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Abstract

This document provides additional details for the study ‘Optimizing adaptive cancer therapy: dynamic programming

and evolutionary game theory’ in Proceeding B.

Note the numbering of equations and figures continues from the main text. We continue to use reference numbers

of equations and figures previously introduced in the paper for this document. Bibliographic references used in

Supplementary Materials are listed and numbered separately.

1S Deriving the tumor model from Kaznatcheev et. al.

In this section we summarize the main steps of deriving system of equations (2.2) from Kaznatcheev et al. [9].

The tumor model in that paper involves glycolytic (GLY) cancer cells, which are anaerobic and produce acid; and

normal cells, which are aerobic and benefit from the increased oxygen from vascularization. The acidity benefits all

tumor cells, regardless of whether they have aerobic or anaerobic metabolism. Normal cells are divided into two sub-

populations: VOP cells that (over)produce Vascular Endothelial Growth Factor (VEGF) improving vascularization

at some cost and DEF cells that do not (over)produce VEGF. GLY cells do not produce VEGF and thus do not

increase vascularization.

We assume that every cell interacts with n nearby cells and derives benefits based on its type and type of cells around

it. If among those nearby cells and cell itself k cells are GLY, the benefit (per unit time) due to acidity is An(k) = bak
n+1 .

Aerobic cells are additionally receiving a benefit per unit time Vn−nG
(l) = bvl

n−nG+1 due to vascularization, where l is

the number of VOP cells that (over)produce VEGF at a cost c. An individual cell, depending on its type, can have

the following payoff, see details in Section A of Appendix in Kaznatcheev et al. [9]:

• A GLY cell interacting with nG other GLY cells, has payoff An(nG + 1).

• A VOP cell interacting with nG GLY cells and nV other VOP cells has a payoff An(nG) + Vn−nG
(nV + 1)− c.

• A DEF cell interacting with nG GLY cells and nV VOP cells has a payoff An(nG) + Vn−nG
(nV).

1



By averaging over all possible interaction group compositions, one can get the expected fitness of a population of

glycolytic (GLY) cells

wG = 〈An(nG + 1)〉nG∼Bn(xG),

where Bn(xG) is the binomial distribution with n samples and xG is the probability of success. By 〈f(ξ)〉ξ∼Ω we

denote the expected value of f(ξ) over a random variable ξ with distribution Ω.

Other two types of cells have the following expected fitness:

wV = 〈An(nG)〉nG∼Bn(xG) + 〈Vn−nG
(nV + 1)〉(nG,nV)∼Mn(xG,xV) − c,

wD = 〈An(nG)〉nG∼Bn(xG) + 〈Vn−nG
(nV)〉(nG,nV)∼Mn(xG,xV),

where Mn(xG, xV) is the multinomial distribution with n samples and xG is the probability of the first outcome, xV

of the second.

Let mG,mV,mD be a total number cells of type GLY, VOP, DRF in the tumor correspondingly. Assume that each

sub-population grows exponentially with growth rate equal to their fitness:


ṁG = wGmG,

ṁV = wVmV,

ṁD = wDmD.

The GLY-targeting therapy attacks acid-producing GLY cells killing them with time-dependent intensity d : R+ →

[0, dmax], see Box 1 in the main text. When the therapy is applied the sub-population dynamics follows:


ṁG(t) = wG(t)mG(t)− d(t)mG(t),

ṁV(t) = wV(t)mV(t),

ṁD(t) = wD(t)mD(t).

Let m = mG +mV +mD be the total number of cells in the tumor. Now we look at the dynamics of sub-population

fractions xG = mG/m, xV = mV/m, xD = mD/m. For GLY cells:
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ẋG =
ṁG

m
− mGṁ

m2

=
(wG − d)mG

m
− mG

m

(wG − d)mG + wVmV + wDmD

m

=
mG

m

(
wG − d− (wG − d)

mG

m
− wV

mV

m
− wD

mD

m

)
= xG(wG − d− (wG − d)xG − wVxV − wDxD)

= xG (wG − (wGxG + wVxV + wDxD))− xG(1− xG)d

= xG (wG − 〈w〉)− xG(1− xG)d,

where 〈w〉 = xGwG + xVwV + xDwD is an average fitness.

Using a similar argument to derive ẋV and ẋD, we can now write down the replicator equation for subpopulation

fractions based on the GLY-VOP-DEF interactions subject to the GLY-targeting therapy:


ẋG = xG(wG − 〈w〉)− xG(1− xG)d,

ẋV = xV(wV − 〈w〉),

ẋD = xD(wD − 〈w〉).

(1S.1)

One can transform the system of replicator equations (1S.1) into the system with two equations using the fact that

xG + xV + xD = 1. Define the proportion of GLY cells as p = xG and the proportion of VEGF producers among the

aerobic cells as q =
xV

xV+xD
.

Then

ṗ = p(wG − 〈w〉)− p(1− p)d

= p(wG − xGwG − xVwV − xDwD)− p(1− p)d

= p(wG − pwG − xVwV − xDwD)− p(1− p)d

= p(wG − pwG − (1− p)〈w〉V,D)− p(1− p)d

= p(1− p)(wG − 〈w〉V,D − d),

where 〈w〉V,D = qwV + (1− q)wD = wD + q(wV − wD).
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Similarly,

q̇ =
ẋVxD − ẋDxV

(xV + xD)2

=
1

(xV + xD)2
(xVxD(wV − 〈w〉)− xVxD(wD − 〈w〉))

=
xVxD

(xV + xD)2
(wV − wD)

= q(1− q)(wV − wD).

The reduced system of replicator equations is


q̇ = q(1− q)(wV − wD),

ṗ = p(1− p)(wG − 〈w〉V,D − d).

(1S.2)

Substituting expressions of expected fitness (wG, wV, wD) into system (1S.2), one can obtain a system (2.2) used in the

main text. Below we reproduce the derivation from Section D of Supplementary Material of Kaznatcheev et al. [9].

First we simplify the gain function for q:

wV − wD =
∑

nG+nV+nD=n

(
n

nG, nV, nD

)
x
nG
G x

nV
V x

nD
D

(
bv

n− nG + 1
− c
)

=

n∑
l=0

(
n

l

)
pn−l(1− p)l bv

l + 1
− c l = nv − nD

=

n∑
l=0

(
n+ 1

l + 1

)
pn−l(1− p)l bv

n+ 1
− c

(
n

l

)
=

l + 1

n+ 1

(
n+ 1

l + 1

)

=
bv

(1− p)(n+ 1)

 n′∑
l′=0

(
n′

l′

)
pn

′−l′(1− p)l
′

− (n′
0

)
pn

′

− c n′ = n+ 1; l′ = l + 1

=
bv

(1− p)(n+ 1)
(1− pn+1)− c

=
bv

n+ 1

n∑
k=0

pk − c polynomial division.

(1S.3)

The gain function for p is equal to wG − 〈w〉V,D = wG − wD − q(wV − wD) and one needs to compute the expected
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payoff difference between GLY and DEF cells:

wG − wD =
∑

nG+nV+nD=n

(
n

nG, nV, nD

)
x
nG
G x

nV
V x

nD
D

(
ba

n+ 1
− bvnV

n− nG + 1

)

=
ba

n+ 1
−

(
n∑
l=0

(
n

l

)
pn−l(1− p)l

(
l∑

k=0

(
l

k

)
qk(1− q)l−k bvk

l + 1

))

=
ba

n+ 1
−

n∑
l=0

(
n

l

)
pn−l(1− p)lbvq(1−

1

l + 1
)

=
ba

n+ 1
− bvq +

bvq

(1− p)(n+ 1)
(1− pn+1).

Simplifying the expression for wG − 〈w〉V,D,

wG − 〈w〉V,D = wG − wD − q(wV − wD) (1S.4)

=
ba

n+ 1
− bvq +

bvq

(1− p)(n+ 1)
(1− pn+1)− q

(
bv

(1− p)(n+ 1)
(1− pn+1)− c

)
=

ba
n+ 1

− q(bv − c).

Substituting expressions (1S.3), (1S.4) into (1S.2), we finally obtain the system (2.2) from Box 1 in the main text.


q̇ = q(1− q)

(
bv
n+1

[
n∑
k=0

pk
]
− c
)
,

ṗ = p(1− p)
(

ba
n+1 − (bv − c)q − d

)
.

2S Deriving a Hamilton-Jacobi-Bellman equation

We start by explaining the logic of dynamic programming that yields the HJB PDE (3.4) (Box 2, Section 3.1 in the

main text), and the “bang-bang” property of optimal treatment policies.

Recall that the evolving composition of cancer sub-populations can be fully defined by (q(t), p(t)); see formulas (2.1)

and (2.2). The process is tracked until we cross either a recovery or failure barrier; i.e., until the trajectory leaves

Ω =
(

[0, 1]× [0, 1]
)
\∆, with the terminal set ∆ defined in formula (2.4). For an arbitrary initial state (q0, p0) ∈ Ω,

the goal is to choose our treatment policy to minimize the integral of an instantaneous cost K(d(t)) = d(t) + σ up

to the terminal time T = T (q0, p0, d(·)). I.e., the total cost of starting at (q0, p0) and using a policy d(·) is

J(q0, p0, d(·)) =

T∫
0

K (d(s)) ds + g
(
q
(
T
)
, p
(
T
))
,

where g is the terminal cost specified on ∆ in formula (3.2). The value function u(q0, p0) is the result of minimizing
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J over all available treatment policies, and we say that the policy d∗(·) is optimal if u(q0, p0) = J(q0, p0, d
∗(·)).

Bellman’s Optimality Principle [3] is the key idea of dynamic programming. It states that, if we move along any

optimal trajectory, a remaining (yet to be traversed) part of that trajectory is in itself optimal from our current

configuration/state. In terms of the above model,

u(q0, p0) =

τ∫
0

K (d∗(t)) ds + u
(
q(τ), p(τ)

)
(2S.1)

should hold for every sufficiently small τ > 0. Assuming that the value function u(q, p) and d∗(t) are smooth, one

can use Taylor series and take the limit τ → 0 to obtain

∇u(q0, p0) ·

 q̇(q0, p0, d
∗
0)

ṗ(q0, p0, d
∗
0)

+ d∗0 + σ = 0. (2S.2)

Here d∗0 = d∗(0) is the optimal initial rate of therapy starting from (q0, p0) and (q̇, ṗ) are specified by the right hand

side of the ODEs in (2.2). Since (2S.2) does not involve d∗(t) for any t > 0, it is now natural to switch to a feedback

control perspective based on a state-dependent (rather than explicitly time-dependent) optimal control d∗0(q, p). Since

the latter is a priori unknown, a Hamilton-Jacobi PDE (3.4) is obtained by minimizing over all available control values

d ∈ [0, dmax] and demanding that (2S.2) should hold at every (q, p) ∈ Ω. Additional boundary conditions u = g are

specified on ∆ by (3.5).

The above derivation is merely formal since the value function u is typically non-smooth. Indeed, (3.4) rarely has

classical solutions, and if one considers Lipschitz-continuous weak solutions (by demanding that the PDE should hold

wherever ∇u is defined), one immediately loses the uniqueness. Additional test conditions introduced by Crandall

and Lions [6] are employed to pick out a viscosity solution – the unique weak solution coinciding with the value

function of the original control problem [2]. Convergence to this viscosity solution is also a requirement for all

numerical methods for HJB equations used in control-theoretic applications.

Using the dynamics (2.2) specific to our model, the HJB equation (3.4) can be re-written as follows:

min
d∈[0,dmax]

[ (
1− upp(1− p)

)
d + uqq(1− q)

( bv
n+ 1

n∑
k=0

pk − c
)

+ upp(1− p)
( ba
n+ 1

− q(bv − c)
)

+ σ

]
= 0.

(2S.3)

The linear d-dependence of the minimized expression allows us to find the minimizer in closed form:

d∗ =


dmax, if

(
1− upp(1− p)

)
< 0;

0, otherwise.

(2S.4)
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Therefore, an optimal treatment policy takes only extreme values – either 0 or dmax. This is usually called the

bang-bang property. Using (2S.4) in practice would require knowing up at every point (q, p).

In principle up, can be computed along an optimal trajectory (backwards, from the recovery barrier to our initial

state (q0, p0) without solving the PDE on the entire Ω. This is in a sense the main idea of Pontryagin Maximum

Principle (PMP) [11]. This method will work (and will be much more computationally attractive) as long as u remains

smooth along the optimal trajectory. Unfortunately, the PMP has no way of identifying whether a backward-traced

trajectory passes through a shockline (where ∇u is undefined). In practice, this would result in obtaining locally

(rather than globally) optimal treatment policies; see the example in Figure 3(c). We thus focus on solving the full

HJB equation, yielding a variational formula for d∗(q, p).

3S Numerical methods for the Hamilton-Jacobi-Bellman equation

We obtain an approximate solution to HJB equations on a regular triangulated mesh over the (xD, xG, xV) space; see

Figure 6(b). Since at any moment of time xV(t) ≡ 1−xG(t)−xD(t), it is enough to consider an ODE system for two

sub-populations xD(t) and xG(t). To simplify the notation, we will write


ẏ(t) = f

(
y(t), d(t)

)
,

y(0) = x,

(3S.1)

where y(t) = (xD(t), xG(t)), x = (xD(0), xG(0)) and f(·) denotes the right-hand side of (2.2) in (xD, xG) coordinates

using the transformation (2.1).

Our approximation scheme is based on a first-order accurate semi-Lagrangian discretization [7]. Starting at a

meshpoint x and using control d, we assume that the rate of change is constant for a small time τ , yielding a new

state

x̃d = x+ τf(x, d). (3S.2)

Assuming that the running cost is also constant over that small time interval, one can rewrite Bellman’s optimality

principle as

u(x) = min
d
{τK(d) + u (x̃d)} + o(τ). (3S.3)

Since x̃d is usually not a meshpoint, u (x̃d) is approximated by interpolation using the neighboring meshpoint values.

(This is the key idea of all semi-Lagrangian techniques.) While there are many ways to choose τ, we select it for

each d value individually to guarantee that x̃d lies on a mesh line and only two neighboring values are needed for the

interpolation; a similar approach has been used in [8, 13]. More specifically, suppose that a vector f(x, d) anchored
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at x lies within a triangle xx1dx2d; see Figure 6(a). Then x̃d lies on a segment x1dx2d with

x̃d =
||x2d − x̃d||
||x1d − x2d||

x1d +
||x1d − x̃d||
||x1d − x2d||

x2d and τd =
||x− x̃d||
||f(x, d)||

.

Recalling that only extreme rates d can be optimal due to the bang-bang property, we obtain a coupled system of

discretized equations:

U(x) = min
d∈{0, dmax}

{
||x− x̃d||
||f(x, d)||

K(d) +
||x2d − x̃d||
||x1d − x2d||

U(x1d) +
||x1d − x̃d||
||x1d − x2d||

U(x2d)

}
, (3S.4)

which must hold for each meshpoint x ∈ Ω. The boundary conditions are handled by setting U = 0 when xG < rb

and using any prohibitively expensive∗ exit cost (e.g., U = 105 in our implementation) whenever xG > 1− fb.

In our implementation, the above coupled system of discretized equations is handled by Gauss-Seidel iterations, with

an additional speed up through alternating meshpoint orderings (in a “Fast Sweeping” fashion) [4, 12, 14]. Another

alternative would be to decouple the system dynamically – by selecting larger τd adaptively so that “already known”

mesh values would be sufficient for updating the still-tentatively-known U values. The latter “Ordered Upwind”

approach has been primarily used in problems with geometric dynamics [1, 10, 13] and offers advantages when

optimal trajectories frequently change directions. In the future, it would be interesting to extend it (as well as its

two-scale hybrids with sweeping [5]) to therapy optimization problems, particularly for the case of small σ.

(a) (b)

Figure 6: A Semi-Lagrangian scheme on a triangular mesh.
(a): A semi-Lagrangian discretization in (xD, xG).
(b): Linear transformation yields a regular triangular mesh.

For implementation purposes, it is easier to conduct computations in a Cartesian coordinate system (Figure 6(a)),

which is equivalent to a regular triangular mesh (Figure 6(b)) by a linear transformation. To ensure the accuracy of

∗We are not using U = +∞ in the failure zone (xG > 1 − fb) because of the numerical diffusion stemming from the interpolation in
semi-Lagrangian discretizations.
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the value function in Figure 3(a), we have used n = 9000 meshpoints along one side of the GLY-VOP-DEF triangle,

yielding N = 37 988 686 meshpoints in Ω with rb = fb = 10−1.5. The algorithm terminates when the difference

between value functions in sequential iterations falls below 10−5, which required a total of 62 iterations (sweeps) for

this example.

In the future, we hope to reduce the computational cost by using a higher-order accurate semi-Lagrangian discretiza-

tion [7] on a coarser mesh, employing “Ordered Upwind” techniques to reduce or eliminate the coupling in the

discretized system.

4S Model parameters used in the main text

Figure
Initial state of trajectories Parameters

in (xD, xG, xV) coordinates dmax σ ba bv c n rb = fb

Figure 1 (0.04, 0.9, 0.06) 3 in 1(b) — 2.5 2 1 4 10−1.5

Figure 2 (0.04, 0.9, 0.06) 3 0.01 2.5 2 1 4 10−1.5

Figure 3

(0.04, 0.9, 0.06) in 3(a)

3 0.01 2.5 2 1 4 10−1.5(0.417, 0.311, 0.272) in 3(b) denoted by (*)

(0.35, 0.3, 0.35) in 3(c) denoted by (×)

Figure 4 (0.02, 0.8, 0.18) 0.3 0.03 4 2 1 4
10−1.5 in 4(a),4(b),4(c)

10−1 in 4(d), 4(e)

Figure 5 — 0.3 — 4 2 1 4
10−1.5 in 5(a), 5(b)

10−1 in 5(c), 5(d)

5S Optimization trade-offs: administered drugs vs. time to recovery

The optimal therapy-on regions are clearly dependent on specific values of all model parameters. Here we explore

their dependence on σ and dmax. Recall that, for every policy leading to recovery, the overall cost of treatment is a

sum of the “therapy cost” (i.e., the total amount of drugs administered, D =
T∫
0

d(t)dt) and the treatment-time cost

σT . Since the optimal control is bang-bang, this can be re-written as a weighted sum of the time-till-recovery T , and

the total drug therapy time T̃ ≤ T . That is, for controls based on repeated therapy-off/MTD-level-therapy switches,

we can re-write the overall cost as J = dmaxT̃ + σT, with the ratio between the weights (σ/dmax) representing the

“relative importance” of T and T̃ for the optimization. But the functional role of these weights is quite different:

while σ can be chosen to reflect our preferences, the MTD-rate dmax is dictated by the medical reality, which will

be patient and drug specific. By varying dmax while keeping (σ/dmax) constant, we can study the role played by

the MTD-level in determining optimal policies under a fixed relative preference between the objectives. In Figure 7
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we conduct this experiment for two different initial states and the same set of game parameters (ba = 2.5, bv = 2,

c = 1, n = 4), demonstrating that the value of dmax strongly influences the optimal policies and the shape of the

“therapy-on” yellow regions.

σ = 0.0025,
dmax = 0.75

σ = 0.005,
dmax = 1.5

σ = 0.01,
dmax = 3

σ = 0.08,
dmax = 24

IS
#
1

(a) (b) (c) (d)

IS
#
2

(e) (f) (g) (h)

Parameters
Initial State (IS) #1 :

(xD, xG, xV) = (0.04, 0.9, 0.06)
Initial State #2 :

(xD, xG, xV) = (0.15, 0.5, 0.35)

σ dmax subfigure total time total drugs overall cost subfigure total time total drugs overall cost

0.0025 0.75 (a) 42.7519 2.0808 2.1877 (e) 33.9242 3.0750 3.1598

0.005 1.5 (b) 11.5998 2.1376 2.1956 (f) 33.1649 3.0254 3.1912

0.01 3 (c) 11.5649 2.1306 2.2463 (g) 2.8230 3.1241 3.1524

0.08 24 (d) 10.9820 2.1520 3.0306 (h) 1.8920 3.1490 3.3004

Figure 7: Varying the MTD level affects all optimal trajectories.
Here we illustrate a fixed σ/dmax ratio (with dmax increasing from left to right), which is equivalent to preserving the relevant
importance (trade-off) between the total therapy time T̃ and the total treatment time T. Nevertheless, the optimal drugs-on
regions (in yellow) vary since any changes in dmax also affect the dynamics of the system (2.2).
Parameters: ba = 2.5, bv = 2, c = 1, n = 4; rb = fb = 10−1.5. Two initial states and the (σ, dmax) values are specified in the
table above.

On the other hand, for any fixed/biological dmax value, we can vary σ to study how the trade-off between T̃ and T

affects the optimization. This experiment is conducted for the same two initial states in Figure 8. As we can see,

smaller σ entails larger total time. Intuitively, this happens since it becomes “cheaper” to pause the therapy until we

reach a “better” state to administer the drugs. Larger σ leads to a shorter time-to-recovery T , but also an increase

in the total amount of administered drugs D = dmaxT̃ and a larger therapy-on region (shown in yellow) in the state

space.
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σ = 0.00125,
dmax = 3

σ = 0.01,
dmax = 3

σ = 0.08,
dmax = 3

IS
#
1

(a) (b) (c)

IS
#
2

(d) (e) (f)

Parameters
Initial State (IS) #1 :

(xD, xG, xV) = (0.04, 0.9, 0.06)
Initial State #2 :

(xD, xG, xV) = (0.15, 0.5, 0.35)

σ dmax subfigure total time total drugs overall cost subfigure total time total drugs overall cost

0.00125 3 (a) 11.6363 2.1004 2.1447 (d) 34.4945 3.0713 3.1144

0.01 3 (b) 11.5649 2.1306 2.2463 (e) 2.8230 3.1241 3.1524

0.08 3 (c) 10.9897 2.1574 3.0366 (f) 1.9470 3.1648 3.3206

Figure 8: Different trade-offs (time to recovery vs total drugs) yield different optimal trajectories.
The MTD-rate dmax is fixed while σ increasing from left to right. The ratio (σ/dmax) defines the relevant importance of the
total amount of drugs (therapy cost) d versus the total treatment time T . An increase in σ results in smaller T and larger d
along the optimal trajectories. Parameters: ba = 2.5, bv = 2, c = 1, n = 4; rb = fb = 10−1.5.

6S Incurable areas changing under parameter variation

In Figure 9 we examine the changes in the optimal/minimal incurable area due to variations in the MTD rate and

model parameters.
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(a) (b) (c)

(d) (e) (f)

Subfigure
Parameters

dmax σ ba bv

(a) 0.3 0.03 4 2

(b) 0.2 0.03 4 2

(c) 0.1 0.03 4 2

(d) 0.2 0.01 2.5 2

(e) 0.2 0.01 2.5 1.8

(f) 0.2 0.01 2.5 1.6

Figure 9: Optimal drugs-on regions (in yellow) and incurable areas (in green) changing under parameter
variation. “Incurable” areas can grow due to a decrease in the MTD rate dmax (top row) or a decrease in vascularization
benefits bv (bottom row). Common parameters for the figures: c = 1, n = 4, rb = fb = 10−1.5.

7S Fully angiogenic and glycolyctic tumors

Throughout the paper we have focused on optimizing treatment policies for polyclonal tumors. Under “therapy-off”

policy any trajectory of a polyclonal tumour has periodic dynamics and model parameters satisfy (2.3). Two other

types of tumours are also possible under the model [9]: fully angiogenic and fully glycolyctic.

A tumor has a fully angiogenic regime if max
(

ba
n+1 , cn

)
< bv − c. If the model (2.2) satisfies this condition all cells

tend to switch to VOP type and the trajectory converges to the recovery zone [9]. In some sense, the fully angiogenic

regime is less interesting case for our analysis because even without any therapy a patient will recover. However, the

optimal control analysis still might be useful when, for example, time-penalty is high (a patient wants to recover as

soon as possible) and some amount of drugs can be applied to accelerate the recovery, see Figure 10(a).

A tumor has a fully glycolyctic regime if
ba
n+1 > bv − c, all cells tend to be GLY type cells and trajectories converge

to the failure zone from any initial state. Even if a treatment policy gives some short-term results, the trajectory

will turn towards the failure zone once the therapy is stopped. Nevertheless, crossing the recovery barrier means full

recovery under assumptions of the model [9]. We consider an example of optimal policy for fully glycolyctic tumour

in Figure 10(b).
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(a) (b)

Figure 10: The benefits of optimization in fully angiogenic and glycolyctic cases.
(a): two trajectories under AT strategy in a fully angiogenic tumour. Parameters: ba = 2, bv = 3, c = 1, n = 1; dmax = 3,
σ = 0.3, rb = fb = 10−1.5.
(b): a trajectory under AT strategies in a fully glycolyctic tumour. Parameters: ba = 30, bv = 6, c = 1, n = 4; dmax = 3,
σ = 0.01, rb = fb = 10−1.5.
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