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S1 Detailed methods

S1.1 Population demographics
We used the Australian Bureau of Statistics (ABS) 2016 Census to generate a collection of Agents with
the demographic characteristics of Australia’s population. The demographic and housing data we use in
our model is aggregated on the level of Statistical Area Level One (SA1), which are statistical geographical
regions containing 200-800 residents (these are referred to as ‘neighbourhoods’ in the main text). This is
one of the primary levels on which the ABS partitions demographic (e.g., age, sex, employment status)
and housing (e.g., household size and composition) statistics. In the population generation method used
here, these statistics are interpreted as (dependent) probability distributions describing Agent properties
according to their region of residence.

The process of stochastically generating Agents for the population begins by iterating through SA1s.
Before generating Agents, a household is generated based on the ABS partition statistics for a given SA1.
The possible household types are lone, group, or family types. These are then further subdivided into
the following categories: single, couples with children, couples without children, or single parent families.
Finally, the household is assigned a size conditional on both its type, and the distribution of household
sizes in that SA1. At this point, Agents are generated as adults or children depending on the particular
households size and type. Additional attributes are assigned using population statistics about age and sex.
This process continues until the population of the SA1 is reached, at which point we select another, and
continue the process until all SA1 partitions have been populated.

S1.2 Mid- to long-range social contact model
After the Agent population has been generated, workplaces and schools are assigned to adults and children
respectively. Workplaces are assigned based on the commuter origin-destination (OD) matrix obtained
from the ABS and adjusted according to the procedure outlined in our previous work to correct for some
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of the noise introduced by the ABS [1,2]. Each entry of the OD matrix gives a home SA1 h, a workplace
DZN w and a number of individuals who live in h and work in w. As the Agents have already been
assigned residential regions, they are chosen from households uniformly at random. The ABS census does
not contain data about the location of schools, or where students commute from. Therefore we place
schools pseudo-deterministically based on data from the Australian Curriculum, Assessment and Reporting
Authority (ACARA) by postal code from a non-census dataset containing the most complete information
available on school enrolment numbers and locations since 2008. In the absence of school commuting data,
we stochastically assign students to schools based primarily on proximity, assuming that students would
attend a school if they live within its catchment zone. If a student is within the catchment zone of multiple
schools, the school is chosen randomly based on the number of available places. Further descriptions of
the school placement and student assignment methods can be found in our previous works [1, 3].

household

household cluster

neighbourhood

community

working group

Figure S1: Schematic of the community structure used in the AceMod simulation platform. Agents mix
locally in household, household cluster, neighbourhood, and community groups. Transmission between
communities is possible due to interactions in working groups and school groups (which include classroom,
grade, and school sub-groups). For simplicity, the school mixing groups are not shown in the schematic.
The different colours of the Agents represent the incorporation of demographic factors such as age and
sex.

S1.3 Transmission model
In the model of illness and disease transmission used in this study, infected individuals spread the virus to
others through several types of mixing groups. These mixing groups describe a regular pattern of behaviour
associated with each individual which has the potential to transmit infection, such as regular contact with
work colleagues, classmates, and family members. Each simulated day is split into two distinct phases,
“daytime” and “night time”. During the daytime phase individuals can spread the infection to others in
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their working groups which include workplaces for most adults, as well as classes, grades, and schools
for teachers and students. During the night time phase, individuals are able to spread infection within a
number of mixing groups, such as their household, household cluster, neighborhood and community. For
transmission parameters related to each of these mixing groups, see [1].

For each individual i in the population there is a collection of different mixing groups, denoted Gi(t), where
that individual Agent interacts with its contacts at time t. Each mixing group g ∈ Gi(t) is associated
with a static set of Agents Ag. At an individual level we are interested in the probability of a susceptible
Agent i becoming infected during a given time period (step) t. Let Xi(t) denote the state of individual i
at time t. The probability of a susceptible Agent i becoming infected during a given time period is given
by

pi(t) = Pr{Xi(t) = latent|Xi(n− 1) = susceptible} (S1)

where latent denotes the first stage of infection. The infection probability of a susceptible individual i
is computed as

pi(t) = 1−
∏

g∈Gi(t)

 ∏
j∈Ag\i

(
1− pg

j→i(t)
) (S2)

where Gi(t) denotes the mixing groups where Agent i interacts at time step t, and pg
j→i denotes the

instantaneous probability of transmission from Agent j to i in contact group g. An Agent has a set
probability of becoming either symptomatic or asymptomatic. For an asymptomatic Agent, the probability
of transmission to a susceptible Agent is halved.

The context-dependent probabilities of transmission pg
j→i are globally scaled by a transmission multiplier

κ, which modulates the potential for the epidemic to spread. They are also dependent on the natural
history of the disease, which determines the relative infectiousness f of an individual as a function of the
time elapsed since infection:

pg
j→i(t) = κf(t− tj|j, i)qg

j→i , (S3)

where context-dependence is given by the qg
j→i terms, which were calibrated from empirical studies where

possible. However, in the absence of known context-dependent transmission probabilities, additional steps
were taken to calculate them from known contact rates. For additional details of this process see our
existing work [1].

S1.4 Mitigation strategies
The likelihood of an individual Agent becoming infected each day is dependent on their contact network
for the daytime/night-time phase and the transmission probability produced by infected Agents within
that network. In practice, intervention strategies influence the contagion dynamics by effecting either the
transmission probability or contact network to suppress the outbreak.

S1.4.1 Vaccination

The vaccination protocol is applied uniformly at random to each Agent based on a fixed probability
corresponding to the compliance rate specified at the start of each simulation. If a vaccinated Agent is
infected, we alter the contribution to the force of infection on their neighbors pg

i→j(t) (the infectiousness).
For susceptible, vaccinated Agents, we increase their resilience to transmission pi(n) (the susceptibility).
The vaccine efficacy for susceptibility, VE S, determines a multiplier θ for the infected Agent’s contribution
to the force of infection related by θ = 1− VES. Similarly, an uninfected Agent’s probability of infection
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is altered by the multiplier η, determined by the vaccine efficacy of infectiousness η = 1 − VEI . We
have made the assumption of a low-efficacy vaccination, as used in Longini et al., with VES = 0.30 and
VEI = 0.50 [4].

S1.4.2 Antivirals

The antiviral prophylaxis protocol functions in a similar manner to vaccination, with a corresponding
antiviral efficacy of infectiousness AVEI and antiviral efficacy of susceptibility AVES that reduce the
infectiousness and susceptibility (respectively) of Agents while dosed with antivirals. In addition to this,
antivirals reduce the illness recovery time from 5.5 days to 4.5 days, and reduce the symptomatic fraction.
The latter effect introduces the antiviral efficacy for illness AVED = 1 − Φ. Here Φ (the probability of
an Agent remaining asymptomatic when infected) is increased above its usual value of 0.331, due to the
antivirals. We use antiviral efficacy of the neuraminidase inhibitor Oseltamivir, AVES = 0.30, AVEI = 0.62
and AVED = 0.60 [5, 6].

Unlike vaccination, the application of AVP is done dynamically after a symptomatic infection is detected.
Each day an undetected symptomatic Agent has a probability of being detected (pdetect = 0.1). If
detected, the Agent (index case) will be given antivirals after 1 day and Agents that are considered at risk
of infection from the index case are given antivirals after the designated response time has elapsed. This
delayed response represents a logistical roll out time required to implement localized pandemic intervention
programs. Here, we consider two tactics for identifying at-risk contacts of index cases. The first is contact-
targeted antiviral prophylaxis (TAP), in which all members of the infected Agent’s household and work
group are given antiviral prophylaxis (for school-aged children and teachers, the work group targeted is their
entire school). The second is geographically targeted antiviral prophylaxis (GTAP), in which all Agents
residing in the same SA1 as the index case receive treatment (these correspond to the neighborhoods
depicted in Figure S1).
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Figure S2: Schematic workflow of intervention implementation. The associated symbols and their mean-
ings are given in Table S1. If index cases are detected, that event triggers prophylaxis of their contacts
or neighbors after a delay time associated with logistical implementation of the measures. Note that
disease detection and treatment can occur independently of the large-scale intervention protocol if illness
is detected before the delay time is up.
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Table S1: Parameters and states associated with the integrated SIR transmission, illness detection, and
intervention models.

Symbol description

S Agent state - Susceptible (can become infected)

Iasym Agent state - Infected, asymptomatic (cannot be detected)

Isymp Agent state - Infected, symptomatic (may be detected)

R Agent state - Recovered (undetected - may be scheduled for prophylaxis)

I∗symp Agent state - Infected, scheduled for treatment
(treated after 1 day if detected, treated after delay period if undetected)

Rdetected Agent state - Recovered, detected (will not be scheduled for prophylaxis)

S∗ Agent state - Susceptible, scheduled for prophylaxis after delay period

I∗asym Agent state - Infected, asymptomatic, scheduled for prophylaxis after delay period

R∗ Agent state - Recovered, scheduled for prophylaxis after delay period

r∗ pseudorandom number ( r∗ ∈ [0, 1] )

p
detect

probability that a symptomatic infection will be detected ( p
detect

∈ [0, 1] )

τdelay delay period (in days) between index case detection and targeted intervention

t time (in days) since detection
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S2 Supplementary results

S2.1 Reproductive Ratio R0

Here we describe our procedure for estimating the reproductive ratio as a function of the global infection
scalar κ. We compare the method used in this work (the “Attack Rate Pattern Weighted” method) with an
alternative uniform sampling method. Briefly, both methods estimate the reproductive ratio by randomly
sampling individuals from the population and counting the number of secondary infections resulting from
that individual becoming infected. By repeating such a process several thousand times, an estimate of
the reproductive ratio is possible.

Due to population heterogeneity, biases are introduced if this sampling is performed uniformly at random.
This is because different cohorts of the population are more or less likely to become infected based on
the population structure and differences in susceptibility and infectiousness. Heterogeneity is particularly
prominent in the clusters of individuals from the 5 to 18 year-old age group found in schools. Due to the
strong correlation between age group and population structure, it is reasonable to expect that biasing the
sampling of index cases based on the age-stratified contribution to the overall attack rate would give an
improved estimate of the reproductive ratio.

The plots in Figure S3 confirm this expectation. Figure S3(a) demonstrates the discrepancy between the
value computed by the uniform random sampling method Rrand and the alternative, weighted estimate
RARPW, as functions of the global infection scalar κ. The reason for the discrepancy is made clear by
examining Figure S3(b), which shows the non-uniform contributions to the overall attack rate, stratified
by age-group, as functions of κ. Lastly, Figures S3(c) and S3(d) plot the attack rate as functions of
Rrand and RARPW, respectively. These plots demonstrate how the Attack Rate Pattern-Weighted method
produces a more intuitive result that is consistent with the conceptual definition of the reproductive ratio
as the expected number of secondary cases produced by a typical index case. For the data reported in
Figure S3(a) we averaged RARPW from (5×103 < n < 1.5×104) and Rrand from (5×104 < n < 6×104)
index cases for each value of κ.

S2.2 Pre-pandemic vaccination
To demonstrate that our vaccination programs perform as expected for various values of R0 and compli-
ance, Figure S4(a) shows that employing uniform pre-pandemic vaccination suppresses the reproductive
speed of the virus, both delaying and decreasing the peak incidence of new illnesses (symptomatic infec-
tions). On the same point, Figure S4(b) demonstrates how this effect extends to the threshold behavior
of epidemic dynamics: with uniform vaccination, the R0 threshold for extensive epidemics moves to higher
values.

Note that in the absence of vaccination, the critical value of R0 is less than 1 (which is the critical value
in mean-field models by definition). This departure from continuum dynamics occurs for two reasons:
firstly, because of the heterogeneous contact structure in our population model [7], and secondly, because
index cases are produced continuously through arrivals from overseas which guarantees finite attack rates.
Because of these factors, there is a non-vanishing probability that an individual with many more contacts
than a typical member of the population will become infected and transmit to two or more of their
immediate contacts, who due to social clustering (i.e., school and classroom groups) are also likely to
have higher than average contact numbers.
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Figure S3: Comparison of reproductive ratio estimates based on uniform random sampling (Rrand) and
attack rate pattern weighted (RARPW) methods. (a) Plots of the two estimates as functions of the
infectiousness parameter κ. Black and red dashed lines are linear fits for RARPW and Rrand as functions
of κ (R2 = 0.9848 and R2 = 0.9998, respectively; error bars: ± SEM). (b) Age-stratified contributions
to the attack rate as functions of κ. (c) Attack rate as a function of Rrand. (d) Attack rate as a function
of RARPW. [Error bars in (b), (c), and (d) show ± std., Rrand and RARPW values in (c) and (d) were
determined from κ using the linear fits shown in (a).]
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Figure S4: Performance of simulated pre-pandemic vaccination programs, for different values of compliance
and disease infectiousness. (a) Epidemic curves (symptomatic cases vs. time) for vaccination compliance
rates of 0% (gray), 50% (red), and 70% (green) with fixed reproductive ratio R0 = 2.23 [lines represent
mean values, colored bands show ± standard deviations over 10 runs]. (b) Plots of attack rate (total
illnesses) as functions of R0 for vaccination compliance rates of 0% (black circles), 50% (red squares),
and 70% (green triangles) [computed values are shown as symbols, the lines connecting them are guides
to the eye, error bars show ± standard deviation, n = 10].
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S2.3 Geographically-targeted antiviral prophylaxis
Contact targeted prophylaxis carries with it the unfortunate requirement of sufficiently complete contact
tracing that antivirals can be distributed to the social contacts of index cases. The feasibility of such
strategies has been questioned, and other targeting approaches suggested [4]. One of these is to simply
administer antivirals to the residential neighborhoods of index cases, which, in some communities and
cultures could effectively account for the majority of index case contacts. However, as our results demon-
strate, such targeting methods are not effective in large-scale urban environments in which long-distance
commuting is the norm. Australia has a very high urban population fraction, and a very centralized urban
economic structure, with large sectors of the workforce commuting to small areas of central business dis-
tricts from disparate suburbs on a daily basis. It is perhaps unsurprising then, that GTAP is substantially
less efficient than TAP, in this context, as our results demonstrate.

Figure S5 presents a report of GTAP behavior as a function of delay time and compliance rate. The
first clear difference from the TAP protocol is that much larger administration numbers are required for
implementation of the program. However, given a very large stockpile, the results demonstrate that higher
suppression levels are possible. This is intuitive: given that neighborhoods are typically larger than social
clusters, the GTAP protocol allows for a more universal coverage with antivirals, however, the program is
prohibitively inefficient in the areas of parameter space for which suppression is substantial.

In addition to this general finding, there are several other specific points that can be gleaned from the
results:

• The antiviral administration dynamics are multi-modal. Comparison of Figures S5(a), (b), and (c)
shows that the interval between successive maxima in antiviral administration numbers lengthens
with the logistical delay time.

• Despite higher suppression levels, the effect on the growth rate of the virus and incidence peak
timing is still sensitive to delay time.

• As for the TAP program, Figure S5(e) shows that the efficiency of GTAP is non-monotonic with
compliance for short delay times, and generally decreases with higher compliance rates.

These three points have a coherent implication: the negative effect of local reductions in transmission rate
on mitigation efficiency are more pronounced when antivirals are distributed geographically. Because GTAP
does not account for long-range transmission through interactions outside of residential communities, it
has weaker effects on the geographic spread of the disease. However, its large-scale local effects slow the
virus substantially during the prophylaxis period (particularly when the delay time is small). These two
factors combine to strongly promote the local resurgence of the virus in the same communities, leading
to many rounds of prophylaxis and requiring very large outlay of resources to suppress illness levels.

Taken together, these results indicate that GTAP by itself (as implemented in our simulations) is not a
feasible strategy for pandemic mitigation, as it would require prohibitively large antiviral stockpiles, and
the population would be subject to many rounds of prophylaxis that would severely impact quality of life.
Of course, under some circumstances such a scenario may still be preferable, depending on case severity,
and the feasibility of the contact tracing required for an effective TAP protocol.
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Figure S5: Simulation results for geographically-targeted antiviral prophylaxis (GTAP). The simulation
parameters used to generate this data are identical to those presented in Figure ??, the only difference
is the type of targeting strategy employed. Plots (a - c) show the results of single simulation instances,
with reference plots of illness incidence when no intervention is applied. Plots (d) and (e) show attack
rates and efficiencies (respectively) as functions of compliance with the GTAP protocol within targeted
localities.

S2.3.1 Geographically-targeted antiviral prophylaxis with pre-pandemic vaccination

Unfortunately, the beneficial effects observed from combining TAP with pre-pandemic vaccination do not
apply to GTAP as well. The plots of illness incidence and GTAP courses in time shown in Figures S6(a - c)
illustrate that while attack rate suppression is still substantial, the effect on the initial epidemic growth
rate and peak timing are not. Additionally, the number of antiviral courses deployed is till extremely high,
despite the greatly suppressed attack rate. In fact, comparison of Figure ??(d) and Figure S6(d) shows
that, when combined with vaccination, GTAP performance is inferior to that of TAP, even when taking
into account only total suppression levels. The situation deteriorates further when efficiency is taken into
account. As shown in Figure S6(e), there is no reversal of the diminishing return on GTAP compliance,
and there is no local maximum of efficiency for intermediate compliance rates. All in all, the argument
for the GTAP program is not strong in any area of the parameter space explored here. While it is capable
of dramatic suppression of illness levels, it does this at great expense, and shows no promise of beneficial
coupling with the pre-pandemic vaccine program.

S11



a)

b)

c)

d)

e)

1.0

0.8

0.6

0.4

0.2

co
m

pl
ia

nc
e 

ra
te

2015105

delay (days)

3.5x10
6

3.02.52.01.5

number of illnesses (GTAP + Vac. 70%)

1.0

0.8

0.6

0.4

0.2

co
m

pl
ia

nc
e 

ra
te

2015105

delay (days)

0.300.250.200.150.10

efficiency (GTAP + Vac. 70%)

60x10
3

50

40

30

20

10

0

ne
w

 il
ln

es
se

s

200150100500

day of pandemic

400x10
3

300

200

100

0

A
.V

. courses

75% G.T.A.P. compliance, 1 day delay ; 70% Vaccine compliance

G.T.A.P. courses Incidence Incidence (70% Vac.)

60x10
3

50

40

30

20

10

0

ne
w

 il
ln

es
se

s

200150100500

day of pandemic

400x10
3

300

200

100

0

A
.V

. courses
85% G.T.A.P. compliance, 9 day delay ; 70% Vaccine compliance

G.T.A.P. courses Incidence Incidence (70% Vac.)

500x10
3

400

300

200

100

0

A
.V

. courses

200150100500

day of pandemic

60x10
3

50

40

30

20

10

0

ne
w

 il
ln

es
se

s

100% G.T.A.P. compliance, 17 day delay ; 70% Vaccine compliance

G.T.A.P. courses Incidence Incidence (70% Vac.)

Figure S6: Simulation results for geographically targeted antiviral prophylaxis (GTAP) in combination with
70% pre-pandemic vaccination. Plots (a - c) show results for single simulation instances using different
values of GTAP compliance and delay time, with illness incidence computed for 70% vaccine compliance
plotted in green for reference. Note that antiviral courses as a function of time are plotted to the right axis,
and are approximately one order of magnitude larger than the corresponding illness incidence. Plots (d)
and (e) plot attack rate and net suppression per course (summing antiviral courses and vaccines deployed)
as functions of delay period and GTAP compliance in targeted localities.
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S2.4 Antiviral administration numbers
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Figure S7: Two-dimensional image plots of the total number of doses administered for three dynamic mit-
igation protocols: geographically targeted antiviral prophylaxis (a), contact targeted antiviral prophylaxis
(b), and contact targeted antiviral prophylaxis with 70% of the population vaccinated prior to pandemic
onset (c), as functions of compliance rate and delay time. Note that (c) reports the number of antiviral
courses only.

S2.5 peak timing
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Figure S8: Two-dimensional image plots of peak timing (the day corresponding to the maximum number of
concurrent symptomatic cases) for contact-targeted antiviral prophylaxis (a) and contact-targeted antiviral
prophylaxis with 70% of the population vaccinated prior to pandemic onset (b), as functions of compliance
rate and delay time.
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S3 Supplementary movies
These movies show the spatiotemporal spread of the pandemic from single simulation instances over maps
of Australia, with details of the regions surrounding Melbourne (Vic) and Sydney (NSW). The colors
correspond to normalized prevalence values for each statistical region on the level of Statistical Area
Level 2 (SA2), which is one step up in the spatial hierarchy from the SA1 level on which the population
statistics are sampled in our population model. For display purposes we normalized the prevalence data to
the maximum local prevalence value computed for the corresponding simulation, and the colors correspond
to the natural logarithm of these normalised prevalence levels. In addition to the maps, each movie contains
the corresponding plot of aggregated national prevalence and antiviral deployments in time. All movies
correspond to R0 = 2.23, and each has a different set of mitigation procedures and related parameters.
For reference, a choropleth of the Australian population distribution is also included in Figure S9.

• Supplemental Movie SM1 (SM1_No_Intervention.pdf):
This movie represents the baseline condition, where no mitigation efforts are employed.

• Supplemental Movie SM2 (SM2_Vaccination_70.pdf):
This movie corresponds to 70% of the population vaccinated prior to the pandemic onset.

• Supplemental Movie SM3 (SM3_TAP75_1day_delay.pdf):
This movie corresponds to dynamic, contact-targeted antiviral prophylaxis with a compliance rate
of 75% and a delay time of one day.

• Supplemental Movie SM4 (SM4_GTAP75_1day_delay.pdf):
This movie corresponds to dynamic, geographically targeted antiviral prophylaxis with a compliance
rate of 75% and a delay time of one day.

• Supplemental Movie SM5 (SM5_PVac70_TAP75_1day_delay.pdf):
This movie corresponds to dynamic, contact-targeted antiviral prophylaxis with a compliance rate
of 75% and a delay time of one day. Prior to pandemic onset, the population is vaccinated at a
compliance rate of 70%

• Supplemental Movie SM6 (SM6_PVac70_TAP85_9day_delay.pdf):
This movie corresponds to dynamic, contact-targeted antiviral prophylaxis with a compliance rate
of 85% and a delay time of nine days. Prior to pandemic onset, the population is vaccinated at a
compliance rate of 70%

• Supplemental Movie SM7 (SM7_PVac70_GTAP75_1day_delay.pdf):
This movie corresponds to dynamic, geographically targeted antiviral prophylaxis with a compliance
rate of 75% and a delay time of one day. Prior to pandemic onset, the population is vaccinated at
a compliance rate of 70%

• Supplemental Movie SM8 (SM8_PVac70_GTAP85_9day_delay.pdf):
This movie corresponds to dynamic, geographically targeted antiviral prophylaxis with a compliance
rate of 85% and a delay time of nine days. Prior to pandemic onset, the population is vaccinated
at a compliance rate of 70%
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Figure S9: Australian population distribution (2016): A choropleth illustrating the heterogeneous
population distribution of Australia from the year 2016, at the scale of Statistical Area Level 2 (SA2).
This is provided as a reference for interpreting the data displayed in the Supplemental Movies.
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