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1 Prime graphs with equal Kirchhoff polynomials – omitted
proofs

Note that we consider in-directed spanning trees as defined in the main text since they are relevant
to derive steady states of linear framework models and not out-directed spanning trees, i.e. rooted
directed spanning trees for which all edges are directed away from a root vertex, as in (1). Additionally,
in (1) rooted directed spanning trees are synonymously termed arborescences. There is a bijection
between the in-directed spanning trees of a graph G and the out-directed spanning trees of the reverse
(with all edges reversed) graph of G. Thus statements on out-directed spanning trees can trivially be
rewritten for in-directed ones and vice versa.

Theorem 3.1. Let G be a prime graph, then each edge in G participates in at least one spanning
tree.

Proof. The theorem statement is equivalent to the statement that there are no nuisance edges, or
formally @e ∈ E(G) such that spt(G/e) = ∅. Assume the contrary, i.e. let e = uv be such that
spt(G/e) = ∅. Such a graph G/e with no spanning trees is either disconnected or has more than one
terminal SCC. Let us investigate the two classes of prime graphs from (1):

• G is strongly connected.
Normal edge contraction, i.e. fusing u and v to obtain a new vertex u∗, cannot disconnect or
introduce a terminal SCC in a strongly connected G. However, the definition of edge contraction
w.r.t. spanning trees requires the deletion of edges out-going from u in G, which we call uwi.
Deleting uwi upon contraction of uv cannot disconnect G since there exists a directed path from
wi to u due to strong connectivity whose existence is not affected by the contraction. Deleting
uwi also cannot lead to more than one terminal SCC but only multiple new initial SCCs (wi
always has an out-degree of at least one and could become part of a new initial SCC when uwi is
its only incoming edge; u∗ can become part of a single terminal SCC). Therefore, spt(G/e) 6= ∅.

• G is a graph rooted at vaux, such that G \ {vaux} is strongly connected and G has no
non-trivial dominators.
Notice that the edges uivaux, ui ∈ V (G) \ {vaux}, always participate in at least one spanning
tree of G since there exists at least one spanning tree A rooted at ui in the strongly connected
G \ {vaux} and, further, adding uivaux to A produces a spanning tree of G. Also, notice that
in this class of prime graphs (apart from the trivial case when the graph is a single edge) at
least two different vertices, e.g. u1, u2 ∈ V (G) \ {vaux}, form an edge with vaux. If there is a
single edge containing vaux, e.g. u1vaux, u1 would dominate V (G) \ {vaux, u1} and thus G has
non-trivial dominators.Therefore, e cannot be any of uivaux.
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Thus let e = uv(u, v ∈ V (G)\{vaux}). Again, this means that contracting uv either disconnects
G or creates at least one additional terminal SCC in it (by definition the only terminal SCC is
vaux). Contraction of uv deletes out-going edges from u, which we again call uwi.
By deleting uwi (wi could also be vaux) we cannot disconnect G since, first, there exists a path
from wi to u in the strongly connected G \ {vaux} and, second, there exists a path from v to
vaux not passing through u (and thus also from the fused u∗ to vaux after the edge deletions
induced by the edge contraction are applied) due to the lack of non-trivial dominators. Deleting
uwi also cannot create more than one terminal SCC but only initial SCCs. As before, wi could
become part of new initial SCCs and there could be at most one terminal SCC due to the
existence of a directed path from v to vaux not passing through u. Therefore, spt(G/e) 6= ∅.

Theorem 3.6. Two prime graphs G and H are λ-isomorphic iff the edge sets of their line graphs
are equal, i.e. G 'λ H ⇔ E(L (G)) = E(L (H)).

Proof. The proof follows from (2), Theorem 2, which states that there is a one-to-one correspondence
between the set of all graphs with at most one vertex of out-degree zero and at most one vertex of
in-degree zero and no isolated vertices, and the set of all line graphs. Prime graphs are either strongly
connected or have a single vertex of in-degree zero when considering out-directed spanning trees (and
a single vertex of out-degree zero for in-directed spanning trees). Therefore, there is a one-to-one
correspondence between prime graphs and the set of all line graphs. This means λ-isomorphic prime
graphs bijectively map to the same line graph (defined by the set of its edges).

2 Limitations of Kirchhoff polynomial coarse-graining
The conditions from Corollary 3.2 and Corollary 3.7 are not necessary and sufficient in general, but
they could be such in certain cases. For example, when we compare the Kirchhoff polynomials of
two prime graphs G1 and G2 obtained from the same graph G by means of edge deletion and prime
decomposition we can be sure that they have the same Kirchhoff polynomials iff they have equal
edge label sets. This is because starting from a common uniquely labelled graph G, edge deletions
and prime decomposition (partition of edges) do not change the comparative topology of G1 and G2.
An example for such expressions derived from a single graph by means of edge deletion and prime
decomposition are the steady-state expressions of open LFMs – their numerator and denominator
contain Kirchhoff polynomials of rooted graphs which could possibly be prime decomposable. Edge
contractions, however, have the capacity to permute the edges and lead to the examples in Figure 3.

Note that simplification on a lower or higher level from the coarse-graining could be possible,
which prevents full simplification of an expression of Kirchhoff polynomials. One such instance is
the difference between two prime Kirchhoff polynomials which share monomials (the corresponding
graphs share spanning trees). The common monomials will cancel out if the Kirchhoff polynomials
are written in explicit form but cannot be cancelled in the coarse-grained representation. Partially
developing the prime Kirchhoff polynomials, e.g. using the edge deletion-contraction identity, to sums
containing the shared monomials could often turn to be lengthy. Another instance is when the sum
or difference can be reduced by combining Kirchhoff polynomials to form the Kirchhoff polynomial of
another graph. For example, according to the edge deletion-contraction identity if we identify graphs
G \ e and G/e in the expression κ(G \ e) + `(e)κ(G/e) we can simplify it to κ(G). Other variations
of this identity are also possible, e.g. the expression κ(G)−κ(G\e)

`(e) can be written simply as κ(G/e).

3 Calculus of Kirchhoff polynomials
Taking the partial derivative of a Kirchhoff polynomial with respect to a reaction rate constant `(e)
corresponding to the label of edge e is equivalent to edge contraction in the corresponding graph as
shown by Identity 3.1.

Identity 3.1.
∂κ(G)
∂`(e) = κ(G/e).
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Derivation.
∂κ(G)
∂`(e) = ∂

∂`(e) (κ(G \ e) + `(e)κ(G/e)) = ∂

∂`(e)κ(G \ e) + ∂

∂`(e) (`(e)κ(G/e)) = κ(G/e).

�
We can also derive a differentiation rule for graphs with an available prime decomposition. Then,

since prime decomposition is a partition of labels, we need only contract the edge in a single prime
component.
Identity 3.2.

∂κ(G)
∂`(e) = κ(P1/e)

n∏
i=2

κ(Pi),

where P1 is the single prime component of G containing e and Pi are the remaining n − 1 prime
components.

Along the same lines, we can derive a formula for the ratio of Kirchhoff polynomials composed of
two graphs G and H.
Identity 3.3. Let the prime factorisation of the Kirchhoff polynomials κ(G) and κ(H) be κ(G) =∏n
i=1 κ(Pi) and κ(H) =

∏m
j=1 κ(Qj), then:

∂

∂`(e)
κ(G)
κ(H) =

∏n
i=2 κ(Pi)

κ(Q1)2∏m
j=2 κ(Qj)

(κ(P1/e)κ(Q1)− κ(P1)κ(Q1/e)) ,

where P1 and Q1 are the prime components of G and H, correspondingly, containing e.
Derivation.

∂

∂e

κ(G)
κ(H) =

κ(P1/e)
∏n
i=2 κ(Pi)

∏m
j=1 κ(Qj)− κ(Q1/e)

∏n
i=1 κ(Pi)

∏m
j=2 κ(Qj)

[
∏m
j=1 κ(Qj)]2

=
∏n
i=2 κ(Pi)

∏m
j=2 κ(Qj)

[
∏m
j=1 κ(Qj)]2

(κ(P1/e)κ(Q1)− κ(P1)κ(Q1/e))

=
∏n
i=2 κ(Pi)

κ(Q1)2∏m
j=2 κ(Qj)

(κ(P1/e)κ(Q1)− κ(P1)κ(Q1/e)) .

�
It could be possible to further factorise the differentiated expressions since edge contraction could

change graph connectivity.
Integrating a Kirchhoff polynomial with respect to a label `(e) corresponding to an edge e is

equivalent to multiplication by `(e) and edge relabelling in the corresponding graph as seen from
Identity 3.4.
Identity 3.4. ∫

κ(G)d`(e) = `(e)κ(G`(e)←
`(e)

2 ) + C,

where C is the integration constant and `(e) ← `(e)
2 denotes a relabelling operation replacing the

label of e by the same label divided by two, e.g. if the old label was `(e) = r1 the new would be
`(e) = r1

2 .
Derivation.∫
κ(G)d`(e) =

∫
(κ(G \ e) + `(e)κ(G/e))d`(e) =

∫
κ(G \ e)d`(e) +

∫
`(e)κ(G/e)d`(e) =

= `(e)κ(G \ e) + C1 + κ(G/e)
∫
`(e)d`(e) = `(e)κ(G \ e) + C1 + `(e)2

2 κ(G/e) + C2 =

= `(e)
(
κ(G \ e) + `(e)

2 κ(G/e)
)

+ C1 + C2 = `(e)κ(G`(e)←
`(e)

2 ) + C.

�
Note that integration does not change the factorisation properties of G since its connectivity

remains unchanged and that the labels remain unique unless `(e)
2 is already labelling another edge in

the graph.
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4 Generation of Kirchhoff polynomials
By GetPrimeDecomposition we denote the function taking a graph and returning its prime com-
ponents, whose pseudocode can be found in (1). Also, we abbreviate directed graphs as digraphs.

Algorithm 1 Recursive compressed generation of Kirchhoff polynomials through prime decomposi-
tion and edge deletion-contraction.

1: function CR(G)
2: if κ(G) == 0 then
3: return 0
4: end if
5: if |V (G)| ≤ 2 then
6: return GenKirchPolBaseCase(G)
7: end if
8: F← []
9: for all primeComponent ∈ GetPrimeDecomposition(G) do

10: H← GenKirchPolInPrimeComponent(primeComponent)
11: F.append(H)
12: end for
13: return Multiply(F) . n-ary multiplication
14: end function
15:
16: function GenKirchPolInPrimeComponent(G)
17: if |V (G)| ≤ 2 then
18: return GenKirchPolBaseCase(G)
19: end if
20: e← GetEdgeForDelContr(G)
21: kirchPolEdgeDelDigraph← CR(G \ e)
22: kirchPolEdge← GenKirchPolBaseCase(e)
23: kirchPolEdgeContrDigraph← CR(G/e)
24: return Add(kirchPolEdgeDelDigraph,Multiply(kirchPolEdge, kirchPolEdgeContrDigraph))
25: end function
26:
27: function GenKirchPolBaseCase(G)
28: if κ(G) == 0 then
29: return 0
30: end if
31: if |V (G)| == 1 then
32: return 1
33: end if
34: F← []
35: for all e ∈ E(G) do
36: F.append(`(e))
37: end for
38: return Add(F) . n-ary addition
39: end function
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Algorithm 2 Iterative compressed generation of Kirchhoff polynomials through prime decomposition,
edge deletion-contraction, and change of variables.

1: function CI(G)
2: G.pointer← startPointer . every digraph has a unique pointer
3: (P,R)← GenImplicitKirchPol(G)
4: Q← Queue()
5: Q.enqueue(startPointer)
6: result← []
7: while Q not empty do
8: currPointer← Q.dequeue()
9: currExpr← R.retrieveExpression(currPointer) . currExpr is an expression tree

10: result.append((currPointer,Assemble(P,R,Q, currExpr))) . pass Q by reference
11: end while
12: return result
13: end function
14:
15: function GenImplicitKirchPol(G)
16: Q← Queue()
17: Q.enqueue(G)
18: (P,R)← ([], []) . P remembers already processed digraphs and R holds the results
19: while Q not empty do
20: H← Q.dequeue()
21: primeComps← GetPrimeDecomposition(H)
22: if H not prime OR κ(H) == 0 OR κ(H) == 1 then
23: pointers← GetPointers(primeComps) . list of primeComps’s pointers; returns 0 or 1

if κ(H) == 0 or κ(H) == 1, respectively; calls base case
24: expr←Multiply(pointers)
25: R.append((H.pointer, expr))
26: end if
27: if κ(H) 6= 0 AND κ(H) 6= 1 then
28: for all D ∈ primeComponents do
29: if |V (D)| ≤ 2 then . base case
30: R.append((D.pointer,GenKirchPolBaseCase(D)))
31: else
32: if ∃ i: EQL(D,Pi,0) then . EQL() tests Kirchhoff polynomial equality
33: Pi,1.append(D.pointer)
34: else . digraph not investigated yet
35: P.append((D, []))
36: e← GetEdgeForDelContr(D)
37: (DDelE,E,DContrE)← (D \ e,GenKirchPolBaseCase(e),D/e)
38: expr← Add(DDelE.pointer,Multiply(E,DContrE.pointer))
39: R.append((D.pointer, expr))
40: Q.enqueue(DDelE,DContrE)
41: end if
42: end if
43: end for
44: end if
45: end while
46: P ← RemoveUnmatchedDigarphs(P )
47: return (P,R)
48: end function
49:

As in CR, given a graph G, CI alternates between prime decomposition and edge deletion-
contraction to reduce the Kirchhoff polynomial generation problem to several smaller ones. However,
in CI a unique pointer is associated to every graph under study, and CI adds the reduced graphs to a
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Algorithm 2 Continued.
50: function Assemble(P,R, Q, currExpr)
51: if currExpr is Multiply or Add then
52: newChildren← []
53: for all childExpr ∈ currExpr.children do
54: newChildren.append(Assemble(P,R,Q, childExpr))
55: end for
56: currExpr.children← newChildren
57: else if currExpr is a pointer then
58: if ∃i : currExpr == Pi,0.pointer then
59: Q.enqueue(currExpr)
60: else if ∃p and j : p ∈ Pj,1 and currExpr == p then
61: currExpr← Pj,0.pointer
62: else
63: newExpr← R.retrieveExpression(currExpr)
64: return Assemble(P,R, Q, newExpr)
65: end if
66: end if
67: return currExpr
68: end function

queue for further reduction, simultaneously remembering the partial expression tree they participate
in. A partial expression tree is such a tree in which leaves could correspond to Kirchhoff polynomials.
For example, the deletion-contraction identity from Equation 6 provides a partial expression tree in
which two leaves are Kirchhoff polynomials, κ(G \ e) and κ(G/e), and one is an edge label `(e). Thus
this tree can be remembered after substituting κ(G \ e) and κ(G/e) with their pointers, and the
graphs corresponding to these Kirchhoff polynomials can be taken for further reduction. Addition-
ally, during the reduction procedure every prime component is compared to all previously encountered
prime components using the criteria from Corollary 3.2 and Corollary 3.7. If the equality of a prime
component’s Kirchhoff polynomial to a previously considered graph’s Kirchhoff polynomial cannot be
certified, then the prime component is taken for further reduction. In contrast, if a prime component
and a previously encountered graph H have equal Kirchhoff polynomials, then the reduction of the
prime component is discontinued and its Kirchhoff polynomial is substituted with the pointer of H,
thus marking the identity. Algebraically this is equivalent to a change of variables – substituting
identical parts of the Kirchhoff polynomial with identical symbols and explicitly generating them
only once (see Figure 2d for an example). The reduction procedure again continues until graphs are
reduced to a single vertex or a single edge and produces a set of partial expression trees.

The partial expression trees are then assembled. The assembly starts from the given graph G (with
pointer S) and its partial expression tree which is sequentially merged with the partial expression trees
of its reduced graphs. The merging proceeds if the current reduced graph has not been matched with
another graph with identical Kirchhoff polynomial. If a match is present, then the partial expression
tree of the reduced graph is substituted with the pointer, e.g. X, (as a variable) of a predetermined
graph with an equal Kirchhoff polynomial encountered during the reduction procedure (could be
the current graph itself) and merging is discontinued. Simultaneously, another assembly is initiated
starting from X and its corresponding graph to obtain a forest of expressions marked with the
pointers of the initializing graphs as in Figure 2d. This forest of expression trees corresponds to a
set of Kirchhoff polynomials, which after being substituted into each other give rise to the complete
Kirchhoff polynomial of the given graph G.

Note that substitution is unnecessary when evaluating the Kirchhoff polynomial for a given set
of edge label values. There exists a sequence obtainable in linear time in which the expression trees
from the forest can be evaluated such that there are no uncalculated pointer variables during the
evaluation. The reason is that the expression trees in the forest can be thought of as arranged in
a directed acyclic graph, with vertices being the trees themselves and edges being the change of
variables directed relations, which can always be topologically sorted.
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Figure S1: Example graph G used in Figure 2.
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Figure S2: Simplification of expressions of Kirchhoff polynomials in the coarse-grained representation.
(a) A graph G for the PHGS catalytic cycle (see COX in Table S1) from (3) and (b) the steady-state
ratio of species E21 and E17 obtained through simplification of the coarse-grained representation.
Coloured vertices (arrows) denote species of interest (reactions contained in the simplified ratio).
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5 Description of used heuristics

Box 1 Heuristics.

i.) Edges E′(G):

0. A single randomly selected edge e, E′(G) = {e}.

1. All edges, E′(G) = E(G).

2. Edges participating in the longest simple cycle.

3. The |E(G)|/n, n = 3 edges participating in the largest number of simple cycles.

ii.) Branch:

0. Edge deleted graph, G \ e.

1. Edge contracted graph, G/e.

2. Edge deleted and edge contracted graphs, (G \ e,G/e).

iii.) Components:

0. Strongly connected components.

1. Prime components.

iv.) Optimality criterion:

0. Largest number of components.

1. Largest component (in terms of number of vertices) is smallest.

2. Largest component (in terms of number of edges) is smallest.

3. Smallest total complexity (number of arborescences) of the components.

4. Smallest total complexity with the largest (same) number of components.

5. Largest number of components with the (same) smallest total complexity.

We consider each heuristic to be composed of a four-step procedure. We propose several choices
of sub-heuristics for each step. The set of all heuristics of interest contains all combinations of these
sub-heuristics at the different steps of the procedure. Formally, we use the same heuristic H for the
whole reduction process of a given input graph and we explore all 108 combinations of sub-heuristics,
which we call connectivity-informed heuristics. In addition, one heuristic, denoted by H = 0 ∗ ∗∗,
selects a random edge, uninformed by the graph connectivity.

More precisely, the procedure is (see also Box 1 for a more concise description):

(i) Pre-select a subset of edges E′(G) ⊆ E(G).
This subset could be a single randomly picked edge (leading to a random connectivity-uninformed
heuristic), all edges, or a subset of edges connected to the graph cycle structure (aiming to break
open many or large cycles).

(ii) Apply edge deletion-contraction to G for each e ∈ E′(G) and decide which branch of the
deletion-contraction tree to consider, i.e. the edge deleted graph G \ e, the edge contracted
graph G/e, or both (G \ e,G/e).
This is required since edge contraction could also lead to edge deletions and thus to further
prime decomposition.

(iii) Choose whether to decompose the graphs in the considered edge deletion-contraction branch(es)
to strongly connected components or to prime components.
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SCC decomposition alone leads to Kirchhoff polynomial factorisation which is not guaranteed
to be prime. Yet we include it as a sub-heuristic due to recent results in strong connectivity
allowing to retrieve all strong bridges (4), the total number of SCCs, and the size of the largest
and of the smallest SCCs obtained after edge deletion in linear time (5). Note that, in order to
have comparable running times when decomposing into prime components and SCCs, we naively
delete-contract each considered edge and do not employ the mentioned recent advancements.

(iv) Calculate a score on the graph decomposition and pick the edge producing an optimal score.
The score is based on the number, size distribution (in terms of number of vertices or edges),
and complexity (number of spanning trees) of components in the selected branch(es) of the
deletion-contraction tree. The scores from the decompositions of G \ e and G/e are summed
when both branches are taken into account. We choose the edge whose deletion leads to a
decomposition in which there are the largest number of SCCs/prime components, the largest
component is the smallest, the total complexity is the smallest, or there are the largest number
of components with the smallest total complexity.

We describe each heuristic by four integers, where each integer marks the choice of a sub-heuristic.
See Box 1 for the identifiers of each sub-heuristic we consider. For example, the heuristic H = 2205
translates to a procedure in which we:

(i) 2: Find the longest simple cycle S in the input graph G and take its edges E(S).

(ii) 2: For every e ∈ E(S) we apply deletion-contraction to obtain the graphs from both branches
of the deletion-contraction tree, G \ e and G/e.

(iii) 0: Obtain the strongly connected components for every G \ e and G/e and add them to a list
pe.

(iv) 5: Pick the edge producing the list pe with the largest length and return the edge e. If there are
several lists having the same length, we pick the one with the smallest total sum of component
complexities and return the corresponding edge e.

6 Collection of graphs

Table S1: A collection of example graphs, ordered by their complexity (number of spanning trees).
Shown are the graph aliases (under G), number of vertices |V |, number of edges |E|, number of
spanning trees |spt(G)|, and a short description of the model from which the graph was extracted.
Note that during graph extraction all algebraic expressions in edge labels are taken as uninterpreted
symbols. Additionally, some models may not satisfy all linear framework requirements, e.g. the time-
scale separation assumption, or assume that equilibrium steady states are biologically relevant due to
lack of evidence for energy dissipation or simpler algebraic derivations. Still, endowing their graphs
with non-equilibrium Laplacian dynamics and deriving their Kirchhoff polynomials, could facilitate
the understanding of their steady-state information processing capabilities and aims to inspire future
applications employing the theory and algorithms developed in this work.

G |V | |E| |spt(G)| Description

COLE1 6 10 26 Kinetic scheme of the ColE1 plasmids non-
equilibrium replication control mechanism
from (6).

AMPAR 7 14 30 State transition diagram of the AMPA recep-
tor trafficking model from (7). This model
is part of a signalling pathway model of
corticostriatal spines that express D1-type
dopamine receptors.
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Table S1 Continued:

G |V | |E| |spt(G)| Description

MDH 9 18 141 Proposed non-equilibrium kinetic
mechanism for the reaction cycle of
M.methylotrophus methanol dehydrogenase
(MDH) with ammonium as activator from
(8).

ACTMYO 10 20 356 State transition diagram detailing the inter-
action of actin and myosin from (9). The
diagram is part of a model including calcium
binding to troponin C and two configurations
of tropomyosin.

KNF33 9 24 1, 728 General allosteric model of ATP hydrolysis
and competitive inhibition at two binding
sites (10). Allostery is usually assumed to be
happening at thermodynamic equilibrium,
partly because of the simpler steady state
derivations (11). However, non-equilibrium
allosteric models have also been of interest
(12).

SHPIL 10 26 4, 560 Model describing early IL-6 induced signal-
ing. Model M0 from (13) in which time-scale
separation is not assumed.

GR 13 32 5, 057 Scheme for the catalytic mechanism of glu-
tathione reductase (GR) from (14). Rapid
equilibrium was assumed in the original
model to simplify kinetic flux derivations.

PHO5 12 35 53, 376 A non-equilibrium linear framework model
for the regulation of yeast PHO5 gene from
(15).

RND 14 36 69, 120 Random Ter-Ter mechanism from (16). In
the original model, rapid equilibrium was as-
sumed for some reactions.

TF 25 49 1, 549, 872 Largest strongly connected component of
the transcription factor network of Saccha-
romyces cerevisiae extracted from (17). The
network has not originally been endowed
with Laplacian dynamics but deriving its
Kirchhoff polynomial could be instructive
when analysing its topological properties,
e.g. when calcualating the spanning tree cen-
trality of its vertices (18).

HC4 16 60 42, 467, 328 Four dimensional hypercube graph rooted
at a vertex (the specific rooting does not
matter due to symmetry). It represents a
generic linear framework transcription regu-
lation model for a gene with a promoter con-
taining four transcription factor binding sites
(19).

COXD 30 117 12, 254, 915, 821, 568, 674 Example COX rooted at the environment
vertex, i.e. rt∅(COX), which is the graph
in the denominator of the steady-state ex-
pression for COX.
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Table S1 Continued:

G |V | |E| |spt(G)| Description
COX 30 118 24, 509, 831, 643, 137, 316 Scheme of the catalytic cycle of PGHS con-

sidering inhibition by NSAID from (3), Fig-
ure 1 (model obtained by personal commu-
nication with Alexey Goltsov, November,
2015).

7 Kirchhoff polynomial generation results
We obtained the compression and average running time (from 10 runs) for each example graph
from Table S1 using the 108 connectivity-informed heuristics with each algorithm, CR and CI . The
connectivity-uninformed random heuristic H = 0 ∗ ∗∗ was run 20 times on each low complexity
example for both CR and CI .

To understand the heuristics’ influence, we contrasted the algorithms’ performance using the
random uninformed heuristic H = 0 ∗ ∗∗ with the informed heuristics incorporating directed graph
connectivity information. Performance results are shown in Figure S5. They indicate that several runs
with the uninformed heuristic suffice to generate highly compressed Kirchhoff polynomials in short
time for examples of low complexity, possibly due to the lack of computational overhead required for
the informed heuristics. However, for more complex graphs, the random heuristic quickly deteriorates,
becoming orders of magnitude worse than the informed heuristics. This behaviour is expected since
compressibility depends on graph connectivity and it becomes less probable to randomly pick an
appropriate set of edges for deletion-contraction in larger graphs without any connectivity information.
Additionally, note that running time and compression correlate inversely and that the correlation
becomes more pronounced when the model complexity increases.

To assess the relative efficiency of the heuristics applied on the collection of less complex examples
we normalized the performance measures over all heuristics separately for each example and divided
them into groups. The resulting box plots for algorithm CI can be seen in Figure S3. The results
for CR are similar and are presented in Figure S4. We observe that some sub-heuristics, on average,
perform better both in running time and compression on the collection of examples. We performed the
non-parametric Kruskal-Wallis H-test which showed that in every group there was at least one choice
for a sub-heuristic dominating the others, with the exception of the compression results of group “(iii)
Components” in which no sub-heuristic dominates. Post-hoc comparisons of sub-heuristic choices
using the Wilcoxon signed-rank test revealed that focusing deletion-contraction to edges relevant to
the cycle structure of the graphs (sub-heuristics (i) 2 and (i) 3), considering the edge deleted graphs
(sub-heuristic (ii) 0) and strongly connected components (sub-heuristic (iii) 0), and not picking sub-
heuristic (iv) 2 leads to significantly shorter running time and larger compression on average (see
Table S2 and Table S3 for results). A limitation in the significance analysis is the different skewness
of the data and the dependency between the sub-heuristics, e.g. a good optimality criterion choice
cannot remedy a bad edge subset choice. Thus we cannot conclude that a given heuristic, e.g.
H = 3002, always leads to fast running time and good compression.
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Figure S3: Comparison of the normalised running time and compression distributions on the set of
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Table S2: Significance levels (p-values) of the different choices of sub-heuristics for the running time
results of algorithm CI on the less complex set of graph examples. The non-parametric Kruskal-
Wallis H-test was applied along with post hoc pair comparisons using the Wilcoxon signed-rank test
to determine whether the samples originate from the same distribution.

Test (i) Edges (ii) Branch (iii) Components (iv) Optimality
pair p-value pair p-value pair p-value pair p-value

Kruskal-
Wallis
H-test

– 1.37e-88 – 2.91e-14 – 1.30e-16 – 1.14e-19

W
ilc

ox
on

sig
ne

d-
ra

nk
te

st

(1, 2) 3.87e-55 (0, 1) 5.39e-07 (0, 1) 5.50e-72 (0, 1) 7.35e-01
(1, 3) 4.10e-58 (0, 2) 1.64e-34 (0, 2) 4.94e-03
(2, 3) 3.38e-28 (1, 2) 4.08e-09 (0, 3) 8.47e-21

(0, 4) 4.99e-17
(0, 5) 5.30e-20
(1, 2) 2.60e-03
(1, 3) 6.47e-20
(1, 4) 1.19e-14
(1, 5) 3.59e-19
(2, 3) 3.59e-28
(2, 4) 3.39e-23
(2, 5) 1.26e-27
(3, 4) 4.61e-10
(3, 5) 1.44e-02
(4, 5) 5.38e-07

Table S3: Significance levels (p-values) of the different choices of sub-heuristics for the compression
results of algorithm CI on the less complex set of graph examples.

Test (i) Edges (ii) Branch (iii) Components (iv) Optimality
pair p-value pair p-value pair p-value pair p-value

Kruskal-
Wallis
H-test

– 4.15e-05 – 4.55e-33 – 1.01e-01 – 2.13e-02

W
ilc

ox
on

sig
ne

d-
ra

nk
te

st

(1, 2) 9.08e-07 (0, 1) 9.41e-18 (0, 1) 1.78e-04 (0, 1) 7.75e-01
(1, 3) 4.47e-08 (0, 2) 9.03e-01 (0, 2) 4.87e-01
(2, 3) 5.14e-02 (1, 2) 8.67e-36 (0, 3) 1.77e-03

(0, 4) 4.61e-01
(0, 5) 7.73e-02
(1, 2) 2.85e-02
(1, 3) 8.33e-03
(1, 4) 5.49e-01
(1, 5) 2.01e-01
(2, 3) 2.35e-10
(2, 4) 7.08e-01
(2, 5) 5.21e-05
(3, 4) 7.52e-08
(3, 5) 8.66e-04
(4, 5) 8.69e-05
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8 Calculation of the position-steepness regions
To obtain boundaries of position-steepness regions we strictly follow the definitions and methods
described in (19), with the exception of i) gene regulatory function (GRF) derivation, for which we
apply the methods and algorithms developed in this work and ii) the boundary expansion algorithm,
to which we apply changes that we empirically found to be more effective for the expansion in models
with large parameter spaces.

8.1 Compressed GRF derivation
We derive the symbolic non-equilibrium GRFs for hypercube linear framework models with n = 2, 3, 4
binding sites using the compressed Kirchhoff polynomial generation algorithm CI with heuristic 1001
implemented in KirchPy. We exemplify the compressed derivation results for the n = 3 sites model,
which can be seen in Figure S6, since the symbolic GRF of the n = 4 sites model is too lengthy to
include despite its 2000 times compression.
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Figure S6: A linear framework model for a transcription factor (TF) binding to n = 3 DNA sites.
The corresponding cube graph contains 8 vertices denoting DNA microstates, where each microstate
is a pattern of bound TFs. Patterns are encoded in the vertex labels. For example, vertex label
101 denotes a DNA microstate, in which the first and last binding sites are bound to a TF, while
the site between them is free. Edges denote transitions between microstates. Edge labels contain
transition rates with x standing for TF concentration and rs are rate constants; r’s subscripts name
the corresponding transitions, e.g. r101001 is in the label of the transition edge between microstates
101 and 001.

Considering graph G from Figure S6 and the all-or-nothing expression strategy, we express the
steady-state probability of the all-bound microstate 111, denoted as p111, as a function of TF con-
centration x:

p111(x) = κv111(G)∑
vξ∈V (G) κvξ(G) ,

where ξ marks TF binding patterns.
Observe that all rooted polynomials of G, κvξ(G), are isomorphic to each other. Thus we can

obtain mappings between the labels of, e.g. κv111(G), and the labels of any other κvξ(G). We define a
template function TemplateHypercube3 taking a set of labels and returning the Kirchhoff polynomial
κv111(G) with labels substituted according to the isomorphic mapping. In consequence, due to the
symmetry of hypercube graphs, we need only generate a template Kirchhoff polynomial from a single
rooted graph and call it with the appropriate labels, in order to evaluate any rooted polynomial. The
resulting code used for the derivation of GRFs is shown in Listing S1. It produces symbolic GRFs
in terms of the TF concentration variable such as those in Listing S2. In contrast to the numerical
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approach taken in (19), we extract the position and steepness features from these symbolic GRFs by
taking symbolic derivatives, which is more efficient and less prone to numerical errors.

Note that identifying symmetries and isomorphism in LFMs can reduce Kirchhoff polynomial
generation time and yield a shorter representation. However, unlike our compression methods, iso-
morphism does not offer speed-ups to numerical evaluation since it does not reduce the number of
arithmetic operations.

Listing S1: A Mathematica function for the derivation of GRFs with n=3 binding sites and the
all-or-nothing expression strategy as a function of TF concentration x.

1 AllOrNothing3 [ parVect_ ]:= Module [{ r000001 ,r000010 ,r000100 ,r001000 ,r001011 ,r001101 ,
r010000 ,r010011 ,r010110 ,r011001 ,r011010 ,r011111 ,r100000 ,r100101 ,r100110 ,r101001 ,
r101100 ,r101111 ,r110010 ,r110100 ,r110111 ,r111011 ,r111101 ,r111110 ,root010 ,root011 ,
root001 ,root000 ,root111 ,root110 ,root100 ,root101 , response },

2

3 (* r -- transition rate between two states ,e.g. r001101 denotes the label associated
to edge 001 - >101 *)

4

5 (* non - deminsionalisation of rate constants *)
6 r100000 = 1;
7 r000100 = 1;
8

9 (* 22 transition rates as free variables *)
10 r000001 = parVect [[1]];
11 r000010 = parVect [[2]];
12 r001000 = parVect [[3]];
13 r001011 = parVect [[4]];
14 r001101 = parVect [[5]];
15 r010000 = parVect [[6]];
16 r010011 = parVect [[7]];
17 r010110 = parVect [[8]];
18 r011001 = parVect [[9]];
19 r011010 = parVect [[10]];
20 r011111 = parVect [[11]];
21 r100101 = parVect [[12]];
22 r100110 = parVect [[13]];
23 r101001 = parVect [[14]];
24 r101100 = parVect [[15]];
25 r101111 = parVect [[16]];
26 r110010 = parVect [[17]];
27 r110100 = parVect [[18]];
28 r110111 = parVect [[19]];
29 r111011 = parVect [[20]];
30 r111101 = parVect [[21]];
31 r111110 = parVect [[22]];
32

33 (* x -- transcription factor concentration taken as a symbolic variable *)
34 (* root -- Kirchhoff polynomials rooted at each of the vertices of the cube model ,

obtained by calling the template function with the appropriate input determined by
the isomorphism between rooted graphs in G *)

35

36 root010 = TemplateHypercube3 [r110100 , r110111 *x, r001101 *x,r001000 , r000100 *x, r000010 *x,
r000001 *x,r101100 , r101111 *x,r101001 ,r111110 ,r111101 ,r110010 ,r111011 , r011111 *x,
r011001 ,r011010 , r100110 *x, r100101 *x,r100000 , r001011 *x];

37 root011 = TemplateHypercube3 [r001000 , r001101 *x,r110100 ,r110010 ,r010000 , r010011 *x,
r010110 *x,r100000 , r100101 *x, r100110 *x,r101001 ,r101100 , r001011 *x, r101111 *x,r111101 ,
r111110 ,r111011 , r000001 *x, r000100 *x, r000010 *x, r110111 *x];

38 root001 = TemplateHypercube3 [ r000100 *x, r000010 *x,r111110 ,r111101 ,r101100 ,r101001 ,
r101111 *x,r110100 ,r110010 , r110111 *x,r010000 , r010110 *x, r000001 *x, r010011 *x,r011010 ,
r011111 *x,r011001 ,r100000 , r100110 *x, r100101 *x, r111011 ];

39 root000 = TemplateHypercube3 [ r010110 *x, r010011 *x, r101111 *x,r101100 , r100110 *x,r100000 ,
r100101 *x,r111110 ,r111011 ,r111101 ,r011010 , r011111 *x,r010000 ,r011001 , r001011 *x,
r001101 *x,r001000 ,r110010 , r110111 *x,r110100 , r101001 ];

40 root111 = TemplateHypercube3 [r101100 ,r101001 ,r010000 , r010110 *x,r110100 , r110111 *x,
r110010 , r000100 *x, r000001 *x, r000010 *x, r001101 *x,r001000 , r101111 *x, r001011 *x,
r011001 ,r011010 , r011111 *x, r100101 *x,r100000 , r100110 *x, r010011 *x];

41 root110 = TemplateHypercube3 [r111101 ,r111011 , r000001 *x, r000100 *x, r100101 *x, r100110 *x,
r100000 , r001101 *x, r001011 *x,r001000 , r011111 *x,r011001 ,r111110 ,r011010 , r010011 *x,
r010000 , r010110 *x, r101111 *x,r101001 ,r101100 , r000010 *x];

42 root100 = TemplateHypercube3 [ r101111 *x,r101001 , r010011 *x, r010110 *x, r110111 *x,r110100 ,
r110010 , r011111 *x,r011001 ,r011010 , r001101 *x, r001011 *x,r101100 ,r001000 , r000001 *x,
r000010 *x, r000100 *x,r111101 ,r111011 ,r111110 , r010000 ];

43 root101 = TemplateHypercube3 [ r100110 *x,r100000 ,r011010 , r011111 *x,r111110 ,r111101 ,
r111011 , r010110 *x,r010000 , r010011 *x, r000100 *x, r000010 *x, r100101 *x, r000001 *x,
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r001000 , r001011 *x, r001101 *x,r110100 ,r110010 , r110111 *x, r011001 ];
44

45 response = ( root111 )/ Collect [ root010 + root011 + root001 + root000 + root111 + root110 + root100 +
root101 ,x];

46

47 Return [ response ];
48 ];
49

50 TemplateHypercube3 [G0_ ,G1_ ,G10_ ,G11_ ,G12_ ,G13_ ,G14_ ,G15_ ,G16_ ,G17_ ,G18_ ,G19_ ,G2_ ,G20_
,G3_ ,G4_ ,G5_ ,G6_ ,G7_ ,G8_ ,G9_ ]:= Module [{ psi61 ,psi34 ,psi75 , start },

51 (* template expression -- Kirchhoff polynomial rooted at a vertex *)
52

53 psi61 = Collect [(( G8+G7+G6)*( G1+G2)+G0 *( G8+G7)),x];
54 psi34 = Collect [( psi61 *( G14+G13)+G12 *(( G7+G6)*( G1+G2)+G0*G7)),x];
55 psi75 = Collect [(( G20+G18)*( G0+G2)+G1*G20),x];
56 start = Collect [( G10 *(( G3+G4+G5)*(( G12+G14+G13)*((( G15+G16)*G6+G7*G16)*G18+G19*G15*G6

)*G2+G8 *((( G19+G18)*( G0+G2)+G1*G19)*G15*G13+G16*G18 *(( G13+G14)*G2+G0*G13)))+G20 *(
psi34 *G16*G5+G15 *(( G1+G0+G2)*( G4+G5)*G8*G13+G6 *( G13+G12+G14)*(( G5+G4)*G2+G1*G5))))
+G19 *(( G4+G3+G5)*G11 *(( psi61 *G17+G15 *(( G8+G6)*G2 +( G0+G1)*G8))*G13+G12 *( G15+G17)*G6
*G2)+G9 *( psi34 *G17*G5+G15 *(( G14+G12+G13)*( G3+G5)*G6*G2+G8 *( G0+G1+G2)*(( G3+G5)*G13+
G14*G5))))+( G16+G15+G17)*( G4*G11 *( psi75 *G8*G13+G6 *(( G20+G18)*( G13+G12)*G2+G1*G20*
G13))+(( G9+G11)*(( G6+G8)*G13+G12*G6)+G14 *( G6+G8)*G9)*((( G20+G18)*G2+G1*G20)*G5+G3*
G18*G2)+G0*G8 *(( G9+G11)*(( G20+G18)*G5+G3*G18)*G13+G14 *( G20+G18)*G9*G5))+G7 *(( G14+
G12+G13)*G9 *(( G1+G0+G2)*( G16+G17)*G20*G5+G18 *(( G17+G16)*( G5+G3)*G2+G0*G17*G5))+G11
*(( psi75 *( G4+G5)+G3*G18 *( G0+G2))*G17*G13+G16 *(( G3+G4+G5)*( G12+G13)*G18*G2+G20 *( G1+
G0+G2)*(( G4+G5)*G13+G12*G5))))),x];

57

58 Return [ start ];
59 ];

8.2 Boundary expansion algorithm
In (19) the boundaries of position-steepness regions are expanded using a biased sampling algorithm
(BSA). BSA produces an initial region by randomly sampling GRF parameters from a specified
parameter box, calculating the position and steepness features of the resulting GRFs, and computing
the enclosing boundary. The initial boundary is successively expanded by randomly changing the
parameters of GRFs on the current boundary until the area of the region does not increase any
further.

We observed that BSA frequently gets stuck in local minima and does not have a satisfactory per-
formance to expand the boundary for the n = 4 model with 62 free variables. Hence, in an attempt
to speed-up the convergence of boundary expansion, we alternate between BSA and a simple optimi-
sation procedure. Namely, we i) take a GRF with position-steepness coordinates at the boundary (or
close to the boundary, but inside the region), ii) pick a position-steepness point outside the boundary
in the direction of desired expansion, and iii) minimize the Euclidean distance between the points in
terms of the GRF’s parameters using Matlab’s function fmincon subject to the parameter box con-
straints. Additionally, we modify the step in BSA in which GRF parameters are changed by allowing
a subset of the parameters, e.g. 10 − 30, to be “mutated” at a time. This adjustment is needed
to obtain mutated GRFs in the position-steepness neighbourhood of the original GRF because big
changes in many parameters can significantly alter GRF shape, which we observed to overwhelmingly
produce GRFs inside the boundary.

8.3 Results
As a result of the compressed GRF generation and the changes to the boundary expansion algorithm
we obtained the boundaries in Figure S7. The symbolic form of specific GRFs lying on the boundaries
can be found in Listing S2.

Listing S2: Unnormalised GRFs corresponding to points on the boundary of Figure S7.
1 % symbolic GRF for Figure S7 , a):
2 GRF_a (x) = (3.111898366* xˆ2 + 1088.2653466091372* xˆ3) /(0.9798786583499999 +

3.0441335554862703* x + 4.660564433985895* xˆ2 + 1088.2653466091372* xˆ3)
3

4 % symbolic GRF for Figure S7 , b):
5 GRF_b (x) = (4.506992106647366*10ˆ10* xˆ3 + 8.838579100646242*10ˆ12* xˆ4 +

3.4941515501185644*10ˆ14* xˆ5 + 2.006924322139229*10ˆ16* xˆ6 +
6.107156670959329*10ˆ17* xˆ7) /(3.938715616171477*10ˆ9 + 1.0710384966602333*10ˆ10* x
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Figure S7: (left) Position-steepness regions for non-equilibrium gene response functions correspond-
ing to models with n = 2 (green), n = 3 (blue), n = 4 (black) transcription factor binding sites.
The boundaries are obtained for the all-or-nothing expression strategy by sampling parameter values
in the interval [103, 10−3]. The four points on the boundaries — a), b), c), and d)— correspond to
the GRFs on the right-hand-side of the figure. The Hill line defined by the position-steepness loci of
Hill functions with coefficients ranging from 1.5 to 7 is shown in red; loci corresponding to integer
Hill coefficients are marked with red crosses and numbers. The position asymptote of the Hill line is
marked in grey. (right) GRF value (probability of the 111 microstate) as a function of normalised
TF concentration for the four points lying on the boundaries in the left-hand-side of the figure. The
correspondence between position-steepness points and GRFs is marked by colour and letters. Red
curves are Hill functions with identical steepness. Dots denote the position of maximal steepness.
Note that TF concentration is normalised such that the grey line at 1 crosses the GRFs at their
half-maximal value.

+ 2.443283916713498*10ˆ11* xˆ2 + 1.5688345854462803*10ˆ12* xˆ3 +
1.762963633037459*10ˆ13* xˆ4 + 4.326523028160712*10ˆ14* xˆ5 +
2.108616283332164*10ˆ16* xˆ6 + 6.107156670959329*10ˆ17* xˆ7)

6

7 % symbolic GRF for Figure S7 , c):
8 GRF_c (x) = (1.2224524729375644*10ˆ39* xˆ4 + 5.319185045157951*10ˆ40* xˆ5 +

6.489224875394841*10ˆ41* xˆ6 + 4.0133242397037175*10ˆ42* xˆ7 +
1.8140472985591478*10ˆ43* xˆ8 + 6.423734524550449*10ˆ43* xˆ9 +
1.4753098538474673*10ˆ44* xˆ10 + 2.0559346241514986*10ˆ44* xˆ11 +
1.6882835625514964*10ˆ44* xˆ12 + 7.606716110341735*10ˆ43* xˆ13 +
1.5305410764531565*10ˆ43* xˆ14 + 5.057848554370418*10ˆ41* xˆ15)
/(2.2631962720406472*10ˆ39 + 2.0747988596140944*10ˆ42* x + 5.410284341866251*10ˆ43*
xˆ2 + 2.0632316050207164*10ˆ44* xˆ3 + 3.521034814608054*10ˆ44* xˆ4 +
3.2167460431516697*10ˆ44* xˆ5 + 1.6542542175379038*10ˆ44* xˆ6 +
5.511669825549032*10ˆ43* xˆ7 + 3.371302388006769*10ˆ43* xˆ8 +
7.406895515280156*10ˆ43* xˆ9 + 1.5593809926805384*10ˆ44* xˆ10 +
2.1114757191969035*10ˆ44* xˆ11 + 1.7098739295250467*10ˆ44* xˆ12 +
7.645382735089672*10ˆ43* xˆ13 + 1.531788467484943*10ˆ43* xˆ14 +
5.057848554370418*10ˆ41* xˆ15)

9

10 % symbolic GRF for Figure S7 , d):
11 GRF_d (x) = (6.0961526350200845*10ˆ34* xˆ4 + 7.74101902589086*10ˆ37* xˆ5 +

1.746203723208289*10ˆ40* xˆ6 + 5.115132287315065*10ˆ40* xˆ7 +
3.1895943228064667*10ˆ41* xˆ8 + 3.342213832117215*10ˆ42* xˆ9 +
6.902838350084463*10ˆ43* xˆ10 + 4.924162063877022*10ˆ44* xˆ11 +
3.366474658922477*10ˆ44* xˆ12 + 6.554770420343171*10ˆ43* xˆ13 +
2.4957569986577326*10ˆ42* xˆ14 + 4.0447421515402023*10ˆ40* xˆ15)
/(1.0922466554269185*10ˆ26 + 3.2780253976670626*10ˆ29* x + 3.43850427345836*10ˆ32* x
ˆ2 + 1.5909856119850098*10ˆ35* xˆ3 + 3.7297767503230725*10ˆ37* xˆ4 +
3.812763936807337*10ˆ39* xˆ5 + 2.6485070922230037*10ˆ40* xˆ6 +
7.472871443792891*10ˆ40* xˆ7 + 3.848090997460671*10ˆ41* xˆ8 +
3.5427300205353945*10ˆ42* xˆ9 + 6.934872179139399*10ˆ43* xˆ10 +
4.925907865407594*10ˆ44* xˆ11 + 3.3668131964003985*10ˆ44* xˆ12 +
6.55495440751056*10ˆ43* xˆ13 + 2.4957833417073095*10ˆ42* xˆ14 +
4.0447421515402023*10ˆ40* xˆ15)
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