
Editorial Note: This manuscript has been previously reviewed at another journal that is not operating a 

transparent peer review scheme. This document only contains reviewer comments and rebuttal letters for 

versions considered at Nature Communications . 

 

 

Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

My only previous concern was that the context of this study in the wider body of existing work was 

poorly characterized. This has been addressed, and I have no further concerns. 

 

 

 

Reviewer #4: 

Remarks to the Author: 

This manuscript aims to examine the phylogenetic and host determinants of viral sharing between 

mammals. This is an interesting and well-written manuscript that should appeal to the readership of 

Nature Communications. The results aren’t particularly surprising or novel in respect to what is known 

about parasite sharing, but I think that the approach is quite interesting (whilst I do have a few 

concerns below) and dataset robust. In particular, the authors should be congratulated on testing their 

predictions using a separate dataset - this is rarely done. In general, the prediction part of this 

manuscript is really well done. I do have a few concerns, however on other parts of this ms. Mainly, 

the use of GAMMs on essentially a collection of distance matrices seems far from optimal. Given that 

the ‘species effect’ was so strong (51% of the explained deviance), using an approach that accounts 

naturally for these dependencies, such as a Markov Random Fields or Generalized Dissimilarity Models 

(or a myriad of related approaches) seems warranted (see Clark and Clegg, 2017). Then the viral 

count data could be included and the resultant matrix could be turned into (dis)similarity matrix and 

transformed appropriately to account for the skew the authors mention. Losing the count data seems 

like an avoidable loss. At a minimum, I think more explanation is needed regarding multi-membership 

random effects – I had to do some research to find out how they worked. As they are quite rarely 

used in ecology, I think a sentence or two to give a brief overview would help. 

Perhaps the biggest suggestion is that the authors use ‘viral sharing network’ throughout the text but 

we never see the network. Visualizing the network – on even parts of it – is not only a useful sanity 

check but also crucial for looking at how the network is structured. Nodes could be coloured by 

phylogenetic group with the size determined by the number of shared viruses divided by citations (or 

some such scheme). As this network is large, spectral decomposition of the Laplacian matrix may help 

visualize the structure. Even if the figure isn’t in the main text, I feel like it would be a useful addition 

to the supps. 

 

Other minor comments: 

 

Fig 1B: Why do you think viral sharing probability decline so markedly with phylogenetically similar 

species (0.5) which have high overlap? Seems counterintuitive. Also why did you choose 0, 0.1, \0.25, 

0.5? Seems like high values would be more interesting. Same with Fig. 1A. 

 

48: Fountain-Jones et al 2019 as well for carnivores. 

50: Citations? 

80: Strong impact on the centrality? I feel like this sentence needs a bit more explanation here. 

136: Citations needed. 



152: Ref 28 is not a super-tree paper (it is the Fritz et al 2009 paper). Which super-tree did you use? 

Suggest checking other citations. 

534: Patristic distance? 

 

Best, 

 

Nick Fountain-Jones 
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Reviewers' comments: 
 
Reviewer #1 (Remarks to the Author): 
 
My only previous concern was that the context of this study in the wider body of existing 
work was poorly characterized. This has been addressed, and I have no further concerns. 
 

• We thank Reviewer #1 for their previous critiques and for reviewing our 
revised ms. 

 
Reviewer #4 (Remarks to the Author): 
 
This manuscript aims to examine the phylogenetic and host determinants of viral sharing 
between mammals. This is an interesting and well-written manuscript that should appeal to 
the readership of Nature Communications. The results aren’t particularly surprising or novel 
in respect to what is known about parasite sharing, but I think that the approach is quite 
interesting (whilst I do have a few concerns below) and dataset robust. In particular, the 
authors should be congratulated on testing their predictions using a separate dataset - this is 
rarely done. In general, the prediction part of this manuscript is really well done. I do have a 
few concerns, however on other parts of this ms. Mainly, the use of GAMMs on essentially a 
collection of distance matrices seems far from optimal. Given that the ‘species effect’ was so 
strong (51% of the explained deviance), using an approach that accounts naturally for these 
dependencies, such as a Markov Random Fields or Generalized 
Dissimilarity Models (or a myriad of related approaches) seems warranted (see Clark and 
Clegg, 2017). Then the viral count data could be included and the resultant matrix could be 
turned into (dis)similarity matrix and transformed appropriately to account for the skew the 
authors mention. Losing the count data seems like an avoidable loss. At a minimum, I think 
more explanation is needed regarding multi-membership random effects – I had to do some 
research to find out how they worked. As they are quite rarely used in ecology, I think a 
sentence or two to give a brief overview would help. 
 

• We greatly appreciate Reviewer #4's (Dr Fountain-Jones) expertise and 
familiarity with Generalised Dissimilarity Models (GDMs) and other methods. 
We have carefully considered his suggestion to use alternative modelling 
approaches to improve our mammalian viral sharing network. Dr Fountain-
Jones’ main reason for suggesting GDMs is the ability to control for sampling 
bias. He additionally points out that using count data for viral sharing events 
would provide more information. We indeed originally included GDM’s in 
our list of potential approaches when we first considered the question and 
began this research. While we realise that our approach is not especially 
common – although not unprecedented – in network studies, we have opted to 
retain our use of GAMMs and binary data for a variety of reasons that we have 
taken care to outline in detail below. 
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• First, and most importantly, we chose to model the viral sharing network as a 
binary (rather than weighted, or count-based) network for empirical reasons. 
We outlined those reasons at lines 617-625 and in our previous response to the 
reviewers at Nature Ecology and Evolution. Namely, the observed viral 
sharing network is prohibitively poorly-sampled, and so we aimed to avoid 
prescribing or predicting the number of viruses shared, particularly because 
this may influence priorities for viral discovery. As such, the probability of 
viral sharing alone is a more parsimonious option for the analytical aims of 
our study. Further, much of the variation in number of known viruses would 
be highly heterogeneous across species, exacerbating the unevenness of 
sampling in the data. As such, the choice to model the network as a binary was 
not a necessity of our general modelling approach, but resulted from 
consideration of the mechanisms generating variation in viral counts across 
host species. For these reasons, among others, all references that we cite below 
(Davies & Pedersen 2008; Huang et al. 2014; Willoughby et al. 2017; Wells et 
al. 2018, 2020; Stephens et al. 2019) use either binary viral sharing or 
proportion of shared viruses as a response variable, rather than viral counts. 

 

• We also have several methodological reasons for choosing GAMMs with 
multi-membership random effects as our approach of choice. First, GAMMs 
are more similar to the methods already used for parasite sharing models 
across and within mammal orders. Our study expands upon previous parasite 
sharing analyses (Davies & Pedersen 2008; Huang et al. 2014; Willoughby et 
al. 2017; Wells et al. 2018, 2020; Stephens et al. 2019); their statistical 
methods included: a generalised linear model (GLM) or similar model with no 
specialised random effects (Davies & Pedersen 2008; Huang et al. 2014; 
Willoughby et al. 2017; Wells et al. 2018), a generalised additive model 
(GAM) with no specialised random effects (Stephens et al. 2019), and a 
hierarchical regression with an order-level random effect (Wells et al. 2020). 
However, none of these other studies attempted to use more sophisticated 
models than GLMs/GAMs. Multi-membership random effects are an 
established method for controlling for row and column effects in networks 
analysed using GLM frameworks: for example, (Rushmore et al. 2013) used 
multi-membership random effects to control for individual-level non-
directionality in networks of chimpanzee interactions. As such, our model is 
functionally similar to prior models but is more conservative and represents a 
useful extension of the pre-existing viral sharing analysis methodologies. We 
believe our approach is analytically robust, well-founded, simple to expand 
upon, and easy to connect to previous analyses, all while tangibly improving 
on these previous approaches. 

 

• Finally, we used this approach because it allows for easy comparison of the 
contribution of species-level effects vs. pairwise host traits to viral sharing, 
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which was a central focus of our study and something we aimed to quantify 
(deviance explained) rather than merely control for. Further, we were then 
able to simulate a viral sharing network explicitly avoiding this effect. The 
species-level effect indeed accounted for a large proportion of the deviance 
explained, as Dr Fountain-Jones points out, but the effect also left a 
considerable amount of deviance explained by the fixed effects. This is the 
portion of the model that we used to simulate with, explicitly avoiding the 
species-level variation, and it would be difficult to do so with another 
approach, particularly if using count or dissimilarity data. In addition, research 
effort itself surprisingly had no detectable effect on the probability of sharing, 
despite the importance of the species-level effect, and we find it unlikely that 
GDMs would make this easier to interpret, more reliable, or more accurate. 

 

• Fundamentally, there are many valid ways to approach this problem 
statistically, all of which result in some tradeoff between accuracy, 
interpretability, and simplicity. We believe that our approach represents an 
appropriate balance of these concerns with respect to our scientific question. 
Other approaches, such as GDMs, but also Exponential Random Graph 
Models (ERGMs) or Latent Space Models (LSMs), doubtless will produce 
additional insights but we respectfully do not believe they would have yielded 
more than slight differences from our results here.  

 

• As suggested by Dr. Fountain-Jones, we have added several sentences to the 
methods (lines 590-615) to outline further the basis of multi-membership 
effects, the other choices of models, and the reasons for selecting GAMMs for 
our approach. 

 
Perhaps the biggest suggestion is that the authors use ‘viral sharing network’ throughout the 
text but we never see the network. Visualizing the network – on even parts of it – is not only 
a useful sanity check but also crucial for looking at how the network is structured. Nodes 
could be coloured by phylogenetic group with the size determined by the number of shared 
viruses divided by citations (or some such scheme). As this network is large, spectral 
decomposition of the Laplacian matrix may help visualize the structure. Even if the figure 
isn’t in the main text, I feel like it would be a useful addition to the supps. 
 

• We appreciate that a depiction of the viral sharing network will help readers to 
visualise the processes at play, and so we have included a new supplementary figure 
of the sharing matrix, coloured according to dyadic sharing probability (now Figure 
SI4). 

 
Other minor comments: 
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• Fig 1B: Why do you think viral sharing probability decline so markedly with 
phylogenetically similar species (0.5) which have high overlap? Seems 
counterintuitive.  

o We originally had included text in our manusctipt to interpret the downturn in 
viral sharing with higher spatial overlap values; however, we removed it based 
on previous reviewers’ comments. We have added some of this interpretation 
back in, lines 107-120, while also pointing out that the data in this area 
represents only a very small proportion of the dataset as a whole: 
 “Curiously, we observed a downturn in sharing probability as closely 

related species exceeded 50% geographic overlap (Figure 1B). 
However, this effect is of relatively limited importance in the context 
of our dataset: 93% of mammal pairs had less than 5% spatial overlap, 
while less than 0.5% had >50% overlap (Figure 1B,D). The sparseness 
of data at this end of the distribution may also expose this effect to 
more unaccounted-for sampling biases, though some mechanistic 
explanations, such as apparent competition22, are plausible.” 

• Also why did you choose 0, 0.1, \0.25, 0.5? Seems like high values would be more 
interesting. Same with Fig. 1A. 

o We chose these values because they provide the most interesting cuts across 
the 3D surface displayed in panel C, weighed against the data distribution 
displayed in panel D. Very few species have very high phylogenetic similarity 
or especially high geographic overlap, so that we decided not to display trends 
for these very high values, as they were relevant to very little of the data. The 
entire probability surface is available in panel C for those that are interested. 

 

• 48: Fountain-Jones et al 2019 as well for carnivores. 
o We appreciate this suggested reference and assume this refers to “Endemic 

infection can shape exposure to novel pathogens: Pathogen co‐occurrence 
networks in the Serengeti lions”? 

o If so, this sentence is referring to within-order, interspecific viral sharing, in 
contrast to the suggested Fountain-Jones reference, which examines within-
species, between-individual sharing of parasites. As such, this reference does 
not fit with the theme of the sentence, which we have left unaltered. 

 

• 50: Citations? 
o We have added citations to clarify which subset we are referring to here. 

 

• 80: Strong impact on the centrality? I feel like this sentence needs a bit more 
explanation here. 

o We have rephrased this sentence to clarify: 
 “Our model structure was effective at controlling for species-level 

variation in our dataset: i.e., when we simulated networks using just 
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these parameters, species’ centrality in the networks were extremely 
close to their observed centrality (Figure SI1).” 

 

• 136: Citations needed. 
o The citation for this statement is the same as the one for the end of the 

sentence (Sanjuán et al. 2010); we have duplicated it within the sentence to 
avoid confusion. 

 

• 152: Ref 28 is not a super-tree paper (it is the Fritz et al 2009 paper). Which super-
tree did you use? Suggest checking other citations. 

o This is the correct citation; Fritz et al created a supertree for this paper, which 
we used for the analysis, as in a previously published analysis (Olival et al. 
2017). 

 

• 534: Patristic distance? 
 

o We have clarified that this was the patristic distance. 
 
Best, 
 
Nick Fountain-Jones 
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Reviewers' Comments: 

 

Reviewer #4: 

Remarks to the Author: 

The authors have done a good job responding to my comments. I still think they should include 

another analysis approach to see if this supports the results presented, but I will leave it to the editor 

to make the call. Otherwise, the manuscript is an excellent contribution to the literature - well done. 


