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Supplementary Note  
 
TS2CG: Triangulated Surfaces to Coarse Grained Models. TS2CG is implemented in C++ 
and includes two separate scripts.  Pointillism and CG Membrane Builder.  The code will 
continue to be available as part of the Martini tool-box on github and will be further 
developed (https://www.github.com/marrink-lab/TS2CG). The planned development includes 
optimization of the user interface and implementation of adaptations required for selecting 
regions and making these compliant with PBC. Interested users are welcome to join us in the 
development. 
 
Pointillism: The script is compiled into an executable binary file with the name PLM that 
reads a DTS simulation trajectory file or a triangulated surface file and performs step 1 and 2. 
The output file contains vertex positions, area, principal curvatures, normal vector and 
principal direction. The script requires a triangulated surfaces file and several parameters as 
arguments in the command line (see user manual, available in the source code folder). A 
triangulated surface file that can be read by this script should have an extension of “.q” or 
“.dat”. The *.q file is formatted as shown below. 
 

 
Line 1: Box information (3 double numbers). 
Line 2: Number of vertices (NV, 1 integer number). 
Line 3 to NV+2: Vertex ID and coordinate (1 integer number and 3 double numbers). 
Line NV+3: Number of triangles (NT, 1 integer number). 
Line NV+4 to NV+NT+3: Triangle ID and ID of its vertices (4 integer number). 
 
The *.dat file additionally contains information about the position of the proteins and is 
described in the user manual. Please note: using *.q file, proteins can be placed at specific 
positions (see user manual). 
 
CG membrane builder: The script is compiled into an executable binary file with the name 
PCG that performs step 3 and 4 from the Pointillism output files and generates a Gromacs 
based coordinate file. If the system contains protein, or if the user wants to add proteins, a 
Gromacs coordinate file (.gro file format) of the protein structure should be provided. By 
default, Martini forcefield lipids will be used. To backmap to another CG forcefield a lipid 
structure library should be provided. This script requires a few parameters that are read by 
arguments from command line and a user-friendly input file (with *.str extension). The input 
file should contain information about desired lipid type at each monolayer, lipid type number 



ratio, area per lipid and Gromacs based coordinate file name of the proteins. For more details 
see the user manual.    
 
Note: TS2CG can also be used to generate large scale complex membranes with different 
shapes for any CG simulations by providing a proper TS structure and a CG model lipid 
library (Supplementary Figure 4). To build an all-atom structure, a two steps backmapping 
scheme can be used, in which we first backmap a DTS output to a CG Martini model and 
then, after equilibration, the CG structure can be backmapped to an all-atom representation.  
 
 
Supplementary Methods 
 
Obtaining the geodesic connecting two neighboring vertices: Consider two vertices (𝜐!!, 𝜐!) 
that are connected by a vector link 𝐥 of a size of 𝑙. Our calculation is performed in a 
coordinate in which 𝐥  is the 𝐱 axis, and the origin is the middle point between (𝜐!!, 𝜐!)( 
Figure 2-B main manuscript). A transformation matrix that takes a point in the global 
coordinate to this coordinate can be obtained using Householder transformation. The 
projection of 𝐥 on each vertex plane (𝑃!!,𝑃!) are denoted as  𝐦!!,𝐦! (Figure 2-B main 
manuscript). A geodesic curve that connects these two vertices is given by a parametric 
representation as 𝒔! 𝑡 = 𝑙/2(𝑡,𝑌 𝑡 ,𝑍(𝑡)). Note: for our purpose, we only need to evaluate 
𝒔! 0 . We inquire 𝒔! 𝑡  to satisfy 3 conditions on each vertex (6 conditions in total).  
 

1) It should cross both vertices  

𝒔! 0 =  
𝑙
2 𝑖, 0,0 ,         𝑖 = −1,1                                (1) 

 
2) 𝐑 𝑡 , must be parallel to 𝐦!!,𝐦! when it crosses 𝜐!!, 𝜐! respectively. 

𝒔!
! 𝑖 = 𝐦!   ,         𝑖 = −1,1                                 (2) 

where 𝐦!!, 𝐦! are given as  

𝐦! =
𝑙
2
𝐦!

𝑚!,!
=
𝑙
2 1,

𝑚!,!

𝑚!,!
,
𝑚!,!

𝑚!,!
,    𝑖 = −1,1                  (3) 

3) 𝒔! curvature at 𝜐! points must be equal to the curvature of the 𝜐! in the direction of 
𝐦! . This condition is not as trivial to fulfill. We will convert this boundary condition 
to a condition on 𝒔!

!! 𝑖  as below. 
 
Curvature of 𝜐! in the direction of 𝐦! can be obtained using Euler curvature formula 

𝐶! = 𝐶!cos! 𝜃! + 𝐶!cos! 𝜃!                        (4) 
where 𝐶!,𝐶! are principal curvatures at 𝜐! and 𝜃! is the angle between 𝒎! and main principal 
direction (𝐞! 𝜐! ) at 𝜐!. 
 
The tangent vector at each point of the curve can be found as 

𝐓 =
𝑑𝐓
𝑑𝑡
𝑑𝐓
𝑑𝑡

=
𝑙
2×

𝒙+ 𝑌! 𝑡 𝒚+ 𝑍! 𝑡 𝒛

1+ 𝑌!! 𝑡 + 𝑍!! 𝑡
                           (5) 

where 𝑌!(𝑡) and 𝑍!(𝑡) are derivate of 𝑌 𝑡  and 𝑍 𝑡  with respect to 𝑡. Curvature of 𝒔! 𝑡 , 𝐶, 
can be found as 



𝐶𝐍 = −
𝑑𝐓
𝑑𝑆                       (6) 

where  

  𝑑𝑆 =
𝑙
2 1+ 𝑌!! 𝑡 + 𝑍!! 𝑡  𝑑𝑡                        (7) 

By performing a few strength forward analytical steps, a relationship between curvature and 
first and second derivatives of  𝒔! 𝑡 can be obtained as  
  

 

𝐶 𝑡 𝐍 𝑡 = −
𝑙
2×

𝑌!! 𝑡 𝒚+ 𝑍!! 𝑡 𝒛
1+ 𝑌!! 𝑡 + 𝑍!! 𝑡

−
𝑌!! 𝑡 𝑌! 𝑡 + 𝑍!! 𝑡 𝑍! 𝑡

1+ 𝑌!! 𝑡 + 𝑍!! 𝑡
!
!
𝐓 𝑡    (8) 

where 𝐶 is the curvature of the curve at 𝑡. 
For 𝑖 = −1,1, 𝑌! 𝑖 = 𝑙𝑚!,!/2 and 𝑍! 𝑖 = 𝑙𝑚!,!/2 (Supplementary Equation 3), and 𝐍(𝑖) is 
known (normal vector to the plane of the vertex). Substituting these in Supplementary 
Equation 8 and solving it with respect to 𝑌!! 𝑖  and 𝑍!! 𝑖 , we find   
 

𝑌!! 𝑖 =
2𝐶! 𝐦!

!

𝑙 𝑁!,!
2𝑚!,!

𝑙 − 𝑁!,!          (9) 

𝑍!! 𝑖 =
2𝐶! 𝐦!

!

𝑙 𝑁!,!
2𝑚!,!

𝑙 − 𝑁!,!        (10) 
 
To satisfy these 6 boundary conditions, (𝑌 𝑡 ,𝑍(𝑡)), must be at least a polynomial of degree 
of 5 

𝑌 𝑡 = 𝑎!𝑡!
!!!

!!!

𝑍 𝑡 = 𝑏!𝑡!
!!!

!!!

                                (11) 

which gives  
	

𝑌 0  = 𝑎! =
𝑌!! 1 + 𝑌!! −1 + 5𝑌! −1 − 5𝑌! 1

16          (12)	
	

𝑍 0 = 𝑏! =
𝑍!! 1 + 𝑍!! −1 + 5𝑍! −1 − 5𝑍! 1

16        (13)	
 
Implementation of the boundary condition 3 is difficult. We have observed that, generating 
an extended TS by only satisfying condition 1 and 2 gives a very close structure to the above 
procedure. In this case  

𝑌 0  = 𝑎! =
𝑌! −1 − 𝑌! 1

4          (14)	
	

𝑍 0 = 𝑏! =
𝑍! −1 − 𝑍! 1

4        (15)	
Therefore, for different applications one can use Supplementary Equation 14 and 15. 



Vesicle Growth in DTS simulation: The DTS simulation was performed on a closed 
triangulated surface containing 1060 vertices. The system energy is described as   
 

𝐸! =
𝜅
2 2𝐻! !𝐴!

!!

!

+
𝐾!
2𝑉!

𝑉 − 𝑉! ! +
𝑘!

8ℎ!𝐴!
Δ𝐴 − Δ𝐴! !         (16)	

and 

Δ𝐴 = 2ℎ 2𝐻!𝐴!

!!

!

          (17) 

where 2ℎ is the membrane thickness and 𝑘! is the area compression modulus.1 In this 
simulation, we have chosen the membrane bending rigidity 𝜅 = 20𝑘!𝑇, 𝐾! = 60𝑘!𝑇,  
𝑘! = 3𝜅 = 60𝑘!𝑇, Δ𝐴! = 0.3𝐴!,  𝑉! = 0.7Υ(𝐴!) and Υ 𝐴!  is volume of a spherical vesicle 
with an area of 𝐴!.  
 
Considering 𝑑 = 4.5nm (see the main text), the above input data is corresponding to 
following situations. Upon absorption, the area of the vesicle increases from 𝐴! = 25446nm! 
to 𝐴! = 32157nm!. The processes happen quickly, so the volume of the vesicle remains 
constant (𝑉! = 𝑉!; See main text). Assuming that the initial vesicle has a spherical shape, we 
find. 

𝑉! =
4𝜋
3

𝐴!
4𝜋

!/!

       (18) 
 
We assume that the absorption increases the mismatch between the upper and inner 
monolayer area from ∆𝐴! = 4297nm! (a spherical vesicle) to ∆𝐴! = 6544nm!.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Tables 
 
System DOPC Gb3  STxB Solvent  

(Anti-freeze 
WF) 

Ion  FF Time Ensemble  

Vesicle  92169 0 0 0 0 Dry Martini 200ns NVT 
Bud 
formation I 

110791 1125 75 0 375 
Na+ 

Dry Martini 200ns NPT 

Bud 
formation II 

54095 1125 75 7990264  
(900000) 

150 
mmol 

Wet Martini 
2.2 

50ns NPT 

Supplementary Table 1: details of the simulated systems. 
 
 
 
 
 

 
Supplementary Table 2: APL for different lipids in different lipid compositions. 
 
 
 
 
 
 
 
 
 
 
 
 

Out Bilayer 
Inner Mono POPC SAPE SAPI CHOL
Mol # 190 69 69 28
APL 0.65 0.65 0.71 0.42
Outer Mono POPC SAPE SAPI CHOL
Mol # 190 138 0 28
APL 0.64 0.64 0 0.4

In Bilayer
Inner Mono POPC POPE SAPI CRDL
Mol # 103 103 34 56
APL 0.67 0.66 0.72 1.1
Outer Mono POPC POPE SAPI CRDL
Mol # 172 138 0 18
APL 0.63 0.66 0 1.08



 
 
 
Supplementary Figures 
 
Figures were generated using VMD2 (1.9.4a12) and power point (16.16.11). The graphs were 
plotted using gnuplot (5.2) and xmgrace (5.1.25). 
 

 
Supplementary Figure 1) (A) Total energy evolution of the deformed vesicle in Figure 3-C 
form the final 200ns. (B) Total energy evolution of the vesicular bud in Figure 4-B form 70ns 
NVT and 200ns NPT simulations. 
 

 
Supplementary Figure 2): The backmmaped structure was divided into 20 subsystems for 
faster and easier energy minimalization.  
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Supplementary Figure 3) Total energy evolution of the mitochondrion model during 2ns 
MD simulation.  
 
 

 
Supplementary Figure 4) (A) a deformed vesicle containing DPPC and POPC lipid mixture. 
(B) A crowded vesicle, with 50 percent of the surface area covered by peripheral membrane 
proteins. 
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