Supplementary materials

Subtype-specific gout susceptibility loci and enrichment of selection pressure on *ABCG2* and *ALDH2* identified by subtype genome-wide meta-analyses of clinically-defined gout patients

A. Nakayama, M. Nakatochi, Y. Kawamura, K. Yamamoto, H. Nakaoka, *et al.* Correspondence to H. Matsuo. (email: hmatsuo@ndmc.ac.jp).

Supplementary Figure S1	Gout classification and its pathophysiology
Supplementary Figure S2	Regional plots around CDC42BPG on chromosome 11q13.1 locus
Supplementary Figure S3	Genetic correlations between gout subtypes and between each subtype and serum uric acid levels
Supplementary Table S1	Clinical characteristics of participants
Supplementary Table S2 Supplementary Table S3	Clinical parameters of gout cases Frequency of concomitant diseases in gout cases
Supplementary Table S4	Suggestive gout loci identified in the present genome-wide meta- analyses
Supplementary Table S5	Overlap between natural selection signatures and genetic risk of gout and its subtypes in the Japanese population
Supplementary Table S6	The effect of each gout locus from another trans-ancestry gout GWAS meta-analysis
Supplementary Method	

References for Supplementary Method

Supplementary Figure S1 Gout classification and its pathophysiology

Gout results from hyperuricemia, which is characterized by an elevated serum uric acid (SUA) level. In humans, urate is produced in organs such as the liver, and is mostly excreted from the kidney and intestine. The causes of gout can be classified into renal overload (ROL) and renal underexcretion (RUE). ROL gout (previously, "urate overproduction gout") is caused by genuine urate overproduction and/or by extra-renal underexcretion, both of which are characterized by increased urinary urate excretion [UUE; over 25.0 mg/hr/1.73 m² (600 mg/day/1.73 m²)]. On the other hand, RUE gout is caused by renal urate underexcretion, which features decreased urate clearance [urate clearance/creatinine clearance ratio, FE_{UA}; under 5.5%]. In addition to these broad subtypes (RUE gout and ROL gout), there are four distinct subtypes of gout: these consist of RUE type, ROL type, combined type and normal type gout, as shown in this Figure. These differentiated subtypes are commonly used in clinical scenarios. See also Table 1 regarding the clinical parameters of each subtype.

A rs11231879 В 64.1 С 63.5

Supplementary Figure S2 Regional plots around *CDC42BPG* on chromosome 11q13.1 locus

Significance around rs11231879 of CDC42BPG (A) was no longer shown when conditioned on rs11231879 itself (B), nor when conditioned on the secondarily significant SNP, rs56093838 of SLC22A12/URAT1 (C), revealing these signals to be detected from the same locus. Because URAT1 is a well-known urate transporter that markedly affects serum uric acid level, the true associated gene for combined type gout on this locus is unlikely to be CDC42BPG. These findings suggest that SLC22A12/URAT1 is the actual associated gene for combined type gout on this locus (chromosome 11q13.1). Due to the lack of frequency data in 1000 genomes phase 3 JPT, r² data were calculated using 1000 Genomes Project Phase_3:EAS samples¹.

Supplementary Figure S3 Genetic correlations between gout subtypes and between each subtype and serum uric acid levels

Strong genetic correlations were detected (A) among each subtype and (B) between subtypes and serum uric acid (SUA) level.

r_g, genetic correlation score; SE, standard error; ROL, renal overload; RUE, renal underexcretion; SUA, serum uric acid level.

Supplementary Table S1 Clinical characteristics of meta-analyzed participants

	Japonica Arr	ay platform	Illumina Ar	ray platform	Total			
	Case	Control	Case	Control	Case	Control		
Number	1028	952	2025	3602	3053	4554		
Age (year)	44.6 ± 11.4	54.1 ± 9.2	48.0 ± 11.8	55.5 ± 9.20	46.9 ± 11.8	55.2 ± 9.2		
Body-mass index (kg/m ²)	25.2 ± 3.6	23.0 ± 2.9	25.0 ± 3.6	23.6 ± 3.0	25.1 ± 3.6	23.5 ± 3.0		

Plus-minus values are means ± SD.

Supplementary Table S2	Clinical parameters of gout cases
------------------------	-----------------------------------

		Number	SUA (mg/dl)	FEua (%)	UUE (mg/hr/1.73 m ²)
	RUE type	211	8.36 ± 1.28	3.78 ± 0.82	20.6 ± 3.6
	ROL type	137	8.17 ± 1.18	6.58 ± 0.96	37.6 ± 8.6
Japonica Array platform	Combined type	349	8.75 ± 1.22	4.34 ± 0.69	31.9 ± 7.3
	Normal type	16	7.45 ± 0.73	6.59 ± 1.16	20.1 ± 4.6
	Total	713	8.50 ± 1.25	4.66 ± 1.31	29.4 ± 9.3
	RUE type	443	8.38 ± 1.15	3.78 ± 0.82	20.2 ± 3.5
	ROL type	349	8.20 ± 1.14	6.89 ± 1.62	36.4 ± 9.2
Illumina Array platform	Combined type	556	8.76 ± 1.24	4.41 ± 0.72	31.6 ± 6.5
	Normal type	76	7.96 ± 1.24	6.30 ± 0.75	21.6 ± 2.8
	Total	1424	8.46 ± 1.21	4.93 ± 1.63	28.7 ± 9.2
	RUE type	654	8.37 ± 1.19	3.78 ± 0.82	20.3 ± 3.5
Japonica Array platform	ROL type	486	8.19 ± 1.15	6.81 ± 1.47	36.7 ± 9.0
+	Combined type	905	8.75 ± 1.22	4.39 ± 0.71	31.7 ± 6.8
Illumina Array platform	Normal type	92	7.88 ± 1.19	6.35 ± 0.84	21.3 ± 3.2
	Total	2137	8.47 ± 1.23	4.84 ± 1.53	28.9 ± 9.2

Plus-minus values are means ± SD.

SUA, serum uric acid; FE_{UA}, fractional excretion of urate clearance; UUE, urinary urate excretion; ROL, renal overload; RUE, renal underexcretion.

Supplementary Table S3 Frequency of concomitant diseases in gout cases

Concomitant diseases	Frequency (%)
Hypertension	27.8
Dyslipidemia	7.30
Diabetes mellitus	3.03
Ischemic heart disease	1.78
Stroke	0.59
Renal disease*	1.17

Gout cases with subtype data (n = 2137) were investigated.

*Renal disease is defined as high serum creatinine level (≥1.5 mg/dl).

Supplementary Table S4 Suggestive gout loci identified in the present genome-wide meta-analyses

						Alleles		Illumina Array			Japonica Array				Meta-analysis			
SNP*	Locus	Chr.	Position	Gene	D '	Non-	- RAF			Durla		RAF		Durker	00 (050) 00	Durla	12	
			(pb).		RISK	risk	Case	Control	OR (95%CI)	P value	Case	Control	OR (95%CI)	P value	OR (95%CI)	P value	ľ	HetP
All gout patien	its																	
rs1797052	1q21.1	1	145727683	PDZK1	т	С	0.208	0.180	1.19 (1.07-1.31)	7.60×10 ⁻⁴	0.228	0.176	1.39 (1.18-1.63)	5.68×10 ⁻⁵	1.24 (1.14-1.35)	5.99×10 ⁻⁷	61.9	0.105
rs10167307	2p12	2	75716307	TACR1 - EVA1A	G	А	0.415	0.376	1.24 (1.13-1.35)	3.85×10⁻ ⁶	0.404	0.380	1.14 (1.00-1.30)	5.03×10 ⁻²	1.20 (1.12-1.30)	8.59×10 ⁻⁷	0	0.331
rs333042	8p21.3	8	19047771	LOC100128993	т	С	0.097	0.072	1.40 (1.22-1.62)	2.38×10 ⁻⁶	0.096	0.079	1.24 (0.98-1.57)	7.85×10 ⁻²	1.36 (1.20-1.53)	7.16×10 ⁻⁷	0	0.376
rs147430423	10q21.2	10	63849082	ARID5B	G	Т	0.035	0.019	2.23 (1.69-2.93)	1.34×10⁻ ⁸	0.027	0.024	1.21 (0.79-1.85)	3.87×10 ⁻¹	1.86 (1.48-2.35)	1.57×10 ⁻⁷	81.9	0.019
rs7116562	11p15.5	11	1371230	TOLLIP - AS1- BRSK2	С	Т	0.559	0.520	1.16 (1.07-1.25)	2.37×10 ⁻⁴	0.564	0.509	1.27 (1.12-1.44)	2.50×10 ⁻¹	1.19 (1.11-1.27)	4.40×10 ⁻⁷	29.2	0.235
rs557868370	12q13.11	12	46600163	SLC38A1	т	G	0.043	0.032	1.77 (1.41-2.23)	8.80×10 ⁻⁷	0.036	0.030	1.29 (0.88-1.90)	1.96×10 ⁻¹	1.63 (1.34-1.99)	9.97×10 ⁻⁷	47.7	0.167
rs36045144	12q24.31	12	122618131	MLXIP	G	А	0.298	0.255	1.25 (1.15-1.37)	6.61×10 ⁻⁷	0.294	0.269	1.15 (1.00-1.32)	5.58×10 ⁻²	1.22 (1.13-1.32)	1.70×10 ⁻⁷	3.5	0.309
RUE type gou	t patients																	
rs12035406	1q44	1	245927242	SMYD3	G	А	0.732	0.676	1.41 (1.18-1.67)	9.94×10 ⁻⁵	0.725	0.648	1.46 (1.15-1.85)	1.77×10⁻³	1.42 (1.24-1.64)	6.19×10 ⁻⁷	0	0.801
rs1260333	2p23.3	2	27748624	GCKR - C2orf16	А	G	0.638	0.543	1.42 (1.22-1.64)	3.95×10⁻ ⁶	0.630	0.570	1.28 (1.02-1.60)	2.99×10 ⁻²	1.37 (1.21-1.55)	4.57×10 ⁻⁷	0	0.452
rs142840709	3p21.31	3	47764055	SMARCC1	С	G	0.039	0.018	3.43 (2.13-5.53)	4.25×10 ⁻⁷	0.038	0.023	1.82 (0.98-3.41)	5.88×10 ⁻²	2.72 (1.86-3.97)	2.42×10 ⁻⁷	59.7	0.115
rs142605903	3p14.1	3	69632183	FRMD4B - MITF	А	Т	0.046	0.017	2.98 (2.04-4.34)	1.43×10⁻ ⁸	0.010	0.011	0.82 (0.27-2.49)	7.29×10 ⁻¹	2.6 (1.82-3.72)	1.47×10 ⁻⁷	78.5	0.031
rs6949071	7p21.3	7	13655049	ARL4A - ETV1	С	G	0.280	0.226	1.45 (1.21-1.74)	5.04×10⁻⁵	0.287	0.222	1.55 (1.18-2.03)	1.62×10 ⁻³	1.48 (1.27-1.72)	3.03×10 ⁻⁷	0	0.702
rs149662848	7q31.1	7	109563564	C7orf66 - EIF3IP1	С	т	0.033	0.017	2.08 (1.36-3.19)	7.60×10 ⁻⁴	0.049	0.018	3.59 (1.94-6.63)	4.50×10⁻⁵	2.49 (1.75-3.53)	3.51×10 ⁻⁷	50.8	0.154
rs35679068	7q36.1	7	150881888	ASB10	т	А	0.158	0.110	1.54 (1.26-1.88)	2.17×10⁻⁵	0.146	0.105	1.49 (1.09-2.02)	1.18×10 ⁻²	1.52 (1.29-1.80)	8.08×10 ⁻⁷	0	0.857
rs6987025	8q11.23	8	52663478	PXDNL	Т	А	0.052	0.021	2.56 (1.81-3.63)	1.28×10 ⁻⁷	0.028	0.023	1.25 (0.64-2.43)	5.07×10 ⁻¹	2.19 (1.61-2.98)	6.20×10 ⁻⁷	71.4	0.062
rs77984796	11q13.4	11	74272174	LOC100287896 - POLD3	с	т	0.040	0.017	2.78 (1.84-4.19)	1.18×10⁻⁵	0.027	0.015	1.95 (0.91-4.16)	8.40×10 ⁻²	2.56 (1.78-3.68)	3.51×10 ⁻⁷	0	0.421

Supplementary	material
---------------	----------

SV2B

GABPA

†SNP positions are based on NCBI human genome reference sequence Build hg19.

rs139921868 15q26.1 15 91741296 rs71651656 21q21.3 21 27140536

*dbSNP rs number.

ROL type gout	patients																
rs11974814	7q22.1	7	99719504	CNPY4	С	т	0.191 0	0.131	1.74 (1.41-2.16)	2.94×10 ⁻⁷	0.147	0.128	1.22 (0.82-1.81)	3.25×10 ⁻¹	1.61 (1.33-1.94)	6.22×10 ⁻⁷ 5	8.6 0.120
rs11201829	10q23.1	10	87671031	GRID1	G	т	0.037 0	0.015	3.86 (2.33-6.38)	1.51×10 ⁻⁷	0.000	0.012	-	9.83×10 ⁻¹	3.86 (2.33-6.38)	1.51×10 ⁻⁷	0 0.983
rs62070600	17q24.3	17	68714214	KCNJ2 - CASC17	G	А	0.103 0	0.065	1.61 (1.24-2.1)	3.62×10 ⁻⁴	0.124	0.068	2.2 (1.43-3.38)	3.12×10 ⁻⁴	1.76 (1.4-2.2)	8.41×10 ⁻⁷ 3	31 0.229
Combined type	e gout patie	ents															
rs145480657	2q21.2	2	134359704	NCKAP5 - MIR3679	А	G	0.039 0	0.015	2.83 (1.91-4.18)	1.80×10 ⁻⁷	0.021	0.015	1.44 (0.73-2.84)	2.98×10 ⁻¹	2.39 (1.71-3.36)	4.51×10 ⁻⁷ 6	5.1 0.091
rs11099097	4q21.21	4	81167309	PRDM8 - FGF5	С	Т	0.723 0	0.670	1.34 (1.15-1.55)	1.08×10 ⁻⁴	0.732	0.665	1.41 (1.16-1.72)	6.89×10 ⁻¹	1.36 (1.21-1.53)	2.89×10 ⁻⁷	0 0.662
Normal type go	out patients	3															
rs185157360	3q26.33	3	179058549	ZNF639 - MFN1	G	С	0.054 0	0.013	9.59 (3.99-23.07)	4.47×10 ⁻⁷	0.001	0.016	0 (0-106952995.34)	6.35×10 ⁻¹	9.49 (3.95-22.82)	4.97×10 ⁻⁷	0 0.512
rs76952758	6p21.1	6	45683258	RUNX2 - CLIC5	Т	С	0.061 0	0.014	7.77 (3.44-17.52)	7.82×10 ⁻⁷	0.017	0.012	2.44 (0.08-71.50)	6.05×10 ⁻¹	7.29 (3.31-16.07)	8.49×10 ⁻⁷	0 0.514
rs150881933	6p12.1	6	56581700	DST	т	С	0.054 0	0.019	6.68 (2.79-15.99)	1.98×10⁻⁵	0.095	0.025	8.36 (1.86-37.57)	5.59×10 ⁻³	7.07 (3.33-15.04)	3.74×10 ⁻⁷	0 0.800
rs118003389	7q21.11	7	81361574	HGF	G	С	0.144 0	0.047	4.23 (2.54-7.04)	2.81×10⁻ ⁸	0.045	0.059	0.68 (0.11-4.22)	6.81×10 ⁻¹	3.71 (2.27-6.05)	1.63×10 ⁻⁷ 7	2.1 0.059
rs79022888	9q34.13	9	135005875	MED27 - NTNG2	Т	С	0.123 0	0.048	3.26 (1.89-5.62)	2.18×10⁵	0.180	0.061	4.19 (1.49-11.81)	6.62×10 ⁻³	3.44 (2.12-5.57)	5.13×10 ⁻⁷	0 0.672

rs4558213 12q24.32 12 127291825 LINC00944 - LINC02372 T A 0.730 0.553 2.42 (1.66-3.51) 3.49×10⁻⁶ 0.719 0.558 2.06 (0.92-4.60) 7.71×10⁻² 2.35 (1.67-3.29) 7.33×10⁻⁷ 0 0.726

Chr., chromosome; RAF, risk allele frequency; OR, odds ratio; CI, confidence interval; RUE, renal underexcretion; ROL, renal overload.

C T 0.044 0.014 4.25 (1.79-10.12) 1.07×10⁻³ 0.117 0.014 21.31 (5.11-88.92) 2.69×10⁻⁵ 6.56 (3.13-13.78) 6.50×10⁻⁷ 72 0.059

 $C \quad T \quad 0.052 \quad 0.012 \quad 7.44 \quad (3.25 - 17.00) \quad 1.97 \times 10^{-6} \quad 0.073 \quad 0.014 \quad 7.46 \quad (1.57 - 35.48) \quad 1.16 \times 10^{-2} \quad 7.44 \quad (3.58 - 15.45) \quad 7.23 \times 10^{-8} \quad 0 \quad 0.997 \quad 0.014 \quad 7.46 \quad (1.57 - 35.48) \quad 1.16 \times 10^{-2} \quad 7.44 \quad (3.58 - 15.45) \quad 7.23 \times 10^{-8} \quad 0 \quad 0.997 \quad 0.014 \quad 7.46 \quad (1.57 - 35.48) \quad 1.16 \times 10^{-2} \quad 7.44 \quad (3.58 - 15.45) \quad 7.23 \times 10^{-8} \quad 0 \quad 0.997 \quad 0.014 \quad 7.46 \quad (1.57 - 35.48) \quad 1.16 \times 10^{-2} \quad 7.44 \quad (3.58 - 15.45) \quad 7.23 \times 10^{-8} \quad 0 \quad 0.997 \quad 0.014 \quad 7.46 \quad (1.57 - 35.48) \quad 1.16 \times 10^{-2} \quad 7.44 \quad (3.58 - 15.45) \quad 7.23 \times 10^{-8} \quad 0 \quad 0.997 \quad 0.014 \quad 0.014$

Nakayama A, et al. Ann Rheum Dis 2020; 79:657-665. doi: 10.1136/annrheumdis-2019-216644

	Supplementary Table S5	Overlap between natural selection signatures and genetic risk of gout and its subtypes in the Japanese population
--	------------------------	---

Label	All associated SNPs				s outside of ALD	H2	SNP	s outside of ABC	G2	SNPs outside of ABCG2 and ALDH2		
Laber	Ν	SDSChi_Inflat	P value	N SDSChi_Inflat		P value	Ν	SDSChi_Inflat	P value	N	SDSChi_Inflat	P value
All gout	14	3.78	1.95×10⁻ ⁶	13	2.25	5.97×10 ⁻³	13	3.42	2.61×10⁻⁵	12	1.73	0.0538
RUE type	12	3.57	2.35×10⁻⁵	11	1.99	0.0250	11	3.13	3.13×10 ⁻⁴	10	1.34	0.202
ROL type	5	5.86	2.03×10 ⁻⁵	4	3.06	0.0157	4	5.20	3.49×10 ⁻⁴	3	1.24	0.293
Combined type	8	5.10	2.30×10 ⁻⁶	7	3.27	1.77×10 ⁻³	7	4.60	3.71×10⁻⁵	6	2.39	0.0260
Normal type	10	1.50	0.133	10	1.50	0.133	9	0.72	0.693	9	0.72	0.693

SDSChi_Inflat, inflation of the selection χ^2 value of singleton density score.

					Α	lleles	Present meta-a	Meta-analysis of gout by Tin <i>et al</i> ^I .					
SNP	Locus	Chr.	Position [†] Gene [‡]		Risk	Non- risk	OR (95%CI)	P value	N	RAF	OR (95%CI)	P value	
rs1260326	2p23.3	2	27730940	GCKR	Т	С	1.30 (1.21-1.39)	2.07×10 ⁻¹³	721559	0.390	1.20 (1.18-1.24)	6.40×10 ⁻⁴⁵	
rs3775946	4p16.1	4	9995256	SLC2A9	G	А	1.63 (1.52-1.75)	3.73×10 ⁻⁴¹	763753	0.760	1.52 (1.47-1.57)	3.19×10 ⁻¹⁵⁸	
rs4148155	4q22.1	4	89054667	ABCG2	G	А	2.23 (2.08-2.41)	1.81×10 ⁻¹⁰¹	763813	0.111	2.04 (1.97-2.12)	2.64×10 ⁻²⁹⁹	
rs2817188	6p22.2	6	25807603	SLC17A1	G	А	1.35 (1.22-1.50)	1.06×10 ⁻⁸	763774	0.553	1.18 (1.15-1.21)	1.47×10 ⁻³⁵	
rs3129500	10q23.2	10	88915107	SHLD2/FAM35A	G	А	1.37 (1.28-1.48)	4.34×10 ⁻¹⁷	259987	0.869	1.04 (0.96-1.13)	0.306	
rs145954970	11q13.1	11	64273830	SLC22A11	С	G	12.43 (7.39-20.92)	2.25×10 ⁻²¹	NA	NA	NA	NA	
rs671	12q24.12	12	112241766	ALDH2	G	А	1.93 (1.78-2.10)	3.19×10 ⁻⁵⁴	449508	0.9999	2.47 (0.29-21.22)	0.410	
rs76499759	13q22.1	13	73568511	PIBF1	Α	G	1.27 (1.17-1.38)	2.79×10 ⁻⁸	660138	0.006	1.19 (0.86-1.66)	0.287	
rs9926388	16p12.3	16	20558441	ACSM2B	Α	G	1.24 (1.15-1.33)	2.30×10⁻ ⁸	763875	0.796	1.02 (0.99-1.05)	0.254	
rs1010269	17q23.2	17	59448945	BCAS3	G	А	1.24 (1.16-1.33)	1.81×10 ⁻⁹	721559	0.820	1.09 (1.05-1.12)	3.30×10 ⁻⁶	

Supplementary Table S6 The effect of each gout locus from another trans-ancestry gout GWAS meta-analysis

*dbSNP rs number.

[†]SNP positions are based on NCBI human genome reference sequence Build hg19.

[‡]Novel loci in the present meta-analysis are shown in bold.

[§]The results from all gout cases are shown, since the data for subtype GWAS of gout were not available in other studies.

[¶]Tin *et al.* performed the trans-ancestry GWAS meta-analysis of gout, including self-reported gout cases², while our present study analyzed only clinically-defined gout.

Chr.: chromosome; RAF: risk allele frequency; OR: odds ratio; CI: confidence interval.

Supplementary method

Study subjects and patients' involvement

We performed subtype genome-wide meta-analyses based on two case-control data sets for clinicallydefined gout that included the Japonica Array³ and Illumina Array data sets. Patients with known clinical parameters were recruited from Japanese male outpatients at the gout clinics of Jikei University Hospital (Tokyo, Japan), Midorigaoka Hospital (Osaka, Japan), Kyoto Industrial Health Association (Kyoto, Japan), Ryougoku East Gate Clinic (Tokyo, Japan), Nagase Clinic (Tokyo, Japan), Tokorozawa Central Hospital (Tokorozawa, Japan) and Wakasa Clinic (Tokorozawa, Japan). All 3104 cases (1048 cases for the Japonica Array and 2056 for the Illumina Array) were clinically diagnosed as having primary gout according to the criteria established by the American College of Rheumatology,⁴ and their subtypes were also diagnosed along with their clinical parameters as described previously⁵⁻⁸ (Table 1 and Online Supplementary Figure S1). As controls, 6081 individuals (1179 and 4902 controls for the Japonica Array and Illumina Array, respectively) were assigned from Japanese male participants in the Japan Multi-Institutional Collaborative Cohort Study (J-MICC Study).^{9,10} This research was done without patient involvement. Patients were not invited to comment on the study design and were not consulted to develop patient-relevant outcomes or interpret the results. Patients were not invited to contribute to the writing or editing of this document for readability or accuracy.

Genotyping and imputation for the Japonica Array data set

A total of 1048 male clinically-defined gout cases and 1179 male controls from the J-MICC Study^{9,10} were genotyped with the use of a Japonica SNP Array.³ The clustering plots were first classified by the Ps classification function in the SNPolisher package (version 1.5.2; Affymetrix). Single nucleotide polymorphisms (SNPs) that were assigned 'recommended' by the Ps classification were retained. Seven samples (two cases and five controls) with a genotype call rate of < 0.98 were excluded. Three controls with inconsistent sex information between questionnaires and the estimate from genotype were excluded. The identity-by-descent method implemented in PLINK 1.9 software¹¹ detected 17 duplicates or closely related pairs of samples (pi-hat > 0.1875), with one sample in each pair (15 cases and 2 controls) being excluded. One control indicated a relationship to other samples (pi-hat > 0.05), and was removed. Principal component analysis (PCA)¹² with the 1000 Genomes Project reference panel (Phase 3)¹ detected four subjects (3 cases and 1 control) with probable ancestries outside the Japanese population: these four samples were also excluded. Among the SNPs that were genotyped with the array, we excluded SNPs at the pseudo-autosomal regions of chromosome X as well as a) those with a

genotype call rate of < 0.98, b) a Hardy-Weinberg equilibrium exact test P value of < 1×10^{-6} , c) a minor allele frequency (MAF) of < 0.01, or d) a departure from the allele frequency computed from the 1000 Genomes Project Phase 3 EAS samples¹. This quality control filtering process resulted in the selection of 1028 case subjects and 1167 control subjects as well as 603,009 SNPs. Pre-phasing and imputation were performed using SHAPEIT2¹³ and Minimac3,¹⁴ respectively. Post-imputation quality control was performed by excluding SNPs with an imputation quality score (r²) of < 0.3, MAF < 0.01 and indels; also excluded were 215 controls who had hyperuricemia (serum uric acid level (SUA) > 7.0 mg/dl) or a past history of gout. Ultimately, 1028 case subjects and 952 control subjects as well as 7,529,176 SNPs remained for the GWAS analysis.

Genotyping and imputation for the Illumina Array data set

As case data, 2056 male clinically-defined gout cases subjects were genotyped with the use of HumanOmniExpress or HumanOmniExpressExome BeadChip Arrays (Illumina, San Diego, CA, USA). One sample with a genotype call rate of < 0.98 was excluded. No samples showed a discrepancy between genetic and reported sex. The identity-by-descent method implemented in PLINK 1.9 software¹¹ detected 17 duplicates or closely-related pairs of samples (pi-hat > 0.1875), with one sample of each pair being excluded. PCA¹² with the 1000 Genomes Project reference panel (Phase 3)¹ detected six subjects who were estimated to have ancestries outside the Japanese population: these were excluded. As control data, 4902 male controls with SUA data from the J-MICC study,^{9,10} who had been previously genotyped at the RIKEN Center for Integrative Medicine Sciences using a HumanOmniExpressExome BeadChip Array (Illumina, San Diego, CA, USA) with sample OC of the control data.^{15,16} were used. No samples were excluded for reasons of a genotype call rate of < 0.98 or a discrepancy between genetic and reported sex. The identity-by-descent method implemented in PLINK 1.9 software¹¹ detected one sample having a relationship with a gout case (pi-hat > 0.1875), which was excluded. PCA¹² with the 1000 Genomes Project reference panel (Phase 3)¹ detected no subjects estimated to have ancestries outside the Japanese population. After sample QC, the case and control datasets were merged. Of the SNPs that were consistently genotyped across the arrays, we excluded SNPs at the pseudo-autosomal regions of chromosome X as well as those with a genotype call rate of < 0.98, a Hardy-Weinberg equilibrium exact test P value of $< 1 \times 10^{-6}$ or a MAF of < 0.01. This quality control filtering resulted in the selection of 2032 case subjects and 4901 control subjects as well as 553,321 SNPs. Post-imputation quality control was performed by excluding SNPs with an imputation quality score (r^2) of < 0.3, MAF < 0.01 and indels. 1062 controls with hyperuricemia (SUA > 7.0 mg/dl) or with a past history of gout were excluded. 244 samples (7 cases and 237 controls) that overlapped with the Japonica Arrays samples were removed. Ultimately, 2025 case subjects and 3602 control subjects as well as 7,356,207 SNPs remained for GWAS analysis.

References for Supplementary Method

- 1. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68-74 (2015).
- 2. Tin, A. *et al.* Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. *Nat. Genet.* **51**, 1459-1474 (2019).
- 3. Kawai, Y. *et al.* Japonica array: improved genotype imputation by designing a population-specific SNP array with 1070 Japanese individuals. *J. Hum. Genet.* **60**, 581-587 (2015).
- Wallace, S. L. *et al.* Preliminary criteria for the classification of the acute arthritis of primary gout. *Arthritis Rheum.* 20, 895-900 (1977).
- 5. Dalbeth, N. *et al.* Gout. *Nat. Rev. Dis. Primers* **5**, 69 (2019).
- 6. Ichida, K. *et al.* Decreased extra-renal urate excretion is a common cause of hyperuricemia. *Nat. Commun.* **3**, 764 (2012).
- 7. Matsuo, H. *et al.* ABCG2 dysfunction causes hyperuricemia due to both renal urate underexcretion and renal urate overload. *Sci. Rep.* **4**, 3755 (2014).
- Matsuo, H. *et al.* Genome-wide association study of clinically defined gout identifies multiple risk loci and its association with clinical subtypes. *Ann. Rheum. Dis.* **75**, 652-659 (2016).
- Hamajima, N. & J-MICC Study Group. The Japan Multi-Institutional Collaborative Cohort Study (J-MICC Study) to detect gene-environment interactions for cancer. Asian Pac. J. Cancer Prev. 8, 317-323 (2007).
- Asai, Y. *et al.* Baseline data of Shizuoka area in the Japan Multi-Institutional Collaborative Cohort Study (J-MICC Study). *Nagoya J. Med. Sci.* **71**, 137-144 (2009).
- 11. Chang, C. C. *et al.* Second-generation PLINK: rising to the challenge of larger and richer datasets. *GigaScience* **4**, 7 (2015).
- Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. *PLoS Genet.* 2, e190 (2006).
- Delaneau, O., Zagury, J. F. & Marchini, J. Improved whole-chromosome phasing for disease and population genetic studies. *Nat. Methods* 10, 5-6 (2013).
- Das, S. *et al.* Next-generation genotype imputation service and methods. *Nat. Genet.* 48, 1284-1287 (2016).
- Hishida, A. *et al.* Genome-wide association study of renal function traits: results from the Japan Multi-Institutional Collaborative Cohort Study. *Am. J. Nephrol.* 47, 304-316 (2018).

Nakagawa-Senda, H. *et al.* A genome-wide association study in the Japanese population identifies the 12q24 locus for habitual coffee consumption: The J-MICC Study. *Sci. Rep.* 8, 1493 (2018).