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Genesis and Gappa: Processing, Analyzing and Visualizing Phylogenetic (Placement) Data.

Lucas Czech, Pierre Barbera, and Alexandros Stamatakis

In this supplement, we compare GENESIS and GAPPA to competing software. First, we evaluate the runtime and memory
requirements for some representative and frequent tasks, by comparing GENESIS to libraries and tools that have similar
scope and functionality. Second, we compare GAPPA to the GUPPY tool by benchmarking some of their common func-
tionality. GUPPY is part of the PPLACER suite of programs [1], which were one of the first phylogenetic placement tools.
Third, we evaluate the quality of the GENESIS code in comparison to other scientific software written in C++ and C.

1 Runtime and Memory

We compare GENESIS and GAPPA to several competing libraries and tools. We focus on the most widely used alternative
tools. The full list of competing software to which we compared GENESIS and GAPPA is provided in Table S1. Most
general-purpose libraries for bioinformatics tasks, manipulation and (post-)analysis of genetic sequences and phylogenetic
trees are written in interpreted languages such as Python or R. In order to also compare GENESIS to software written
in a similar, compiled, language, we also included two other libraries developed by our lab, namely LIBPLL [2] and the
accompanying PLL-MODULES [3]. They are written in C, and are the core libraries of the recent re-implementation of
RAXML-NG [4]. We however note that these libraries are independed of GENESIS and do not share any code.

We compare several typical tasks for working with sequences, trees, and phylogenetic placements. As the specific scope
of each library and tool differs, there is comparatively little overlap in functionality that can be used for benchmarking.
Hence, we evaluated the runtime and memory requirements of GENESIS for the following general tasks:

e Parsing files in fasta format [5]; see Figure S1.

Parsing files in phylip format [6]; see Figure S2.

Calculating base frequencies on sets of sequences; see Figure S3.

e Parsing files in newick format [7]; see Figure S4.

Calculating the pairwise patristic distance matrix on a given tree with branch lengths; see Figure S5.

e Parsing files in jplace format [8]; see Figure S6.

Furthermore, we evaluted the runtime and memory requirements of GAPPA for the following types of typical analyses of
phylogenetic placement data:

e Calculate the EDPL of the queries in a placment sample [1]; see Figure S7.
e Calculate the Kantorovich-Rubinstein (KR) distance [9] between sets of placement samples; see Figure S8.
e Calculate the Edge Principal Components (Edge PCA) [10] of sets of placement samples; see Figure S9.

e Calculate the Squash Clustering [10] of sets of placement samples; see Figure S10.

We provide all scripts used for testing the tools and creating the plots shown here at https://github.com/Iczech/
genesis-gappa-paper. The tests were run on a 4-core laptop with 12 GB of main memory. We note that GENESIS and
GAPPA offer parallel processing and computation. They can, for example read/parse multiple files simultaneously on
distinct compute cores. We are not aware that any of the competing libraries and tools evaluated here transparently
offer this feature. Hence, for a fair comparison, we also tested GENESIS and GAPPA on a single core only.


https://github.com/lczech/genesis-gappa-paper
https://github.com/lczech/genesis-gappa-paper

In summary, GENESIS outperforms all tools written in Python and R. In most cases it is also more memory-efficient.
The runtime and memory requirements for LIBPLL/PLL-MODULES in comparison to GENESIS show that each of the tools
performs better at specific tasks, depending on how much effort was invested into the optimization of the respective
method. Based on a careful code inspection, we believe that the tasks were each software performs best are implemented
close to optimal regarding runtime and/or memory.

Furthermore, GAPPA generally outperforms GUPPY in all tests, both in terms of runtime and memory usage. There is
only one type of analysis (Edge PCA, Figure S9) where GUPPY has a slight speed advantage for small datasets—which
however run fast anyway. For larger datasets, this advatage vanishes, and GAPPA becomes ever more efficient.

2 Code Quality

Code quality is an important property of scientific software, as ‘good’ code quality facilitates detecting bugs and ensures
long-term maintainability of the software; see [11] for a recent analysis and discussion on the state of software for
evolutionary biology. We used the prototype implementation of SOFTWIPE (https://github.com/adrianzap/softwipe; also
developed in our lab) to assess the relative code quality of GENESIS. SOFTWIPE is a meta-tool for C and C++ software
that employs other tools such as CLANG-TIDY and CPPCHECK to obtain scores for a number of different code quality
characteristics/indicators: It checks for compiler warnings, memory leaks, undefined behaviour, usage of assertions,
cyclomatic complexity (modularity of the code), code duplication, etc.

The result of SOFTWIPE is a ranking of the tested codes from best to worst, scoring each code relative to the others for
each code quality indicator, as well as an average “overall” ranking (average over all code quality indicators). At the
time of writing this paper, 15 different software codes in C and/or C++ formed part of SOFTWIPE code quality benchmark,
including highly cited tools such as INDELIBLE [12], MAFFT [13], MRBAYESs [14], T-COFFEE [15], and SEQ-GEN [16].

Overall, GENESIS currently achieves the highest score of all tested codes, with 9.6/10 points, with top scores (10/10) in
compiler and sanitizer warnings, usage of assertions, and (low) cyclomatic complexity. See https://github.com/adrianzap/
softwipe/wiki for details and the up-to-date benchmark results.

Table S1: Evaluated libraries and tools for the runtime and mem-
ory tests. The table lists the respective programming language,
the version we used in our evaluation, the main reference(s), and
the accumulated number of citations, using Google Scholar (https:
//scholar.google.com), accessed on 2019-05-05.

Tool Language Version Reference Citations
GENESIS C++ 0.22.1 [this article] -
GAPPA C++ 0.5.1 [this article] -
APE R 5.3 [17] 7390
BIOPYTHON  Python 1.73 [18] 1712
DENDROPY  Python 4.4.0 [19] 935
ETE3 Python 3.1.1 [20] 644
GGTREE R 1.10.5 [21] 294
GUPPY 0Caml 1.1.a19 1] 476"
LIBPLL c 2019-04-13  [2, 3] -
SCIKIT-BIO ~ Python 0.5.5 [22] -

! qupPY is part of the PPLACER suite of programs; the number of
citations hence also includes those of PPLACER itself.
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Figure S1: Runtimes and memory footprints for reading fasta files [5] containing 1K to 1M sequences.
The input files consist of randomly generated sequences using the alphabet ‘~ACGT’, with a length of 1000 characters per
sequence. Hence, the largest file is about 1 GB in size.

In this test, GENESIS is by far the fastest and most memory-efficient software. In all cases, it parses files more than two
times faster than the second fastest software, LIBPLL. Furthermore, the memory usage of LIBPLL for fasta files seems
to be problematic: It uses about 8 times as much memory as the file size, for example, 7.8 GB for the 1 GB file. On
the other hand, GENESIS has almost no overhead for keeping the files in memory, as can be seen by the 10> MB ~ 1 GB
memory usage for 1 M sequences. Asymptotically, the memory usage of SCIKIT-BIO is the second best after GENESIS: It
starts at around 120 MB, probably due to constant memory for its Python environment, but then levels out for larger
files. However, SCIKIT-BIO is also one of the slowest tools, and at least 20 times slower than GENESIS in all cases.

Note that we did not evaluate DENDROPY for files larger than 100 K sequences (corresponding to a 100 MB file), because
the runtime of 30 min for that file is already impractical for reasonable usage.
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Figure S2: Runtimes and memory footprints for reading phylip files [6] containing 1K to 1M sequences.
The sequences are the same as in Figure S1, but converted to a strict phylip format. Strict phylip requires exactly
10 characters for sequence names, and does not allow line breaks in the sequences. This was required by some of the
tools, which can not handle “relaxed” phylip containing longer sequence names and/or line breaks. Although GENESIS
supports all phylip variants, we generally advise against using the phylip format for maximum portability across tools.
In this test, GENESIS is second best after LIBPLL in both runtime and memory usage, but only by a small margin. Using
the phylip format, LIBPLL also does not exhibit the memory issue that it shows for fasta, c.f. Figure S1. We again
limited the test of DENDROPY to reasonable runtimes, as explained in Figure S1.
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Runtimes and memory footprints for calculating base frequencies on a given set of se-

quences. Apart from merely reading and parsing files, we also tested some fundamental functionality for working with
sequence data. Unfortunately, the range of functions offered by each software largely differs, and we did not find any
function or procedure that is provided by all of them. We therefore evaluate the simple calculation of character frequen-
cies/occurences in the sequences of Figure S1 and Figure S2. The parsing of the sequences is not included in the time
measurement. We only include results for those libraries that do offer a function for counting characters in either single
sequences or in an entire set of sequences.
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Figure S4: Runtimes and memory footprints for reading newick files [7] with 1K to 1M taxa (tip/leaf
nodes) and a randomly generated topology. The newick format is the only one supported by all libraries that we
tested. In most cases, GENESIS is fastest, closely followed by LIBPLL, which does however exhibit a more efficient memory
usage. The memory usage for large trees is best for the R-based libraries APE and GGTREE, as they store most of the
tree data in a memory-efficient table (instead of per-node storage that most other tools use). ETE3 exhibits the worst
memory efficiency, with 3 GB for a 25 MB newick file containing a tree with 1 M taxa. We did not include measurements
of DENDROPY and BIOPYTHON for trees above 50 K taxa. These tools were able to read these trees, but not work with
them: They store and traverse trees recursively, so that even a simple counting of the number of taxa in the tree exceeded
the Python recursion depth, essentially rendering the tools inapplicable to such large trees.
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Figure S5: Runtimes and memory footprints for calculating the pairwise patristic distances on a given
tree. Similar to Figure S3, we evaluate a simple function that operates on trees: The calculation of the pairwise patristic
(branch length) distance matrix between all taxa of the tree. Unfortunately, we could again not identify a basic function
that is available in all libraries. For example, ETE3 does have a function for calculating distances between two given
taxa—but applying this to all pairs of taxa to obtain the full matrix was prohibitively slow, so we did not include it
here. The tree parsing times are not included in the time measurements.

Again, GENESIS outperforms all other libraries. We note that GENESIS calculates the matrix for all nodes of the tree,
including inner nodes, while the other libraries shown only return the distance matrix for the taxa (leaf nodes) of the
tree, which is only a quarter of the size. This explains the better memory footprint of SCIKIT-BIO for larger trees. We
could not test all tree sizes here, as the resulting matrices would have exceeded the available memory. This is also the
reason why DENDROPY was not able to calculate the matrix for 10 K taxa on the given hardware.
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Figure S6: Runtimes and memory footprints for reading jplace files with 1K to 1M placed sequences
(“queries”). The jplace format [8] is a standard file format for storing phylogenetic placements of sequences on a
given, fixed reference tree. We conducted this test, because the manipulation, analysis, and visualization of phylogenetic
placement data constitutes one of the main use cases of GENESIS and GAPPA. Here, we used the 1K taxon tree of
Figure S4 and randomly placed sequences on its branches, with each sequence having up to 5 random placement
positions (branches). We include a comparison with GUPPY, which is a command line tool for the analysis of phylogenetic
placements, and the tool on which many ideas and concepts of our GAPPA tool are based upon. As GUPPY is not a library,
we conduct the test by measuring the runtime and memory usage of its info command. The command simply reads a
jplace file and prints the number of queries stored in the file. GENESIS consistently outperforms both alternative tools
that can parse jplace files, and is about one order of magnitude faster than GGTREE.
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Figure S7: Runtimes and memory footprints for calculating the Expected Distance between Placement
Locations (EDPL) [1] of the queries in a jplace file. We again use the randomly generated jplace files (so-called
“samples”) of Figure S6 with 1K to 1M placed sequences (“queries”) here. The EDPL is a metric that measures the
uncertainty of each query in a sample, by assessing the distribution of the different placement positions of each query
along the branches of the tree. The most time- and memory-consuming part of this analysis is the file reading itself,
while the overhead for the actual computation is fairly small. Hence, the plot exhibits similar runtimes and memory
footprints as Figure S6. For larger samples, both the runtime and the memory consumption of GAPPA are about 2 times
better compared to GUPPY.
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Figure S8: Runtimes and memory footprints for calculating the pairwise Kantorovich-Rubinstein (KR)
distance [9] between sets of placement samples. The KR distance is a pairwise metric between placement samples
(i.e., between two jplace files); hence, we here scale the analysis with the number of samples (jplace files). Each sample
contains 1000 randomly placed sequences (queries), with each having up to 5 random placement positions (branches).
We again used the 1 K taxon tree of Figure S4. The largest analysis with 10K samples corresponds to ~ 3 GB of jplace
files; we however could not compute some of the large analyses, as they would have exceeded the available main memory
needed for the input data and the resulting pairwise distance matrix. Here, GAPPA is about 5 times faster, and 3 times
more memory efficient than GUPPY.
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Figure S9: Runtimes and memory footprints for calculating the Edge Principal Components (Edge PCA)
[10] of sets of placement samples. The Edge PCA is a typical analysis method for placement data that identifies
which taxa of the reference tree are mostly responsible for differences between the composition of distinct samples.
Hence, we here again scale the test with the number of samples, again using the random data from Figure S8. The PCA
implementation in GAPPA differs from the one in GUPPY in that it scales worse with tree size. As the tree size is constant
in the test data (1K taxa), we here get a “constant” offset of ~ 10s for GAPPA even for a small number of samples.
This however is alleviated by the generally better runtime of GAPPA that pays off for larger numbers of samples. As the
reference trees used in phylogenetic placement usually are around a few thousand taxa is size, this downside of GAPPA
should rarely be an issue in practice. GAPPA uses about 70% the memory commpared to GUPPY, and yields growing
runtime advantages for larger numbers of samples; for 5K samples, it is 55 times as fast. We could not test GUPPY with
10K samples due to the limited main memory of 12 GB.
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Figure S10: Runtimes and memory footprints for calculating Squash Clustering [10] of sets of placement
samples. Squash Clustering is another typical analysis method for placement data that yields a cluster tree of samples
by grouping samples that are similar to each other based on their KR distance. We again scale the test with the number
of samples, and use the random data from Figure S8. This is by far the most time-demanding type of analysis tested
here. The largest tests (with 500 and 2K samples, respectively) correspond to runtimes of ~ 2 days; we did not run tests
with more samples due to these long runtimes. As mentioned, we here limited GAPPA to run on 1 core only; using more
cores yields almost linear speedups. Here, GAPPA gains larger improvements for larger numbers of samples compared to
GUPPY; for 500 samples, it is 43 times as fast (on a single core) and 11 times more memory efficient.
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