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Supplementary Note 1:  Full set-up description 
The experiment is performed in a cryogen-free dilution refrigerator. The gate voltages ��. . �� 

are controlled by independent DC sources. In addition, fast pulses are introduced on gates 

3,4,5 using a Tabor 2184 AWG through bias T connections at the cryogenic stage. 

The experiment requires highly sensitive measurement of conductance through the device. 

However, commonly used acoustic frequency lock-in measurements are contaminated due to 

mechanical vibration of the fridge through triboelectric effect in the cables1. In order to avoid 

this issue, we measure the conductance through the nanotube G at a higher (~1.45MHz) 

frequency using the scheme detailed in Supplementary Figure 1. 

  

 

Supplementary Figure 1: Conductance measurement 

method The measurement is performed at �~1.45��� 

defined by the resonance frequency of an LC circuit formed by 

an inductor (����) and the capacitance of a superconducting 

cable (SC) through a custom-built two-stage HEMT amplifier. 

The excitation signal ��� is applied on the source electrode of 

the device, while a separately controlled compensating signal 

�������  is applied on the drain in order to null direct capacitive 

crosstalk. The measurement result is demodulated to near 

baseband and sampled (ADC). 

Supplementary Note 2:  Gate-based charge density imaging 

1. General approach 
The gate-based imaging experiments described in Fig 3c, 3d and 4e in the main text give a 

spatial picture of how the local density along the nanotube changes as we cross transitions 

between the three relevant states in our experiment: |�⟩, |�⟩ and |�⟩. These states have well 

defined spatial charge density distributions: ��(�), ��(�), ��(�), and across the different 

transition lines we measure the difference of the corresponding densities. For example across 

the |�⟩ ↔ |�⟩ transition our experiment images ��(�) − ��(�). Below we explain why this 

is the result obtained from the capacitance measurements to individual gates as is shown in 

the main text. The spatial potential induced along the nanotube by biasing gate �  by ΔV, 

��(�), can be calculated using electrostatic simulations, which as we have shown in past 

experiments2,3 describe quantitatively well the measured potentials. This extra potential will 

lead to an energy shift of the coulomb peak (in the case of the  |�⟩ ↔ |�⟩ and |�⟩ ↔ |�⟩ 

transitions) or to and energy shift of the qubit transition (on the |�⟩ ↔ |�⟩ line) which is 

directly proportional to the local density above the gate δE�
�

= ∫ �� ��(�)��(�), � =

|�⟩, |�⟩, |�⟩. The crossing between states ��,��, will thus shift in energy by δE�
��,�� = δE�

��-

δE�
��. In the experiment we measure the the global voltage shift δV�

��,�� that nulls the energy 

perturbation introduced by changing the voltage on a single gate � by ΔV, where the global 

voltage is applied on a subset of the gates defined by the vector  � = (1,1,1,1,1,1,1) for the 

measurements across the Coulomb transitions and � = (0,0,1,1,1,0,0) for measurements 

across the qubit transition, which are done only with the three central gates. We thus obtain, 
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δV�
��,�� � �� �δE�

�� − δE�
���

�

= ΔV �δE�
�� − δE�

��� (1) 

I.e.,  

���
(��) − ���

(��) =
δV�

��,��

ΔV
� (2) 

Where N is a normalization constant independent of �. 

2. Imaging charging lines 
The shifts along the global voltage axis of the bright charging line (���

��) are found as the shift 

of the center of the Coulomb blockade peak (|�⟩ ↔ |�⟩) for each perturbed gate, i.e. global 

voltage shifts required to return the charging condition (Supplementary Fig. 2a,b). In order to 

find the global voltage shifts for the dark transition line, we derive its location by finding both 

the shift of the Coulomb blockade peak (���
��), and the shift of the boundary between N, D 

states along the magnetic field axis (Δ��). The latter is found by following the decrease of 

conductance at constant ��, and estimating the crossing point using a linear fit. The resulting 

point in (��, �||) is taken as the upper corner of the dark charging line (white dashed line in 

Supplementary Fig. 2,a). The shifts of this line in the vicinity of the upper corner are insensitive 

to the shifts of the lower corner, and can be estimated as ���
�� = ���

�� + Δ���, where � is 

the measured unperturbed slope of the dark charging line (slope of blue line in Fig. 2c). We 

checked that this method of following the dark charging line (dashed white line in 

Supplementary Fig. 2) gives identical results to finding the position of this line by following the 

line connecting the two bright lines endpoints that this dark line should connect. 

 
Supplementary Figure 2: Imaging charge density changes on transition lines The location of the Coulomb 

blockade on ��   (a, yellow line) is found by Gaussian fitting the transport at a higher B (b). The triple point where 

N, B, D are degenerate is located as middle point of conductance along the yellow line from a linear fit to the 

slope (c). The calculated N-D boundary (white line) is drawn from the triple point at a constant slope. 

  

 

For a charging line (i.e., steady state conductance measurement), we use as the global gate 

voltage axis a vector of the form � = (1,1,1,1,1,1,1). Since for a charging line, ∫ (��(�) −

��(�)) = 1|��|, and for the values of �� obtained in using finite element simulation, ∑��(�) 
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is flat over most of the length of the nanotube (blue curve in Supplementary Fig. 4a), and � is 

roughly independent on �. As a result, we use the (Supplementary Note 2) with proper 

normalization to produce an estimate of ��(��) − ��(��)~
���

����

���
 where � is the distance 

between the gates. This estimate ignores the significant crosstalk between the neighboring 

gates, and a more correct estimation, assuming a concrete model for charge distribution, is 

explained in Supplementary Note 3. 

3. Imaging BD transition line 
Two key differences compared to the previous case are a different assumed normalization 

(∫ ��(��� − ���) = 0), and a different compensation vector: � = (0,0,1,1,1,0,0) due to 

AWG outputs not being connected to all the gates.  

The shift in the location of BD transition line after perturbation ���
��  is measured as a sum 

of the two contributions: the shift in the Coulomb blockade peak used for readout, and the 

shift of the BD line with respect to the readout point. The normalization parameter, � =

∑������
� − ���

��, is estimated by imaging the two charging lines (Supplementary Note 2.2) 

Supplementary Note 3:  Non-local sensitivity of charge 

distribution measurement by gate perturbation 
The charge density estimates presented in the main text (Fig. 3c,d, Fig. 4e) show the 

dependence of energy shift of the state on the perturbed gate number. Interpreting the 

resulting curve as a charge density distribution requires an additional assumption: the 

potential near a test charge localized above a specific gate needs to be determined by that 

gate only. I.e., the cross-capacitances, shown in dash in Supplementary Fig. 3 need to be much 

smaller than the direct capacitance (solid line). This is an approximation, justified by the 

geometry of the device, in which the inter-gate distance (~140 nm) is significantly larger than 

the height of the device above the gates (~60nm). Importantly, it allows us to draw 

quantitative conclusions from the measurements without relying on additional assumptions. 

However, this approximation is not exact, and in Supplementary Note 4 we show one possible 

way to better estimate the charge density distributions by introducing a concrete model. 

 

 

Supplementary Figure 3: Interpreting charge density 
imaging: due to device geometry, the gate directly under a 
specific section of the nanotube (labeled as a test charge 
q) determines the potential on it to first approximation, 
providing a simple interpretation of the charge density 
imaging results. However, a more precise interpretation 
can be obtained by taking into account the cross-
capacitances from other gates and contacts (dashed lines). 

  

Supplementary Note 4:  Determining the qubit charge 

redistribution 
The spatial extent of gate potentials ��(�) creates significant overlaps of sensitivity between 

different gates, resulting in smearing of the qubit charge redistribution ���(�) measured via 

the capacitance to the gates (Fig 4e, main text) as compared to the actual ���(�). We can 
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determine the spatial distribution of the potential produced by each one of the gates, ��(�), 

using finite element electrostatic simulations (Comsol) (Supplementary Fig. 4a). These 

calculated ��(�) were checked in our previous experiments against the actual potentials 

measured by scanning single electron transistor imaging, and where found to be accurate to 

within 10%. From Supplementary Fig. 4a, it is clear that a gate is capacitively coupled not only 

to the nanotube segment above it, but has also substantial coupling to positions further away 

along the nanotube. To deconvolve the effects of these overlaps and obtain a better estimate 

of ���(�), we assume a simple form for ���(�) that captures the essential shape of the 

charge redistribution: ���(�) = �� exp �− �
�

��
�

�
� + ��exp (− �

�

��
�

�
). By optimizing the 

parameters ��, ��, ��, ��, we reproduce the measured gate induced shifts, δ�� =

∫ ���(�)��(�)��. A correspondence is observed between the reproduced δ�� for the optimal 

values of the parameters (+, Supplementary Fig. 4b) and the measured values, shown using 

confidence intervals in Fig. 4b. As expected, the reconstructed charge density distribution 

(blue, Supplementary Fig. 4c) is narrower than the curve drawn by the measured δ�� (green, 

Supplementary Fig. 4c), since the latter includes the smearing by the cross capacitances of 

each gate to adjacent locations along the nanotube. The reconstructed shape, which 

represent more accurately the qubit charge density redistribution, has a ����~100��. 

The overall charge change in the central node (150�� width, bounded by dashed lines) is 

��~0.1��. 

 
Supplementary Figure 4: Reconstructing charge density change on BD transition (a) Calculated potentials 
induced by the gates, normalized to voltage applied on the gates. The overlap between the adjacent gates is 
significant, and the naïve estimation of charge distribution using a single gate is quantitatively imprecise. We 
model the density change as a sum of two Gaussians, and fit their parameters so that the modelled values 
obtained by smearing using the gate potentials reproduces the measured values (+ signs and error bar intervals 
in b). The resulting reconstructed distribution (blue, c) is indeed significantly compressed as compared to naïve 
calculation of the density (green, c), allowing a more precise estimation of sensitivity for optimally located 
sources. 

 

Supplementary Note 5:  Theoretical model and description 

of decoherence rate 
We describe the behavior of the system in Bloch equation formalism, in the manifold of the 

two nearly degenerate states in the far-detuned basis (|�⟩, |�⟩). The unitary evolution is 

described by the Hamiltonian4  

� =
�(�)

2
�� +

Δ

2
�� (3) 

Where the detuning �(�) is steered in time by fast changes of the gate voltage ��, and the 

tunneling rate Δ is constant. We expect the physical mechanism responsible for small, but 



   6 
 

finite constant Δ to be a result of a small misalignment � between the axis of the nanotube 

and the local direction of the magnetic field. Since the orthogonality of the two basis states 

results from opposite spin values, small perpendicular component of the magnetic field will 

result in an off-diagonal Hamiltonian term �������||. 

The dominant decoherence mechanism results from noise in � leading to decay of the Bloch 

vector to the Z axis with rate ��. In addition, a less significant noise in Δ leads to decay to the 

XY plane with rate ��. The steady state thermal occupation vector for each detuning � is given 

by 

���(�) = �0,0, tanh �
√�� + Δ�

2�
��

�

(4) 

Where T is the temperature of the environment. The full description of the evolution of the 

Bloch vector is 

�̇ = �(�)� + �����(�) (5) 

Where 

�(�) = �
−�� � 0
−� −�� Δ
0 −Δ −��

� (6) 

The effective decay rate �� is estimated by solving the equation at steady state (�̇� = �̇� = 0), 

and obtaining �̇� = −
��

��(�)
+ �����: 

��
��(�) = �� +

Δ�

�� +
��

��

(7) 

Thus the expected width of the observed transition line is determined by the dephasing rate 

��, rather than temperature, as illustrated in Fig. 5 of the manuscript. 

We believe that the decoherence rate of the system may be improved by increasing the 

tunneling element to reach the opposite limit (�� < Δ). In this case, the qubit can be operated 

in a ‘sweet spot’ regime, where the level splitting between the states is quadratically 

insensitive to the detuning (and to most noise sources as a result). In a similar example of a 

charge qubit on a carbon nanotube, operating in this regime was seen to improve the 

dephasing time by more than an order of magnitude5, and hence we believe that adding a 

separately controlled �� by using a vector magnet can benefit the coherence parameters of 

our system similarly. 

Supplementary Note 6:  Full calculation: self-consistent 

occupation and observed current 
In a naive interpretation, the dependence of the observed mean occupation 〈��〉 on ������  

should be an exponential decay to a thermal equilibrium value. However, this interpretation 

neglects the possibility of incomplete initialization of the system to its ground state |�⟩ at the 

end of the read step, which will also depend on the detuning Δ�� and timing parameters 
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�����,����, ������. Thus, in order to quantitatively interpret the dynamical behavior of the 

system, we need to solve a more detailed model. 

Our measurement consists of repeating two steps with different values of detuning ������,

����� for the durations ������, �����,����, hence the evolution of � over a single period of the 

measurement is given by 

�� =

���������������� ���(�����)�����,������ − ���(�����)� + ���(�����) − ������������

+����������� (8)

 

At steady state, we solve for �� = �, obtaining the value of the Bloch vector at the beginning 

of the read step: 

�� = �������������������(�����)�����,���� − ��
��

(9) 

= ����������������� ����(�����)�� − ��(�����)�����,����� − ������������ + ������������ 

Integrating over the read step (see Supplementary Fig. 5), we get the reduction of the 

measured conductivity 〈�〉 with respect to transport value ��:  

� ∶=
〈�〉

��
= 1 −

�1 − ��,��

2�������

(1 − exp(−�������)) (10) 

 
Supplementary Figure 5: accurate interpretation of the observed conductance During the read period (a), 

the occupation (b) is initialized towards ground state B (low ��), while during the probe period, the probability 

of excited state D can increase (�� decreases). The current through the system is only observed during the 

read period (c), and its value represents the average occupation of B during this period (shaded curves). The 

resulting rate equations explain the observed conductance at Δ�� = 0 for a range of �����,����, ������  (d). 

 

Substituting (4), (6), (9) into (10), we obtain an expression for the observed change in the 

conductance 〈�〉/��  as a function of three free parameters ��, ��, Δ, while the electron 

temperature � and the conversion ratio of Δ�� to energy scale (�) are found in independent 

measurements. By simultaneously fitting the model to the experimental data displayed in Fig. 

5b,c and Supplementary Fig. 5d (continuous lines)  we obtain the values �� = 2� × (1.5 ±

0.15)���, �� = 2� × (185 ± 6)���, Δ = 2� × (2 ± 0.12)���, where the confidence 

intervals are 2� and are obtained using Monte Carlo approach. 
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To obtain a more useful formula, an approximate solution of the same problem can be found 

by looking at the evolution of z component of the Bloch vector. Two effective values of the 

decay rate (7) are used: ��,����
�� = ��

��(�����),  ��,�����
�� = ��

��(������). In this case, the self-

consistent relation (9) can be written as  

��,� =

���,� ��

������

��,����� − 1�

�

������

��,����� − �
�

�����,����
��,����

(11) 

Supplementary Note 7:  Calibrating lever arm constants 
The measurement is performed in terms of the detuning � between the states �, �, and in 

order to obtain the sensitivity of electric and magnetic field measurements, we need to 

calibrate the electrostatic lever arm factors ��, �� = ��
�����,�/���   where �� is a voltage 

of interest (in the following discussion, common voltage on three central gates 3,4,5), and the 

magnetic moments ��, �� = ���,�/��||. Using the measured slopes of red and blue lines in 

Fig. 2c (�� = ��/��, �� = ��/��), and the slope of the interface line in Fig. 4d � = (�� −

��)/(�� − ��), we obtain  

��

��
=

1 − ���

1 − ���
(12) 

Using the value of ��~0.15 measured directly from Coulomb diamond diagram 

(Supplementary Fig. 6), we obtain ��~0.2, ��~ − 0.08���/�, ��~1.1���/� for the states 

discussed in the manuscript. 

 The obtained lever arm factor for the qubit transition �� − ��~0.05 is consistent with the 

lever arm factor independently obtained from the spacing between LZS interference fringes:  

� =
2�ℏ����

55����
~0.0525 (13) 

 

Supplementary Figure 6: Calibrating lever arm constants The 

lever arm factor �� = ���/���  is extracted from the Coulomb 

diamond measurement. Combined with the measurements in 

Fig. 1f and Fig. 3d, full set of values of lever arm factors 

��, ��, ��, �� is found. 

Supplementary Note 8:  Determining the qubit's potential 

sensitivity 
We determine the qubit's sensitivity to electrical potential using the data displayed in 

Supplementary Fig. 7. In order to estimate the measurement noise �� obtained in practice, 

data from 6 consecutive runs in a flat region of the measurement is taken (black box). By 

plotting the envelope calculated as mean of the measurement ±1.5��, we verify that the 

samples are uniformly confined by this envelope, and the obtained noise value can be used 
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for all values of Δ��. Using ��, the slope (dashed line) and the lever arm factor (Supplementary 

Note 6), we find the sensitivity to detuning to be �� = 60���/√��.  

The shift of detuning due to a local electrical potential �(�) is given by �� = ∫ �(�) ���(�). 

As is apparent from Supplementary Fig. 4c, the qubit charge redistributes from the center to 

the sides (���(�) is negative in a region of width �~100�� in the center and positive on the 

sides). This means that the qubit will be insensitive to potentials whose wavelengths are much 

larger than �, making it immune against far field potential noise. The optimal sensitivity in 

potential measurements will be obtained when the measured feature is comparable in size to 

the resolution that is set by �. In this case the potential sensitivity can be determined to be 

�� =
��

��
~600��/√��, where �� is the redistributed charge (Supplementary Note 4). Note 

that the sensitivity to voltage on gate 4, ���~1.4�� is about two times worse as the potential 

that this gate produces, ��(�), is smeared on a scale larger than �.  

Supplementary Note 9:  Theoretical limits on the potential 

sensitivity 
The potential sensitivity obtained in the experiment (Supplementary Note 7), although 

extremely good, can still be improved if few limiting factors in the current experiment are 

improved. To get a sense of what is the optimal performance expected for this qubit based on 

its measured properties, we analyze its theoretical sensitivity limits below:  

The measured quantity in our experiment is the dark vs. bright state occupation near the qubit 

transition. This quantity depends very sharply on the detuning, �, between these states. The 

detuning can be modified by a modulation of the magnetic field (�� = (�� − ��)��||) where 

��, �� are the magnetic moments of the two states, or by electric potential (�� =

(�� − ��)��), where ��, �� are the lever arm factors of the gate capacitance to the charge 

distributions of the states. The detuning is detected through the modulation of current �� =

���(��) where �� is the readout current measured on Coulomb blockade peak. The sensitivity 

of � to � can be seen from Supplementary Notes 7, 11 to be of the form 
��

��
~�ℏ��, where 

� is a numerical factor depending on the timing parameters and approaching the value of ~10 

when optimized. The signal to noise ratio for measuring �, ���� in our case is limited by our 

contact resistance, ��������. In such a case of resistive contacts, ���� is determined by the 

amplifier noise floor ��~25��/√�� (���� =
��

��
, where �� is limited by the maximal AC 

excitation for conductance measurement ���~2.3���/�� and the device contact resistance 

��������). In total, for this case, the sensitivity to detuning between the energies of B,D is: 

��������� ���������� �������~
4ℏ��������������

���
(14) 

For vertex properties described in the manuscript, ��~45���/√��, which is translated to 

��~450��/√��.  

The device in this study had a far from optimal contact resistance, ��������~2�Ω. In principle 

this resistance could be improved down to tens of �Ω range, improving the sensitivity of the 

described method. Ultimately, the signal to noise of measuring � will be limited by the shot 
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noise of the measurement and will become insensitive to �������� (since the current during 

the readout stage assumes one of two possible values): ���� = 1/������,���� + ������. For 

a finite bandwidth �� for setting the gate voltages determining the minimal ������~����, 

the optimal sensitivity is obtained for �����~��������
�����

/��
����, hence the optimal value is 

���� =
�������

�
. Thus, the ultimate bound for sensitivity is  

������ ����� �������~
10√��ℏΔ

√��√��
(15) 

For the device equivalent to those presented in the manuscript and ��~1���  

������ ����� �������~4���/√��, which translates to ��~40��/√�� and ��~3.5��/√��. 

The factors leading to the difference between the naive estimation of the expected 

performance (Supplementary Note 6) and the obtained result include slow drifts of device 

conductance, which can be avoided performing duty cycle measurements. In addition, since 

the device is sensitive to both magnetic and electric field, slow drifts in local electric field will 

contribute to measurement noise of magnetic field and vice versa. The device can be 

optimized for a required type of measurement by choosing other working points in (��, �) 

space, which may have different coupling differences (�� − ��), (�� − ��). For instance, in 

Supplementary Fig. 7b we choose a vertex with significantly smaller �� − ��, improving the 

resulting magnetic field sensitivity to 39��/√�� (evaluated in the same way). Our sensing 

relies on the coherence limited transition of the qubit, and in this sense is similar to 

relaxometry measurements in NV centers, used to probe high frequency noise. So far we could 

not use the full potential of coherent manipulation of the qubit, due to the rather short ��
∗. 

With improvement in ��
∗ it should be possible to use dynamic decoupling protocols, and thus 

be limited by �� that is likely to be significantly longer. In this case further improvement to the 

sub �� potential sensitivity might become possible, as was demonstrated in singlet-triplet 

qubits in GaAs double quantum dots6. 

 
Supplementary Figure 7: Estimating detection sensitivity a. Noise statistics are estimated from 6 consecutive 

scans (+); noise power ��  extracted in a far-detuned region (black box) is seen to be uniformly correct for all 

detuning values from the envelope curves, separated by 3��. The sensitivity to Δ��  is obtained from ��  and the 

maximal slope of the conduction dip (dashed line) b. Choosing a vertex with smaller difference between the 

charge distributions of |�⟩, |�⟩ leads to broadening of the conduction dip and increase in �||-dependence of its 

location, shown in two graphs for slightly different magnetic field values. Overall, the sensitivity to �|| is 

improved. 
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Supplementary Note 10:  Estimating magnetic field stability 
The superconducting magnet in the experiment could not be used in persistent current mode, 

and the field was regulated using a closed loop controller. As a result, �|| in the experiment 

fluctuates, limiting the obtainable measurement sensitivities and coherence times. To 

estimate the magnetic field fluctuations, we recoded the field values reported by the 

controller (Supplementary Fig. 8), from which we estimate magnetic field stability of 

~25 μT ���, translating to  maximal observable dephasing time ��
⋆~15 ns. Note that these 

measurements show only the low frequency components of the magnetic fluctuations, and 

other faster fluctuations might be also present. 

Supplementary Note 11:  Measurement noise 
The noise spectrum of the measured signal, as a function of the detuning Δ�� is shown in 

Supplementary Fig. 9. In this experiment,  ������� (See Supplementary Fig. 1) is balanced as 

to obtain zero signal in the far-detuned regime (|Δ��| ≫ 0). The displayed spectrum is 

centered around the demodulation frequency (��� = 1.46 MHz), which is chosen to be close 

to the peak of the response of the measurement LC tank (Supplementary Fig. 1). On the far-

detuned graphs (red, blue), we observe noise envelope resulting from the shape of LC tank 

response. In addition, we observe spurious lines at ~5 kHz, ~15 kHz (black arrows) resulting 

from high harmonics of the fast gating sequence periodicity (������� = ����� + ������), and 

at 0 Hz (blue arrow) resulting from leakage and DC offset drifts. The excitation frequency is 

���~��� + 9.5 kHz (red arrow),  and the difference between the three curves is only observed 

near this frequency, as an harmonic signal (due to different conductance) for the zero 

detuning point (yellow), and a wide skirt resulting from shot noise of the conductance (due to 

random outcome in each repetition of the measurement sequence). This effect is observed 

for long measurement period �������  (50 μs for these measurements), decreasing for shorter 

period times. Overall, for short measurement period times, the noise floor is detuning 

independent for all frequencies, and the performance is limited by the conductance 

measurement sensitivity, as seen in Supplementary Fig. 7. 

 

Supplementary Figure 8: Measured 
fluctuations of the magnetic field The 
magnetic field reported by the closed loop 
controller driving the superconducting coil are 
plotted for setpoint B=3T.  
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This clearly shows that there is still a place for improving the sensitivity: by decreasing the 
resistance of the contacts to the nanotube, the transconductance of the device will be 
improved. In this way we will obtain better voltage/charge sensitivity, which would be 
ultimately limited by the charge noise of the system, a limit that was not reached in the 
current measurements due to the large contact resistance. 

 
 

Supplementary Note 12:  Bright-dark transition lines for a 

range of �|| 
In order to implement the demonstrated measurement scheme, the control parameters of 

the system, �� and �|| need to be tuned to obtain a dark state with sufficiently long lifetime, 

sufficiently close to a Coulomb blockade peak to allow fast gating transitions between readout 

(B-N) and measurement (B-D) lines. We demonstrate that these requirements can be fulfilled 

over a range of values of �|| by showing a number of observed B-D transition lines (dashed 

green lines in Supplementary Fig. 10), shown with respect to conductance measurement of 

the device (electrons side). The maximal distances of the displayed lines from the Coulomb 

peaks represent the maximal reachable fast gate voltage transition amplitude in our set-up. 

The observed detuning dependence of the transition lines (blue) is shown for each case. 

Overall, while only some of the vertices in the transport diagram were measured, the 

displayed lines allow replicating the experiment over a significant fraction of �|| = 3�. .6� 

range. In additional measurements we have also observed the effect in other parts of the 

���, �||� diagram, for both electron and hole doped dots, and have seen that similar qubit 

transition exists at least up to �|| = 8� (not shown). The additional lines have similar 

sharpness and dependence on magnetic field, and hence can also be used to form a local 

sensor, achieving similar values of sensitivity. 

 

Supplementary Figure 9: Measurement noise in 
current experiment The regime of constraints 
determining the potential sensitivity of the device 
(Supplementary Note 9) in the current experiment is 
found by measuring the noise spectrum as a function 
of Δ��  in a time domain measurement, shown here 
for far detuned (blue, red), and zero detuning 
(yellow) cases. Black and blue arrows mark spurious 
signals resulting from the measurement technique, 
while the red arrow marks the frequency at which 
the conductance through the device is measured. As 
the observed noise floor of the measurement does 
not depend on the detuning, we conclude that the 
practical sensitivity of the device is currently limited 
by the sensitivity of conductance measurement. 
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Supplementary Figure 10: bright-dark transition lines for a range of �|| Zig-zag pattern of Coulomb 

blockade(orange colormap). Measured locations and slopes of lines of transition to dark state obtained using 

the time-domain method shown in green dashed lines, terminating at distance from CB peak limited by maximal 

fast gating jump amplitude (setup - limited). The insets show the observed 〈��〉(Δ��) (equivalent to Fig. 4c). In 

some cases, these lineshapes are more complex than the simple case described in the manuscript, and indicate 

the existence of other states in addition to N,B,D. Despite this complexity, the observed magnetic moments and 

line sharpness are similar to the simple qubit described in the paper, thus allowing similar measurement 

sensitivity. Overall, using the displayed lines, the electric and magnetic sensing mechanism can be used for most 

of the values of �|| between 3 T and 6 T (We have measured similar lines up to 8 T, not shown).  

Supplementary Note 13:  LZS simulation 
The simulation is done using QuTip package7. We simulate a system described by Hamiltonian 

(Supplementary Note 3) where �(�) is modulated harmonically, and the decoherence 

operators �
��

�
��  and �

��

�
��. While a qualitatively similar result can be obtained by finding 

the steady state 〈��〉 of the resulting Lindblad equation, a better quantitative match is 

obtained by calculating the steady state occupation for two consecutive propagation steps, in 

which �(�) = �� + ����sin (��) for time ������, and �(�) = ��� for time �����,����.  

Supplementary Note 14:  Applying the technique for scanning 

probe experiments 
In order to implement this measurement technique as a scanning nano-probe, the 

experimental set-up will need to include the following elements: 

1) High frequency cabling to the microscope. While not trivial, cryogenic high-frequency 

cabling was implemented in several scanning setups (e.g. NV centers, scanning 

microwave probes, etc.). High frequency coaxial cables can exert forces on scanning 

piezo stages. We note, however, that high-bandwidth signals need to be applied only 

to the detector, and not to the sample. Thus, the problem is avoided if the sample is 

mounted on the piezo stage, and the probe cantilever is fixed. 

2) Vector magnet - the qubit requires magnetic field parallel to the nanotube axis. 

Ideally, we would like to also have an independent control over the perpendicular 



   14 
 

field. This field is often the one that most strongly controls the physics of a 2D sample 

under study. This independent control of fields would be best achieved using a vector 

magnet. 

The process of tuning the device is more complex than using the same device as a SET. In 

addition to locating Coulomb blockade peaks, we need to trace their positions as a function 

of �||, and locate the transitions between different wavefunctions, as sharp changes in 

visibility of Coulomb blockade conduction lines (see Supplementary Fig. 10). For each 

switching point in (��, �), we check whether a slow tunneling rate between the two switching 

states is observed, indicating a spin flip. This is done by performing the time domain sequence 

in Fig. 4a to observe whether sharp lines of decreased conductance are observed (Fig. 4c). In 

the device discussed in this work, roughly 1/4 of the switching points exhibited sharp 

transition lines, over multiple cooldowns which influenced the transport characteristics of the 

device. While overall the process is time consuming, it needs to be done only once to allow 

calibrating the device as a sensor, and thus will not be a limiting factor for scanning 

measurements with the qubit. 

In order to choose a suitable carbon nanotube to demonstrate the effect, four properties of 
the chosen state are required:  

1. It should have two basis states that are roughly orthogonal, namely the tunnelling 
element between them should be small. 

3) These states should have a large difference in their tunneling rates to both leads 
(dark/bright state). This is crucial for the simple transport readout that we showed in 
the paper.  

4) The states should have significantly different charge distributions to allow electric 
field detection. 

5) The states should have different magnetic moments to allow magnetic field 
detection.  

Current measurements demonstrate these properties independently, without relying on a 
specific model, for a range of regimes (electron/hole doped dot, range of occupation numbers 
and magnetic fields). We note that similar systematic dark-bright behaviour was observed in 
measurements that we performed previously (see ref. 29). We expect the effect to be quite 
universal for a variety of near-metallic carbon nanotube devices. 
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