
Supplementary Material

S.1 Co-register two bi-ventricular geometries using Deformetrica

To warp a template (Cα: the canine bi-ventricle) to a target (Cβ: the neonatal porcine
heart), we minimize the loss function

f(q,µ) = d(Φq,µ(Cα), Cβ)2 +R(q,µ) (A1)

where the first term measures the distance between the template and target, i.e. how well
the deformed template shape is close to the target shape, and the second term acts as a
regularizer. Φq,µ is a diffeomorphism mapping, which is fully parameterized by the initial
control points q and the momenta µ, the evolution equations for q and µ follow the “Hamil-
tonian” system. For a shape represented by a triangulated surface with Ne linear triangles,
the centres (cp)p=1,...,Ne and the normals (np)p=1,...,Ne of all triangles can be readily calculated.
The distance between the two triangulated surfaces (Cα and Cβ) is then given by the varifold
distance1, by ignoring normal orientations,
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where K(cp, cq) = exp(−|cp − cq|2/σ2) is a Gaussian kernel with width σ. Eq. (A1) is
optimized with the steepest gradient decent or the L-BFGS method implemented in the
Deformetrica package with respect to µ to determine a diffeomorphism mapping Φ. Details
of the LDDMM framework can be found in2.

S.2 Active contraction model

The full description of active contraction is as following
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where Tmax is the isometric tension at the largest sarcomere length and highest calcium
concentration, Ca0 is the peak intracellular calcium concentration; m and b are constants
that govern the shape of the linear relaxation duration and sarcomere length relaxation; Eff

is the Lagrange strain in the fibre direction; B is a constant that governs the shape of the
peak isometric tension-sarcomere length relation; lr is the sarcomere length with the stress-
free condition whilst l0 is the sarcomere length that does not produce active stress3. Active
parameters values4 can be find in Table A1

Table A1: Parameter values for the time varying elastance active tension constitutive model.

t0 m b l0 B Ca0 Ca0max Tmax lr
(ms) (sµm−1) (s) (µm) (µm−1) (µM) (µM) (kPa) (µm)

LV 150 1048.9 -1.7 1.58 4.750 4.35 4.35 180 1.85
RV 150 1048.9 -1.7 1.58 4.750 4.35 4.35 135 1.85

S.3 Parameter sensitivity and inference study of myocardial prop-
erty

A sensitivity study is performed with case LDDMM. The so-called “one-point” approach is
employed here by varying one parameter at a time and others kept same. Parameters (a, b,
af, bf, an, bn, afs, bfs, afn, bfn and Tmax) are first doubled and then halved from the values in
Table 3 (the main text). Figure A1(a,b) shows the normalized end-diastolic and end-systolic
volumes with respect to case LDDMM. It can be found that end-diastolic volume is mostly
affected by a, b, af and an, while end-systolic volume is mostly affected by Tmax. Figure A1
(c) further shows the changes of ejection fractions. Both LV and RV ejection fractions are
reduced when doubling a, b, af, an, and vice versa. Tmax has the largest effect on LV and RV
ejection fractions, while other parameters have little influences.

As mentioned previously, it is not our intention to develop a personalized bi-ventricular
model for this neonatal porcine heart, instead we seek to construct a general model with
physiologically-correct pump function, i.e. eject fraction > 50%. Currently, there is no
consistent way on how to adjust parameters derived from ex-vivo experiments to in vivo
models. Published studies have suggested passive parameters estimated from ex vivo experi-
ments can over-estimate the stiffness in vivo5,6,7. Thus in many studies, parameters of in vivo
myocardium are scaled from ex vivo experiments8,6 in order to match in vivo measurements.
The similar approach is followed in this study by scaling a, af, an, afs, afn to match targeted
end-diastolic volumes. In this study, the end-diastolic volume for the LV is (V0 + 1) mL, and
(V0 + 0.6) mL for the RV with V0 being the reference volume of the LV or RV, respectively.
Tmax is then determined by achieving targeted ejection fractions. Figure A2 illustrates how
the mismatch between the targeted value and the predicted value is reduced by the passive
scaling factor and Tmax during the inference procedure for the LV as an example. Figure
A2(a) is the mismatch of LV end-diastolic volume with respect to the scaling factor, which
is defined as |(EDVpredict − EDVtarget)/EDVtarget|, and figure A2(b) is the mismatch of LV
ejection fraction (|(EFpredict−EFtarget)/EFtarget|) with respect to Tmax. From figure A2, it can
be seen that both the passive scaling factor and myocardial contractility (Tmax) can be nicely
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Figure A1: Myocardial material parameter sensitivity study, including a, b, af, bf, an, bn, afs,
bfs, afn, bfn) and the active parameter (Tmax). (a) normalized EDV and ESV values of the
LV and (b) the RV with respect to the corresponding baseline values; (c) EF values. The
baseline values of LV and RV are from the simulation with parameter values in Table 3 (the
main text).

determined by matching targeted values. Note that this approach will only provide one set
of possible parameters, to uniquely infer each parameter of myocardial material property can
be extremely challenging due to various difficulties6, i.e. limited measured data, parameter
correlation, etc.

S.4 Myofibre rotation angles from literature

Table A2 is the summary of myofibre rotation angles from published experimental and mod-
elling studies.
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Figure A2: Relative errors in EDV (a) and EF (b) of the LV when inferring reasonable model
parameters by matching targeted end-diastolic volume (V0 + 1) mL with V0 the initial value
and ejection fraction 52%.

Table A2: Summary of fibre rotation angles from published experimental modelling studies.

Experimental studies Modelling studies
Epicardium Endocardium Epicardium Endocardium

Anterior LVFW9 −51.1± 3.8o 51.1± 3.8o Doste et al10 −60.0o 60.0o

Anterior RVFW9 −70.5± 6.5o 70.5± 6.5o Sack et al11 −60.0o 60.0o

Posterior LVFW9 −40.2± 2.9o 40.2± 2.9o Bayer et al12 −50o 40o

Posterior RVFW9 −22.1± 6.2o 22.1± 6.2o Wang et al5 −60o 60o

Excluding apex8 −37.± 22.44o 66.5± 16.6o Gao et al6 −60o 60o

Anterior13 −35.7± 8.6o 38.5± 6.1o Barbarotta et al14 −60o 60o

Lateral13 −41.0± 8.0o 29.7± 6.6o

Posterior13 −57.0± 6.2o 39.5± 10.6o
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