
Supplementary Information

Backmapping triangulated surfaces to coarse-grained membrane
models

Pezeshkian et al,

Supplementary Note

TS2CG: Triangulated Surfaces to Coarse Grained Models. TS2CG is implemented in C++
and includes two separate scripts. Pointillism and CG Membrane Builder. The code will
continue to be available as part of the Martini tool-box on github and will be further
developed (https://www.github.com/marrink-lab/TS2CG). The planned development includes
optimization of the user interface and implementation of adaptations required for selecting
regions and making these compliant with PBC. Interested users are welcome to join us in the
development.

Pointillism: The script is compiled into an executable binary file with the name PLM that
reads a DTS simulation trajectory file or a triangulated surface file and performs step 1 and 2.
The output file contains vertex positions, area, principal curvatures, normal vector and
principal direction. The script requires a triangulated surfaces file and several parameters as
arguments in the command line (see user manual, available in the source code folder). A
triangulated surface file that can be read by this script should have an extension of “.q” or
“.dat”. The *.q file is formatted as shown below.

Line 1: Box information (3 double numbers).
Line 2: Number of vertices (NV, 1 integer number).
Line 3 to NV+2: Vertex ID and coordinate (1 integer number and 3 double numbers).
Line NV+3: Number of triangles (NT, 1 integer number).
Line NV+4 to NV+NT+3: Triangle ID and ID of its vertices (4 integer number).

The *.dat file additionally contains information about the position of the proteins and is
described in the user manual. Please note: using *.q file, proteins can be placed at specific
positions (see user manual).

CG membrane builder: The script is compiled into an executable binary file with the name
PCG that performs step 3 and 4 from the Pointillism output files and generates a Gromacs
based coordinate file. If the system contains protein, or if the user wants to add proteins, a
Gromacs coordinate file (.gro file format) of the protein structure should be provided. By
default, Martini forcefield lipids will be used. To backmap to another CG forcefield a lipid
structure library should be provided. This script requires a few parameters that are read by
arguments from command line and a user-friendly input file (with *.str extension). The input
file should contain information about desired lipid type at each monolayer, lipid type number

ratio, area per lipid and Gromacs based coordinate file name of the proteins. For more details
see the user manual.

Note: TS2CG can also be used to generate large scale complex membranes with different
shapes for any CG simulations by providing a proper TS structure and a CG model lipid
library (Supplementary Figure 4). To build an all-atom structure, a two steps backmapping
scheme can be used, in which we first backmap a DTS output to a CG Martini model and
then, after equilibration, the CG structure can be backmapped to an all-atom representation.

Supplementary Methods

Obtaining the geodesic connecting two neighboring vertices: Consider two vertices (𝜐!!, 𝜐!)
that are connected by a vector link 𝐥 of a size of 𝑙. Our calculation is performed in a
coordinate in which 𝐥 is the 𝐱 axis, and the origin is the middle point between (𝜐!!, 𝜐!)(
Figure 2-B main manuscript). A transformation matrix that takes a point in the global
coordinate to this coordinate can be obtained using Householder transformation. The
projection of 𝐥 on each vertex plane (𝑃!!,𝑃!) are denoted as 𝐦!!,𝐦! (Figure 2-B main
manuscript). A geodesic curve that connects these two vertices is given by a parametric
representation as 𝒔! 𝑡 = 𝑙/2(𝑡,𝑌 𝑡 ,𝑍(𝑡)). Note: for our purpose, we only need to evaluate
𝒔! 0 . We inquire 𝒔! 𝑡 to satisfy 3 conditions on each vertex (6 conditions in total).

1) It should cross both vertices

𝒔! 0 =
𝑙
2 𝑖, 0,0 , 𝑖 = −1,1 (1)

2) 𝐑 𝑡 , must be parallel to 𝐦!!,𝐦! when it crosses 𝜐!!, 𝜐! respectively.

𝒔!
! 𝑖 = 𝐦! , 𝑖 = −1,1 (2)

where 𝐦!!, 𝐦! are given as

𝐦! =
𝑙
2
𝐦!

𝑚!,!
=
𝑙
2 1,

𝑚!,!

𝑚!,!
,
𝑚!,!

𝑚!,!
, 𝑖 = −1,1 (3)

3) 𝒔! curvature at 𝜐! points must be equal to the curvature of the 𝜐! in the direction of
𝐦! . This condition is not as trivial to fulfill. We will convert this boundary condition
to a condition on 𝒔!

!! 𝑖 as below.

Curvature of 𝜐! in the direction of 𝐦! can be obtained using Euler curvature formula

𝐶! = 𝐶!cos! 𝜃! + 𝐶!cos! 𝜃! (4)
where 𝐶!,𝐶! are principal curvatures at 𝜐! and 𝜃! is the angle between 𝒎! and main principal
direction (𝐞! 𝜐!) at 𝜐!.

The tangent vector at each point of the curve can be found as

𝐓 =
𝑑𝐓
𝑑𝑡
𝑑𝐓
𝑑𝑡

=
𝑙
2×

𝒙+ 𝑌! 𝑡 𝒚+ 𝑍! 𝑡 𝒛

1+ 𝑌!! 𝑡 + 𝑍!! 𝑡
 (5)

where 𝑌!(𝑡) and 𝑍!(𝑡) are derivate of 𝑌 𝑡 and 𝑍 𝑡 with respect to 𝑡. Curvature of 𝒔! 𝑡 , 𝐶,
can be found as

𝐶𝐍 = −
𝑑𝐓
𝑑𝑆 (6)

where

 𝑑𝑆 =
𝑙
2 1+ 𝑌!! 𝑡 + 𝑍!! 𝑡 𝑑𝑡 (7)

By performing a few strength forward analytical steps, a relationship between curvature and
first and second derivatives of 𝒔! 𝑡 can be obtained as

𝐶 𝑡 𝐍 𝑡 = −
𝑙
2×

𝑌!! 𝑡 𝒚+ 𝑍!! 𝑡 𝒛
1+ 𝑌!! 𝑡 + 𝑍!! 𝑡

−
𝑌!! 𝑡 𝑌! 𝑡 + 𝑍!! 𝑡 𝑍! 𝑡

1+ 𝑌!! 𝑡 + 𝑍!! 𝑡
!
!
𝐓 𝑡 (8)

where 𝐶 is the curvature of the curve at 𝑡.
For 𝑖 = −1,1, 𝑌! 𝑖 = 𝑙𝑚!,!/2 and 𝑍! 𝑖 = 𝑙𝑚!,!/2 (Supplementary Equation 3), and 𝐍(𝑖) is
known (normal vector to the plane of the vertex). Substituting these in Supplementary
Equation 8 and solving it with respect to 𝑌!! 𝑖 and 𝑍!! 𝑖 , we find

𝑌!! 𝑖 =
2𝐶! 𝐦!

!

𝑙 𝑁!,!
2𝑚!,!

𝑙 − 𝑁!,! (9)

𝑍!! 𝑖 =
2𝐶! 𝐦!

!

𝑙 𝑁!,!
2𝑚!,!

𝑙 − 𝑁!,! (10)

To satisfy these 6 boundary conditions, (𝑌 𝑡 ,𝑍(𝑡)), must be at least a polynomial of degree
of 5

𝑌 𝑡 = 𝑎!𝑡!
!!!

!!!

𝑍 𝑡 = 𝑏!𝑡!
!!!

!!!

 (11)

which gives
	

𝑌 0 = 𝑎! =
𝑌!! 1 + 𝑌!! −1 + 5𝑌! −1 − 5𝑌! 1

16 (12)	
	

𝑍 0 = 𝑏! =
𝑍!! 1 + 𝑍!! −1 + 5𝑍! −1 − 5𝑍! 1

16 (13)	

Implementation of the boundary condition 3 is difficult. We have observed that, generating
an extended TS by only satisfying condition 1 and 2 gives a very close structure to the above
procedure. In this case

𝑌 0 = 𝑎! =
𝑌! −1 − 𝑌! 1

4 (14)	
	

𝑍 0 = 𝑏! =
𝑍! −1 − 𝑍! 1

4 (15)	
Therefore, for different applications one can use Supplementary Equation 14 and 15.

Vesicle Growth in DTS simulation: The DTS simulation was performed on a closed
triangulated surface containing 1060 vertices. The system energy is described as

𝐸! =
𝜅
2 2𝐻! !𝐴!

!!

!

+
𝐾!
2𝑉!

𝑉 − 𝑉! ! +
𝑘!

8ℎ!𝐴!
Δ𝐴 − Δ𝐴! ! (16)	

and

Δ𝐴 = 2ℎ 2𝐻!𝐴!

!!

!

 (17)

where 2ℎ is the membrane thickness and 𝑘! is the area compression modulus.1 In this
simulation, we have chosen the membrane bending rigidity 𝜅 = 20𝑘!𝑇, 𝐾! = 60𝑘!𝑇,
𝑘! = 3𝜅 = 60𝑘!𝑇, Δ𝐴! = 0.3𝐴!, 𝑉! = 0.7Υ(𝐴!) and Υ 𝐴! is volume of a spherical vesicle
with an area of 𝐴!.

Considering 𝑑 = 4.5nm (see the main text), the above input data is corresponding to
following situations. Upon absorption, the area of the vesicle increases from 𝐴! = 25446nm!
to 𝐴! = 32157nm!. The processes happen quickly, so the volume of the vesicle remains
constant (𝑉! = 𝑉!; See main text). Assuming that the initial vesicle has a spherical shape, we
find.

𝑉! =
4𝜋
3

𝐴!
4𝜋

!/!

 (18)

We assume that the absorption increases the mismatch between the upper and inner
monolayer area from ∆𝐴! = 4297nm! (a spherical vesicle) to ∆𝐴! = 6544nm!.

Supplementary Tables

System DOPC Gb3 STxB Solvent

(Anti-freeze
WF)

Ion FF Time Ensemble

Vesicle 92169 0 0 0 0 Dry Martini 200ns NVT
Bud
formation I

110791 1125 75 0 375
Na+

Dry Martini 200ns NPT

Bud
formation II

54095 1125 75 7990264
(900000)

150
mmol

Wet Martini
2.2

50ns NPT

Supplementary Table 1: details of the simulated systems.

Supplementary Table 2: APL for different lipids in different lipid compositions.

Out Bilayer
Inner Mono POPC SAPE SAPI CHOL
Mol # 190 69 69 28
APL 0.65 0.65 0.71 0.42
Outer Mono POPC SAPE SAPI CHOL
Mol # 190 138 0 28
APL 0.64 0.64 0 0.4

In Bilayer
Inner Mono POPC POPE SAPI CRDL
Mol # 103 103 34 56
APL 0.67 0.66 0.72 1.1
Outer Mono POPC POPE SAPI CRDL
Mol # 172 138 0 18
APL 0.63 0.66 0 1.08

Supplementary Figures

Figures were generated using VMD2 (1.9.4a12) and power point (16.16.11). The graphs were
plotted using gnuplot (5.2) and xmgrace (5.1.25).

Supplementary Figure 1) (A) Total energy evolution of the deformed vesicle in Figure 3-C
form the final 200ns. (B) Total energy evolution of the vesicular bud in Figure 4-B form 70ns
NVT and 200ns NPT simulations.

Supplementary Figure 2): The backmmaped structure was divided into 20 subsystems for
faster and easier energy minimalization.

-13.6

-13.55

-13.5

-13.45

-13.4

-13.35

-13.3

-13.25

 0 50 100 150 200 250

En
er

gy
 [G

J/
m

ol
]

Time[ns]

Berendsen

NPT

-8.66
-8.64
-8.62

-8.6
-8.58
-8.56
-8.54
-8.52

-8.5
-8.48
-8.46

 0 50 100 150 200

En
er

gy
 [G

J/
m

ol
]

Time[ns]

NVT

(A) (B)

Parrinello-Rahman

Supplementary Figure 3) Total energy evolution of the mitochondrion model during 2ns
MD simulation.

Supplementary Figure 4) (A) a deformed vesicle containing DPPC and POPC lipid mixture.
(B) A crowded vesicle, with 50 percent of the surface area covered by peripheral membrane
proteins.

Supplementary References

1 Seifert, U., Berndl, K. & Lipowsky, R. Shape transformations of vesicles: Phase diagram for

spontaneous- curvature and bilayer-coupling models. Phys Rev A 44, 1182-1202 (1991).
2 Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J Mol Graph 14, 33-38,

27-38, doi:10.1016/0263-7855(96)00018-5 (1996).

−8.95×108

−8.9×108

−8.85×108

−8.8×108

−8.75×108

−8.7×108

−8.65×108

 0 500 1000 1500 2000

E
n
e
r
g
y

[
k
J
/
m
o
l
]

Time [ps]

(A) (B)

