Supporting Information

Phosphoproteomic characterization of the signaling network resulting from activation of the chemokine receptor CCR2

Cheng Huang^{1,2,7}, Simon R. Foster^{1,7}, Anup D. Shah^{1,2,3}, Oded Kleifeld⁴, Meritxell Canals^{5,6}, Ralf B. Schittenhelm^{1,2,8}, and Martin J. Stone^{1,8*}

From the ¹Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia; ²Monash Proteomics & Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia; ³Monash Bioinformatics Platform, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia; ⁴Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel; ⁵Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom; ⁶Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom; ⁷Joint first authors; ⁸Joint corresponding authors

Figure S1: Coefficient of variation distribution and Pearson correlation of the quantified phosphopeptides (A, C) and proteins (B, D)

Figure S2: Phosphorylation time courses in cells that endogenously express CCR2.

Figure S3: Phosphorylation time course in CCR2-expressing cells for guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs)

Figure S4: Phosphorylation time course in CCR2-expressing cells for nuclear-related proteins.

Figure S5: A schematic diagram of DIA injection windows for proteome quantification (top panel) and phosphoproteome quantification (bottom panel)

Separate Excel Files

Table S1: Total quantified proteins and differential expression analysis

Table S2: Total quantified phosphopeptides and differential expression analysis

Table S3: Gene ontology and KEGG pathway analysis

Table S4: Quantified phosphopeptides belonging to actin cytoskeleton, GTPases or NUPs

Figure S1: Coefficients of variation (CV) and Pearson correlations of the quantified phosphopeptides and proteins. (A,B) The distribution of the coefficients of variation (CVs) is shown for the quantified phosphopeptides (A) and proteins (B) within each time point (n=3). (C,D) These color-coded matrices show the Pearson correlation coefficients, which have been determined for each possible pairwise comparison within the phosphoproteomic (C) and proteomic (D) sample batch.

Figure S2: Phosphorylation time courses in cells that endogenously express CCR2. Phosphorylation data at the indicated sites are presented for (A-C) MAPK1/3, (B-F) JUN, (G-I) STAT3 and (J-L) RPS6KA1. (A, D, G, J) Phosphorylation time courses in FlpIn-HEK293T-CCR2 cells determined by DIA phosphoproteomics. Data represent CCL2-dependent changes in phosphopeptide intensity relative to unstimulated cells, mean \pm SEM from 3 biological replicates. (B, E, H, K) Phosphorylation time courses in THP-1 cells determined by Western blotting. Data represent CCL2-dependent changes in phosphoprotein intensity relative to total protein, mean \pm SEM from 3 biological replicates. (C, F, I, L) Representative Western blots. Molecular weight markers have been cropped out; predicted molecular weights of the proteins are indicated.

Figure S3: Phosphorylation time courses in CCR2-expressing cells for a selection of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Data represent CCL2-dependent changes in phosphopeptide intensity relative to unstimulated cells, mean \pm SEM from 3 biological replicates.

Figure S4: Phosphorylation time courses in CCR2-expressing cells for a selection of nuclear-related proteins. Data represent CCL2-dependent changes in phosphopeptide intensity relative to unstimulated cells, mean \pm SEM from 3 biological replicates.

Figure S5: A schematic illustration of the DIA strategy used for proteome quantification (top panel) and phosphoproteome quantification (bottom panel). In each DIA run, 25 windows with an isolation width of 12 m/z have been acquired. To cover a m/z range of 375 - 975 m/z for the global proteomic analyses (top panel) and 375 - 1275 m/z for the phosphoproteomic analyses (bottom panel), each proteomic sample was injected twice and each phosphoproteomic sample three times.