2}, Samidha Jaiwar¹, Curtis Pozniak³, Gitta Coaker⁴, Jorge Dubcovsky^{5,6}, Tzion Fahima^{1,2*}

Name of marker	Type of	Primer sequence	Reference
	marker		Telefenee
gwm413	SSR	TGCTTGTCTAGATTGCTTGGG	Röder <i>et al</i>
8,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	SSR	GATCGTCTCGTCCTTGGCA	(1998)
wmc406	SSR	TATGAGGGTCGGATCAATACAA	Somers <i>et al</i> .
	2211	CGAGTTTACTGCAAACAAATGG	(2004)
barc8	SSR	GCGGGAATCATGCATAGGAAAACAGAA	Song et al. (2005)
		GCGGGGGCGAAACATACACATAAAAACA	υ ,
uhw290*	CAPS	ATAGCAGGATCGCAGCAAAA	Current study
		GAGGTATAACAATGTGATCGTTCTG	5
uhw250	EST	CTGCTCACTTTTTGCCTGTG	Klymiuk <i>et al</i> .
		AAAAGTTGTTGCTCTGCTTTT	2018
uhw256	EST	GTTACCCTCCACAGCAAGGT	Klymiuk <i>et al</i> .
		GCGCATTACTTCCACTTCTTG	2018
RAC875_c826_839	KASP	ACGAAGGTTCTGTTTTCACCA	Klymiuk et al.
		ACGAAGGTTCTGTTTTCACCG	2018
		TCTTCTTGCTCAAAGGTAAGAGT	
uhw255	CAPS	GATGCTCTGCACATGTGTTATG	Klymiuk <i>et al</i> .
		GCAGCTCCAGCTTATTCGTC	2018
uhw264	CAPS	GGTCTCTTGCAACATACAGTAACAA	Klymiuk <i>et al</i> .
		GAGTGGTAGTCTAGTAGAGGTTGGTG	2018
uhw267	CAPS	TGGTAATCAAGTTTCACATTGTTCA	Klymiuk <i>et al</i> .
		GGAAGGACACCTTTCGGTATT	2018
uhw297	CAPS	CAGATGACCAACCAAAAGCA	Klymiuk <i>et al</i> .
		GTCATATTGGTGCCCAGTGA	2018
uhw292	dominant	GACTTTCTTCCCTCGGGACT	Klymiuk <i>et al</i> .
		CTCGCACGCCTATAAAAGGA	2018
uhw300	dominant	CCGIGICAGCCACCIACAAT	Klymiuk <i>et al</i> .
		GCACICIACCACCGAACACA	2018
uhw301	dominant	GFAGFGGCTCGFTCGGFGAT	Klymiuk <i>et al</i> .
1.000	G + DG		2018
uhw296	CAPS	CAACCGIGCCICCAAACA	Klymuk <i>et al</i> .
1 202		CCCGIGITGICCGITGAG	2018
uhw302	dominant		Klymuk <i>et al</i> .
1 270	CA DC		2018
uhw270	CAPS		Klymuk <i>et al.</i>
	CADE		2018 Visuminals at al
unw275	CAPS		Klymuk et al.
	CADE		2018 Viruminals at al
unw274	CAPS		Niymuk et al.
uhu250	CADS		Z010 Klumink at al
unw239	CAPS		NIYIIIUK et al.
BS00022002 51	KASP		Klymink et al
D500022902_31			2018
		ATACTCTTCACGGTCGTCTTC	2010
awm273	SSR		Röder <i>et al</i>
5,011275		A GCA GTGA GGA A GGGGA TC	(1998)
			(1770)

 Table S1. A list of SSR, CAPS and KASP markers used in the current study.

* Temperature of elongation 59°C; Enzyme AciI; Fragment sizes: *T. dicoccoides* H52 = 266 bp, 148 bp; *T. durum* cv. Langdon = 414 bp.

Table S2. A list of KASP markers from the *Yr15* region developed based on SNPs from the wheat 15K SNP array.

Name of marker	Primer A	Primer B	Primer Common
RFL_Contig2160_617	cgtgtgaatgtgtactctacca	cgtgtgaatgtgtactctaccg	ggacccagaatgcccagtg
IACX502	cacgcctaacaaaacatatccatt	cacgcctaacaaaacatatccatc	tgggagttcttatttaatctttcgg
Ra_c16879_977	cagagcaaaagccatcaatctta	cagagcaaaagccatcaatcttc	tctgagaaagatgccagaacg
BS00087784_51	gagctgacagatgggggt	gagctgacagatgggggc	ccatgacatcagaaaagttgatgat
Excalibur_c17202_1833	gttagagcccaattttcaagcta	gttagageccaattttcaagetg	aggagcttatattgctatgtacagt
wsnp_Ku_c4911_8795151	gttcatcaactgttgagctgtt	gttcatcaactgttgagctgtc	gctgctgtagtttctgattgtg
wsnp_Ex_c2111_3963161	agcagcatacgattaactcagtt	agcagcatacgattaactcagtc	ctgttggcgcagaagctg
RAC875_c79370_378	tggaactgatggtgtccagt	tggaactgatggtgtccagc	gcggcatcaacttccccg

Table S3. Molecular characterization of the yr15[#], yrG303 and yrH52 EMS mutants

Domain	Base	Effect on	Gene	Mutant No.	Name of mutant
	substitution*	amino acid†			
KinI	G 160 A	G 54 S	yr15	EMS1	Suncea+yr15-L18
KinI	G 161 A	G 54 D	yrH52	EMS14	M52-4
KinI	G 340 A	E 114 K	yr15	EMS2	Suncea+yr15-L89
KinI	G 445 A	A 149 T	yrG303	EMS11	M2298-410-16
KinI	G 445 A	A 149 T	yrH52	EMS15	M52-9
KinI	G 448 A	E 150 K	yr15	EMS3	B9+yr15-L1351
KinI	C 482 T	P 161 L	yr15	EMS4	Avocet+yr15-1
KinI	C 509 T	A 170 V	yrH52	EMS16	M52-14
KinI	C 602 T	T 201 I	yrH52	EMS17	M52-18
KinI	C 632 T	P 211 L	yr15	EMS5	Avocet+yr15-L90
KinI	G 686 A	G 229 E	yrH52	EMS18	M52-2
KinI	G 705 A	M 235 I	yrG303	EMS12	A95-126
KinII	G 2922 A	A 460 T	yr15	EMS6	Avocet+yr15-13
KinII	G 2922 A	A 460 T	yrH52	EMS19	M52-8
KinII	G 3114 A	D 524 N	yr15	EMS7	Excalibur+yr15-6L306
KinII	C 3229 T	T 562 I	yr15	EMS8	Avocet+yr15-L72
KinII	G 3281 A	W 581 *	yrG303	EMS13	M2298-767-16
KinII	C 3315 T	P 591 S	yr15	EMS9	B9+yr15-LF
KinII	G 3469 A	V 614 M	yr15	EMS10	Excalibur+yr15-L137

#Full description of *yr15* mutants is provided in Klymiuk *et al.* (2018).

*The first letter indicates the wild-type nucleotide, the number indicates its position relative to the ATG start codon, and the last letter shows the mutant nucleotide. The complete WTK1 coding regions of the above 19 mutants were sequenced; no additional mutations were detected. †The first letter indicates the wild-type amino acid, the number indicates its position relative to the start methionine, and the last letter shows the mutant amino acid.

#RIL	barc8	IACX502	Ra_c16879_977	uhw290	Excalibur_c17202_1833	wsnp_Ku_c4911_8795151	wsnp_Ex_c2111_3963161	RAC875_c826_839	uhw255	uhw264	RAC875_c79370_378	uhw297	uhw292	uhw300	YrG303 seedling	YrG303 adult	uhw301	uhw296	uhw302	uhw276	uhw273	uhw274	uhw259	BS00022902_51	gwm273
2 6 38 3	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	А
1 1 82 1	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	В	В	B	B	B	B	B	B	A
1 1 84 5	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	A	A
2_2_92_10	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	B	В	В	B	B	B	B	B	A	A
2_6_50_1	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	Α	А	Α
2_3_51_3	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	Α	Α	Α	Α	Α	Α	Α
2_4_25_3	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	Α	Α	Α	Α	Α	Α	Α	Α
1 3 19 4	В	В	В	В	В	В	В	В	В	В	В	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
2 1 12 10	В	В	В	В	В	В	В	В	В	В	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
1 2 66 10	В	В	В	В	В	В	В	В	В	В	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
2 4 23 5	В	В	В	В	В	В	В	В	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	А	Α
2 1 54 2	В	В	В	В	В	Α	Α	Α	Α	Α	Α	Α	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	А	Α
2 3 32 4	В	В	В	В	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	А	Α	Α	Α	Α	Α	Α	Α
1 2 70 1	В	В	В	В	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
3 2 74 4	В	В	В	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
2 1 64 1	В	В	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
2 4 88 4	В	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	В	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
3_2_64_2	В	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	А	А
2_2_60_2	В	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	А	Α	Α	Α	Α	А	Α	Α	Α	Α	Α	Α	Α
1_1_66_4	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	А	Α	В	Α	Α	А	Α	Α	Α	Α	Α	Α	В
2_7_4_3	А	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	А	Α	Α	Α	Α	Α	А	В
3_3_48_3	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	В
2 1 58 1	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	В	Α	Α	Α	Α	Α	Α	Α	Α	В	В
2_1_59_2	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	В	В
1_1_79_1	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	В	В	В
2_5_74_8	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	В	В	В
2_5_80_4	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	В	В	В	В	В	В	В	В	В	В	В	В	В
1_3_58_9	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
2_4_45_3	Α	Α	Α	Α	Α	Α	Α	Α	Α	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
3_2_5_3	Α	Α	Α	Α	Α	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
2_3_30_2	Α	Α	Α	Α	Α	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
3_3_10_2	Α	Α	Α	Α	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
3_2_26_2	Α	Α	Α	Α	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
3_2_86_2	Α	Α	Α	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
3_2_18_3	Α	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
2_2_7_4	Α	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В

Fig. S1. Graphical genotype of selected recombinant lines (RILs) from YrG303 tetraploid mapping population. Allele A – resistant allele from *T. dicoccoides* acc. G303; allele B – susceptible allele from *T. durum* acc. D447. *YrG303* seedling and *YrG303* adult columns correspond to the phenotypes observed at seedling and adult screens with *Pst* (14 and 21 dpi, respectively). RILs marked in red showed different seedling and adult resistance response.

#RIL	barc8	RFL_Contig2160_617	BS00087784_51	uhw267	uhw290	Excalibur_c17202_1833	wsnp_Ku_c4911_8795151	RAC875_c826_839	wsnp_Ex_c2111_3963161	uhw255	uhw264	RAC875_c79370_378	uhw297	uhw292	uhw300	YrH52	uhw301	uhw296	uhw259	BS00022902_51	gwm273
V1_31_1	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	Α
V1_60_6	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	Α
GA19_37_12_1	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	Α	Α
GA_10_61_14_2	В	В	В	В	В	В	В	В	В	В	В	В	Α	Α	Α	Α	А	Α	Α	Α	Α
D11_86_6_4	В	В	В	В	В	В	В	В	В	В	Α	Α	Α	Α	Α	Α	А	Α	Α	А	Α
GA_22_37_10_3	В	В	В	В	В	В	В	В	В	Α	Α	Α	Α	Α	Α	Α	А	Α	Α	Α	Α
D16_5_11_2	В	В	В	В	В	В	В	В	В	Α	Α	Α	Α	Α	Α	Α	А	Α	Α	Α	Α
V4_5_3	В	В	В	В	В	В	В	В	В	Α	Α	Α	Α	Α	Α	Α	А	Α	Α	А	Α
V2_90_4	В	В	В	В	В	В	А	Α	Α	Α	А	Α	Α	А	Α	Α	А	Α	А	А	Α
D130_4_14_4	В	В	В	В	В	В	А	Α	Α	Α	Α	Α	Α	А	Α	А	А	Α	А	А	Α
402_9_20_1_2	В	В	В	В	В	В	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	А	Α	Α	Α	Α
D128_47_7_4	В	В	В	В	В	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
V3_101_2	В	В	В	В	В	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
GA_26_27_6_2	В	В	В	В	В	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	А	Α
d131_46_9_1	В	В	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	А	Α
V4_1_2	В	В	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	А	Α
GA26_73_4_1	В	В	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	А	Α	Α	Α	Α
d133_42_16_1	В	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	А	Α	Α	Α	Α
d127_9_21_1	В	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	А	Α	Α	А	Α
V4_14_2	В	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	А
V1_46_3	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	А	Α	Α	Α	В
d16_76_5_1	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	А	A	Α	В	B
402-18-8-3_2	Α	Α	Α	Α	Α	Α	Α	Α	Α	A	A	В	В	В	В	В	В	В	В	В	B
371_8_11_4_2	Α	Α	Α	Α	Α	Α	В	В	В	В	В	В	В	В	В	В	В	В	В	В	B
D14_54_1_2	Α	Α	Α	Α	Α	Α	В	В	В	В	В	В	В	В	В	В	В	В	В	В	B
GA_18_23_15_2	Α	A	A	A	A	A	В	В	В	В	В	В	В	В	В	В	В	В	В	В	B
V3_70_3	A	A	A	A	A	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	B
D13_39_5_2	Α	Α	Α	Α	Α	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	B
GA_17_40_11_2	Α	Α	Α	Α	Α	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
d12_149_3_1	Α	Α	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
d16_57_13_1	Α	Α	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
d12_74_6_1	Α	Α	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В
GA19_118_5_1	Α	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В

Fig. S2. Graphical genotype of selected RILs from YrH52 mapping population. Allele A – resistant allele from *T. dicoccoides* acc. H52; allele B – susceptible allele from *T. durum* cv. LDN. *YrH52* column corresponds to the phenotypes observed at seedling screen with *Pst* at 14 dpi.

Reference list:

- Klymiuk V, Yaniv E, Huang L, Raats D, Fatiukha A, Shisheng C, Feng L, Frenkel Z, Krugman T, Lidzbarsky G, Chang W, Jääskeläinen MJ, Schudoma C, Paulin L, Laine P, Bariana H, Sela H, Saleem K, Sørensen CK, Hovmøller MS, Distelfeld A, Chalhoub B, Dubcovsky J, Korol AB, Schulman AH, Fahima T (2018) Cloning of the wheat *Yr15* resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nature Communications 9:3735 (doi:10.1038/s41467-018-06138-9).
- 2. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007-2023.
- 3. Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (*Triticum aestivum* L.). TAG 109:1105-1114.
- 4. Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theoretical and applied genetics. Theor Appl Gene 110:550-60.