

Supporting Information

for

Fabclavine diversity in Xenorhabdus bacteria

Sebastian L. Wenski, Harun Cimen, Natalie Berghaus, Sebastian W. Fuchs, Selcuk Hazir and Helge B. Bode

Beilstein J. Org. Chem. 2020, 16, 956–965. doi:10.3762/bjoc.16.84

Material and methods, supplementary figures and tables, and MALDI–HRMS and MALDI–MS² spectra

1 Material and methods

2 1. Strain cultivation for MALDI–MS experiments

The strains were cultivated as described previously [1]: Briefly, all *Xenorhabdus* and *Photorhabdus* strains were grown on lysogeny broth (LB) agar plates at 30 °C. The production cultures were inoculated 1:25 with overnight cultures in fresh LB medium and incubated shaking at 30 °C for three days. *Escherichia coli* strains were grown on LB agar plates and in LB medium at 37 °C with shaking. If appropriate, kanamycin (50 μ g/mL) or L-(+)-arabinose (0.2%) were added. The cultures were harvested as whole cell cultures and stored at -20 °C.

10

2. Isotope labeling and reverse feeding experiments

For the isotope-labeling experiments, overnight cultures were washed three times with H₂O and inoculated 1:100 in ISOGRO[®]-13C (Sigma-Aldrich). If appropriate, kanamycin and L-(+)-arabinose (0.2%) were added, and the cultures were incubated shaking at 30 °C for 2 d. For reverse feeding experiments, 2 mM of the substrate was added each day.

16

3. Generation of promoter-exchange mutants

The promoter-exchange mutants were generated as described previously [1]: Briefly, about 600–1200 bp of the starting *fclC* (homologues) were amplified (the corresponding oligonucleotides are listed in Table S1), cloned into the pCEP_Kan backbone (pCEP: <u>cluster expression plasmid</u>) by hot fusion assembly, and transformed into *E. coli* S17-1 λpir or ST18 as described previously [2-5]. After the conjugation with the corresponding *E. coli* ST18/S17 strains, the kanamycin-resistant conjugants were confirmed by colony PCR or by MALDI–MS for a successful promoter exchange.

25

26 4. MALDI–MS

MALDI–MS experiments were performed as described previously [1]: Briefly, 0.3 µL of a
liquid culture were mixed on a MALDI target with 0.25 µL 1:10 diluted ProteoMass Normal
Mass Calibration Mix (ProteoMass[™] MALDI Calibration Kit, Sigma-Aldrich) for internal
calibration and 0.9 µL α-cyano-4-hydroxycinnamic acid (CHCA) matrix (3 mg/mL in 75%
acetonitrile, 0.1% trifluoroacetic acid). After drying, the resulting spot was coated with 5%
formic acid, and after removal of the 5% formic acid solution mixed again with 0.6 µL

CHCA. Cell MALDI measurements were performed with a MALDI LTQ Orbitrap XL 33 (Thermo Fisher Scientific, Inc., Waltham, MA) instrument (nitrogen laser at 337 nm in 34 FTMS scan mode) with 100 shots per measurement with high resolution. Alternatively, 4-35 chloro- α -cyanocinnamic acid can be used as the matrix, but we observed a decreased 36 quality of the resulting spectra. The CID mode using the ITMS scan mode was used for 37 MALDI-MS² experiments, with the same sample preparation having the following 38 39 parameters: Normalized collision energy: 28–32, Act. Q: 0.250, Act. Time (ms): 30.0. The data were analyzed using Qual Browser version 2.0.7 (Thermo Fisher Scientific). As the 40 41 signal intensities of the stacked spectra were normalized and the intensity is displayed by the relative abundance in a range from 0 to 100%, the y axis is not shown. Since not all 42 43 detected signals could be detected with a sufficient signal intensity to confirm them by MS² experiments, we decided to show them in the supplementary figures of the 44 45 corresponding strain, but without a compound number.

46

47 **5. Bioactivity analysis**

48 **5.1 Generating cell-free supernatant**

The promoter-exchange mutant strains were cultivated on LB agar, supplemented with a 49 50 µg/mL final concentration of kanamycin, and incubated at 30 °C for 48 h. A single 50 51 colony was transferred into 10 mL LB medium, supplemented with a 50 µg/mL final concentration of kanamycin to obtain a culture overnight at 200 rpm and 30 °C. The optical 52 densities of the overnight cultures (20 mL LB) were measured at 600 nm. The final OD of 53 54 the cultures was adjusted to 0.1 after inoculation. For each strain, two flasks were prepared, and the cultures were incubated at 30 °C for 1 h. One of the flasks was induced 55 with 0.2% L-arabinose, and the other flask was not treated with arabinose (non-induced). 56 All induced and non-induced cultures were incubated for 24 h at 200 rpm and 30 °C. Wild 57 type strains were grown on LB agar at 30 °C for 48 h. A single colony was transferred in 58 10 mL LB medium and incubated overnight at 30 °C in a rotary shaker at 200 rpm to 59 60 generate precultures. The LB medium was inoculated 1:100 with the preculture and cultivated at 200 rpm and 30 °C for 72 h. The bacterial broth was harvested by 61 centrifugation at 10,000 rpm for 10 min, and the supernatant was filtered through a 0.22 62 µm millipore filter (Thermo scientific). 63

64

65 **5.2 Agar well-diffusion bioassay**

The antibacterial activity of the wild type, induced, and noninduced promoter-exchange 66 mutant supernatants was determined by the agar well-diffusion method [6]. Escherichia 67 coli (ATCC 25922), Enterococcus faecalis (ATCC 29212), Staphyllococcus aureus (ATCC 68 29213), and Klebsiella pneumoniae (ATCC 700603) were used in the experiments. For 69 the preparation of overnight cultures of the test organisms, 20 mL LB medium was 70 inoculated with a loopful of the bacterium and incubated at 37 °C in a rotary shaker at 200 71 rpm. Briefly, 200 µL of the pathogen bacteria from an overnight culture was spread on a 72 Mueller-Hinton agar (blood agar was used for *E. faecalis*) with a glass rod. Subsequently, 73 three wells were made in each of these plates using a 5 mm diameter sterile transfer tube. 74 75 Each well was filled with 60 µL of induced, non-induced mutant, or wild type of the bacterial supernatants. Kanamycin was used as a positive control at different concentrations (25, 76 50, 100, 200, 400, and 800 µL/mg). Petri dishes (10 mm) were incubated at 37 °C for 48 77 h. After the incubation period, the diameter of the inhibition zones (mm) was assessed by 78 79 measuring the diameter in two perpendicular directions and taking the average [7]. Ten petri dishes were used for each replicate, and the experiments were conducted three 80 times on different dates. 81

82

83

Supplementary material:

Table S1: Overview of oligonucleotides used in this work for the amplification of the homologous regions of the promoter

 exchange mutants.

strain	locus tag(s) of	oligonucleotide	sequence 5'–3'
	analyzed gene(s)		
X. szentirmaii	Xsze_03745	SW159_XszC_fw	TTTGGGCTAACAGGAGGCTAGCATATGTCTGAGACATATTTTTTACATGATAGAAAAATTCGTGG
pCEP_fcl		SW160_XszC_rv	TCTGCAGAGCTCGAGCATGCACATGCAATATTCCCGCACGGGTATATGC
X. budapestensis	Xbud_02634	SW271_Xbud_fw	TTTGGGCTAACAGGAGGCTAGCATATGTCCAAGACGTATTTTTTGCATG
pCEP_fcl		SW272_Xbud_rv	TCTGCAGAGCTCGAGCATGCACATCTTCATTCCACTCAAGATACATTCCG
X. indica	Xind_02757	SW132_Xind_fw	TTTGGGCTAACAGGAGGCTAGCATATGTCCAAGACGTATTTTTTGCATG
pCEP_fcl		SW133_Xind_rv	TCTGCAGAGCTCGAGCATGCACATCGCTTTTACCTGCCCTTCC
X. hominickii	Xhom_02793	SW130_Xhom_fw	TTTGGGCTAACAGGAGGCTAGCATATGTCTGAGTCATATCTTTTACATGATGG
pCEP_fcl		SW131_XHom_rv	TCTGCAGAGCTCGAGCATGCACATCTTCAACTAATTGAATATCGCTCGG
X. stockiae	Xsto_00102	SW273_uni_fw	TTTGGGCTAACAGGAGGCTAGCATATGTCCAGGACATATTTTTTGCATG
pCEP_fcl		SW276_Xsto_rv	TCTGCAGAGCTCGAGCATGCACATGCCAAGATCAAAATAACTGGCG
X. KJ12.1	Xekj_00388	SW153_KJ12.1_fw	TTTGGGCTAACAGGAGGCTAGCATATGTCCAGGACATATTTTTTGCATG
pCEP_fcl		SW154_KJ12.1_rv	TCTGCAGAGCTCGAGCATGCACATCCATCACTGGAAGCTTCAACG
X. KK7.4	ctg22_41	SW155_KK7.4_fw	TTTGGGCTAACAGGAGGCTAGCATTTGCATGACAGAAAAATTAATGGAG
pCEP_fcl		SW156_KK7.4_rv	TCTGCAGAGCTCGAGCATGCACATGTGCAAAAATACTCTTTGCACGG
P. temperata	MEG1DRAFT_01183	SW267_Ptemp_fw	TTTGGGCTAACAGGAGGCTAGCATATGTCTGAGACATATTTAATGCGTGG
pCEP_fcl		SW268_Ptemp_rv	TCTGCAGAGCTCGAGCATGCACATAAGTTGCTTTTCGACAGTGCC

strain	#	description	origin
X. szentirmaii	DSM 16338	Wild type	[8]
X. budapestensis	DSM 16342	Wild type	[8]
X. cabanillasii	JM26	Wild type	[9]
X. indica	DSM 17382	Wild type	[10]
X. hominickii	DSM 17903	Wild type	[9]
X. stockiae	DSM 17904	Wild type	[9]
<i>X.</i> KJ12.1	KJ12.1	Wild type	[11]
<i>X.</i> KK7.4	KK7.4	Wild type	[12]
X. innexi	DSM 16336	Wild type	[8]
P. temperata	meg1	Wild type	[13]
X. szentirmaii pCEP_fcl	DSM 16338	Promoter exchange in front of Xsze_03745	This work
X. budapestensis pCEP_fcl	DSM 16342	Promoter exchange in front of Xbud_02634	This work
X. cabanillasii pCEP_fcl	JM26	Promoter exchange in front of Xcab_02060	[14]
X. indica pCEP_fcl	DSM 17382	Promoter exchange in front of Xind_02757	This work
X. hominickii pCEP_fcl	DSM 17903	Promoter exchange in front of Xhom_02793	This work
X. stockiae pCEP_fcl	DSM 17904	Promoter exchange in front of Xsto_00102	This work
X. KJ12.1 pCEP_fcl	KJ12.1	Promoter exchange in front of Xekj_00388	This work
X. KK7.4 pCEP_fcl	КК7.4	Promoter exchange in front of ctg22_41	This work
<i>P. temperata</i> pCEP_fcl	meg1	Promoter exchange in front of MEG1DRAFT_01183	This work
E. coli	S17 λ1-pir	used for conjugation	[3]
E. coli	ST18	used for conjugation	[4]
E. coli	ATCC25922	Bioactivity analysis	ATCC
Enterococcus faecalis	ATCC29212	Bioactivity analysis	ATCC
Staphyllococcus aureus	ATCC29213	Bioactivity analysis	ATCC
Klebsiella	ATCC700603	Bioactivity analysis	ATCC

Table S2: Strains used in this work.

Table S3: Comparison of protein identities [%] from FcIA to FcIN in *X. budapestensis* DSM 16342 with *X. cabanillasii* JM26 (A) and *X. indica* DSM 17382 (B). Protein alignments were performed by ClustalW alignment with the CostMatrix BLOSUM in Geneious 6.1.8.

Identity	FcIA	FcIB	FcIC	FcID	FcIE	FcIF	FclG	FclH	Fcll	FclJ	FclK	FcIL	FcIM	FcIN
А	96.5	92.2	95.6	94.8	97.2	96.1	96.1	97.4	93.6	96.4	93.6	92.8	98.7	97.8
В	97.1	91.6	95.4	95.6	96.3	97.3	94.9	97.4	93.5	94.7	93.8	94.1	97.8	97

Table S4: Diameters of inhibition zones of different kanamycin concentrations against *Escherichia coli* (ATCC 25922), *Enterococcus faecalis* (ATCC 29212), *Staphyllococcus aureus* (ATCC 29213) and *Klebsiella pneumoniae* (ATCC 700603).

	kanamycin concentration [µg/ml]									
	25 50 100 200 400 800									
E. coli	13.5	16.9	20.1	23.0	25.3	28.2				
S. aureus	0.0	0.0	13.3	18.5	21.6	24.7				
E. faecalis	0.0	0.0	11.9	16.5	19.3	24.1				
K. pneumoniae	0.0	0.0	0.0	0.0	11.7	15.3				

Table S5: Overview of the NCBI accession numbers of the strains used in this study.

strain	accession number
Xenorhabdus szentirmaii DSM 16338	NIBV0000000
Xenorhabdus budapestensis DSM 16342	NIBS0000000
Xenorhabdus cabanillasii JM26	NJGH0000000
Xenorhabdus indica DSM 17382	NKHP0000000
Xenorhabdus hominickii DSM 17903	NJAI0000000
Xenorhabdus stockiae DSM17904	NJAJ0000000
Xenorhabdus KJ12.1	NJCW0000000
Xenorhabdus KK7.4	NJAH0000000
Xenorhabdus bovienii SS-2004	FN667741
Xenorhabdus innexi DSM 16336	NIBU0000000
Photorhabdus temperata subsp. temperata Meg1	NZ_JGVH0000000

Table S6: Stachelhaus-codes and corresponding amino acid prediction of the promiscousA-domains A_2 and A_6 in the analyzed strains [15,16].

	A-dom	ain A ₂	A-domain A ₆			
strain	Stachelhaus	prediction	Stachelhaus	prediction		
Х.	DTWTLASVGK	phe	DAWFIGGTFK	val		
budapestensis						
X. indica	DTWTLASVGK	phe	DAWFIGGTFK	val		
X. cabanillasii	DTWTLASVGK	phe	DAWFIGGTFK	val		
X. hominickii	DTWTIASVGK	phe	DALFIGGTFK	val		
X. szentirmaii	DVWTMSAVGK	ser	DALFIGGTFK	val		
KJ12.1	DTWTIASVGK	phe	DAWFIGGTFK	val		
X. stockiae	DTWTIASVGK	phe	DAWFIGGTFK	val		
KK7.4	DTWTIASVGK	phe	DAWFVGGTFK	val		
X. innexi	DTWTMASVGK	phe	DAWFVGGTFK	val		

Figure S1: (A) Comparison of the *fcl* BGCs in *X. stockiae* DSM 17904 (a), KK7.4 (b), KJ12.1 (c) and the homologous gene cluster in *X. innexi* DSM 16336 (d). Shown are protein identities in comparison with X. stockiae [%]. Protein alignments were performed by ClustalW alignments with the CostMatrix BLOSUM in Geneious 6.1.8. The two aberrant genes of the *X. innxei* BGC are shown in purple (encoding a TonB homologue) and in brown (encoding an Acyl-CoA-thioesterase) [17]. (B) Zeamine biosynthesis gene cluster and corresponding compounds from *Serratia plymuthica* RVH1 [18,19].

Figure S2: MALDI–HRMS spectra of *X. szentirmaii* wild type (WT) and pCEP_fcl promoter-exchange mutant (induced and noninduced) with compounds **15** and **16** showing sum formulas, calculated and detected masses and corresponding Δ ppm.

Figure S3: MALDI–HRMS spectra of *X. szentirmaii* wild type (WT) and pCEP_fcl promoter-exchange mutant (induced and noninduced) with compounds **17–22** showing sum formulas, calculated and detected masses and corresponding Δ ppm. Compounds **17–22** were described previously [20].

Figure S4: MALDI–HRMS spectra of *X. szentirmaii* wild type (WT) and pCEP_fcl promoter-exchange mutant (induced and noninduced) with polyamine and shortened fabclavines showing sum formulas, calculated and detected masses and corresponding Δ ppm.

Figure S5: MALDI–MS² spectra of compound 1111.78 (**15**) of *X. szentirmaii* pCEP_*fcl* (induced) showing expected fragment ions and proposed structure.

Figure S6: MALDI–MS² spectra of compound 1113.76 (**16**) of *X. szentirmaii* pCEP_*fcl* (induced) showing expected fragment ions and proposed structure.

Figure S7: MALDI–HRMS spectra of *X. budapestensis* wild type (WT) and pCEP_*fcl* promoter-exchange mutant (induced and noninduced) with compounds **5–8** showing sum formulas, calculated and detected masses and corresponding Δ ppm.

Figure S8: MALDI–HRMS spectra of *X. budapestensis* wild type (WT) and pCEP_fcl promoter-exchange mutant (induced and noninduced) with compounds **1**–**4** showing sum formulas, calculated and detected masses and corresponding Δ ppm. Compounds **1**–**4** were described previously [20].

Figure S9: MALDI–MS² spectra of compound 1175.78 (**8**) of *X. budapestensis* pCEP_*fcl* (induced) showing expected fragment ions and proposed structure.

Figure S10: MALDI–MS² spectra of compound 1219.81 (**6**) of *X. budapestensis* pCEP_*fcl* (induced) showing expected fragment ions and proposed structure.

Figure S11: MALDI–HRMS spectra of *X. indica* wild type (WT) and pCEP_fcl promoterexchange mutant (induced and noninduced) with compounds **5–8** showing sum formulas, calculated and detected masses and corresponding Δ ppm. Due to unspecific signals in all three spectra with high intensities the compounds **5–7** are not visible, but could be confirmed by HRMS.

Figure S12: MALDI–HRMS spectra of *X. indica* wild type (WT) and pCEP_*fcl* promoterexchange mutant (induced and noninduced) with compounds **1**–**4** showing sum formulas, calculated and detected masses and corresponding Δ ppm.

Figure S13: MALDI–HRMS spectra of *X. indica* wild type (WT) and pCEP_*fcl* promoterexchange mutant (induced and noninduced) with compounds **9–12** showing sum formulas, calculated and detected masses and corresponding Δ ppm.

Figure S14: MALDI–MS² spectra of compound 1430.05 (**12**) of *X. indica* pCEP_*fcl* (induced) showing expected fragment ions and proposed structure.

Figure S15: MALDI–HRMS spectra of *X. cabanillasii* wild type (WT) and pCEP_fcl promoter-exchange mutant (induced and noninduced) with compound **8** showing sum formula, calculated and detected masses and corresponding Δ ppm.

Wild type **4** 1302.9248 1 **2** 1346.9507 1356.9601 **3** 1312.9337 pCEP_fcl (ind.) 2 1346.9528 **4** 1302.9271 1 1356.9636 3 1312.9363 pCEP_fcl (non-ind.) 1300 1310 1315 1320 1325 1330 *m/z* 1335 1340 1355 1360 1305 1345 1350 Calc. # Sum formula Det. m/z $\Delta \mathbf{ppm}$ m/z WТ pCEP_fcl WТ pCEP_fcl 0.990 4 $C_{65}H_{119}N_{15}O_{12}$ 1302.9248 1302.9271 2.747 1302.9235 3 C₆₈H₁₂₁N₁₃O₁₂ 1312.9330 1312.9337 1312.9363 0.516 2.481 2 $C_{67}H_{123}N_{15}O_{13}$ 1346.9528 0.679 2.275 1346.9498 1346.9507 1 $C_{70}H_{125}N_{13}O_{13}$ 1356.9601 1356.9636 0.636 3.193 1356.9593

Figure S16: MALDI–HRMS spectra of *X. cabanillasii* wild type (WT) and pCEP_fcl promoter-exchange mutant (induced and noninduced) with compounds **1**–**4** showing sum formulas, calculated and detected masses and corresponding Δ ppm. Compounds **1**–**4** were described previously [14].

Figure S17: MALDI–HRMS spectra of *X. cabanillasii* wild type (WT) and pCEP_fcl promoter-exchange mutant (induced and noninduced) with compounds **11** and **12** showing sum formulas, calculated and detected masses and corresponding Δ ppm.

Figure S18: MALDI–HRMS spectra of *X. hominickii* wild type (WT) and pCEP_fcl promoter-exchange mutant (induced and noninduced) with compounds **11–14** showing sum formulas, calculated and detected masses and corresponding Δ ppm.

Figure S19: MALDI–MS² spectra of compound 1430.05 (**12**) of *X. hominickii* pCEP_*fcl* (induced) showing expected fragment ions and proposed structure.

Figure S20: MALDI–HRMS spectra of the reverse feeding experiment in ¹³C medium of *X. hominickii* pCEP_fc/mutant (induced and noninduced) with compounds **12** and **13** (with and without feeding of ¹²C L-valine) showing sum formulas, calculated and detected masses and corresponding Δ ppm.

Figure S21: MALDI–HRMS spectra of KJ12.1 wild type (WT) and pCEP_*fcl* promoterexchange mutant (induced and noninduced) with compounds **23–26** showing sum formulas, calculated and detected masses and corresponding Δ ppm.

Figure S22: MALDI–HRMS spectra of KJ12.1 wild type (WT) and pCEP_*fcl* promoterexchange mutant (induced and noninduced) with compounds **27–32** showing sum formulas, calculated and detected masses and corresponding Δ ppm.

Figure S23: MALDI–MS² spectra of compound 1304.94 (**25**) of KJ12.1 pCEP_*fcl* (induced) showing expected fragment ions and proposed structure.

Figure S24: MALDI–MS² spectra of compound 1306.91 (**26**) of KJ12.1 pCEP_*fcl* (induced) showing expected fragment ions and proposed structure.

Figure S25: MALDI–MS² spectra of compound 1392.99 (**31**) of KJ12.1 pCEP_*fcl* (induced) showing expected fragment ions and proposed structure.

Figure S26: MALDI–HRMS spectra of *X. stockiae* wild type (WT) and pCEP_*fcl* promoterexchange mutant (induced and noninduced) with compounds **23–26** showing sum formulas, calculated and detected masses and corresponding Δ ppm.

Figure S27: MALDI–HRMS spectra of *X. stockiae* wild type (WT) and pCEP_*fcl* promoterexchange mutant (induced and-noninduced) with compounds **27–32** showing sum formulas, calculated and detected masses and corresponding Δ ppm.

Figure S28: MALDI–HRMS spectra of KK7.4 wild type (WT) and pCEP_*fcl* promoterexchange mutant (induced and noninduced) with compounds **23–26** showing sum formulas, calculated and detected masses and corresponding Δ ppm.

Figure S29: MALDI–HRMS spectra of KK7.4 wild type (WT) and pCEP_*fcl* promoterexchange mutant (induced and noninduced) with compounds **2** and **27–32** showing sum formulas, calculated and detected masses and corresponding Δ ppm.

Figure S30: MALDI–HRMS spectra of *X. innexi* wild type with compounds **4** and **23–26** showing sum formulas, calculated and detected masses and corresponding Δ ppm.

Figure S31: MALDI–HRMS spectra of *X. innexi* wild type with compounds **27–32** showing sum formulas, calculated and detected masses and corresponding Δ ppm.

Figure S32: MALDI–MS² spectra of compound 1392.99 (**31**) of *X. innexi* showing expected fragment ions and proposed structure.

$\overset{HO}{\underset{H_2N}{\leftarrow}} \overset{O}{\underset{H}{\leftarrow}} \overset{R^1}{\underset{H}{\leftarrow}} \overset{H}{\underset{O}{\leftarrow}} \overset{O}{\underset{H}{\leftarrow}} \overset{H}{\underset{O}{\leftarrow}} \overset{O}{\underset{H}{\leftarrow}} \overset{O}{\underset{H}{\leftarrow}} \overset{O}{\underset{H}{\leftarrow}} \overset{OH}{\underset{H}{\leftarrow}} \overset{OH}{\underset{H}{\underset{H}{\leftarrow}} \overset{OH}{\underset{H}{\underset}} $									
Occurence	R ¹	R ²	R ³	n	m	Sum formula	[M+H]+		
а	CH_3	н	•—	2	3	$C_{56}H_{106}N_{12}O_{13}$	1155.8075		
а	CH_3	н		2	3	$C_{55}H_{104}N_{12}O_{14}$	1157.7868		
а	H Z	н		2	3	$C_{58}H_{106}N_{14}O_{14}$	1223.8086		
b		-111	$\overline{\mathbf{x}}$	3	4	$C_{69}H_{127}N_{15}O_{14}$	1390.9760		
а		н	€ —	2	3	$C_{61}H_{108}N_{12}O_{14}$	1233.8181		

Figure S33: Proposed minor derivatives found in *Xenorhabdus* strains (a: *X. szentirmaii*; b: KJ12.1, KK7.4). Identification is based on MALDI–HRMS spectra (Figure S2, S3, S22, and S29).

References

- Wenski, S. L.; Kolbert, D.; Grammbitter, G. L. C.; Bode, H. B. J. Ind. Microbiol. Biotechnol. 2019, 46 (3-4), 565-572. doi:10.1007/s10295-018-02124-8
- Bode, E.; Brachmann, A. O.; Kegler, C.; Simsek, R.; Dauth, C.; Zhou, Q.; Kaiser, M.; Klemmt, P.; Bode, H.
 B. *Chembiochem* **2015**, *16* (7), 1115–1119. doi:10.1002/cbic.201500094
- 3. Simon, R.; Priefer, U.; Pühler, A. Nat Biotechnol 1983, 1, 784 EP -. doi:10.1038/nbt1183-784
- 4. Thoma, S.; Schobert, M. *FEMS Microbiol. Lett.* **2009**, *294* (2), 127–132. doi:10.1111/j.1574-6968.2009.01556.x
- 5. Fu, C.; Donovan, W. P.; Shikapwashya-Hasser, O.; Ye, X.; Cole, R. H. *PLoS ONE* **2014**, *9* (12), e115318. doi:10.1371/journal.pone.0115318
- Agarwal, P.; Agarwal, N.; Gupta, R.; Gupta, M.; Sharma, B. J Microb Biochem Technol 2016, 08 (05). doi:10.4172/1948-5948.1000316
- 7. Fang, X. L.; Li, Z. Z.; Wang, Y. H.; Zhang, X. J. Appl. Microbiol. 2011, 111 (1), 145–154. doi:10.1111/j.1365-2672.2011.05033.x
- Lengyel, K.; Lang, E.; Fodor, A.; Szállás, E.; Schumann, P.; Stackebrandt, E. Syst. Appl. Microbiol. 2005, 28 (2), 115–122. doi:10.1016/j.syapm.2004.10.004
- 9. Tailliez, P.; Pagès, S.; Ginibre, N.; Boemare, N. *Int. J. Syst. Evol. Microbiol.* **2006**, *56* (Pt 12), 2805–2818. doi:10.1099/ijs.0.64287-0
- 10. Somvanshi, V. S.; Lang, E.; Ganguly, S.; Swiderski, J.; Saxena, A. K.; Stackebrandt, E. *Syst. Appl. Microbiol.* **2006**, *29* (7), 519–525. doi:10.1016/j.syapm.2006.01.004
- 11. Thanwisai, A.; Tandhavanant, S.; Saiprom, N.; Waterfield, N. R.; Ke Long, P.; Bode, H. B.; Peacock, S. J.; Chantratita, N. *PLoS ONE* **2012**, *7* (9), e43835. doi:10.1371/journal.pone.0043835
- Tobias, N. J.; Wolff, H.; Djahanschiri, B.; Grundmann, F.; Kronenwerth, M.; Shi, Y.-M.; Simonyi, S.; Grün,
 P.; Shapiro-Ilan, D.; Pidot, S. J.; Stinear, T. P.; Ebersberger, I.; Bode, H. B. *Nat. Microbiol.* 2017, 2 (12), 1676–1685. doi:10.1038/s41564-017-0039-9
- Hurst, S. G.; Ghazal, S.; Morris, K.; Abebe-Akele, F.; Thomas, W. K.; Badr, U. M.; Hussein, M. A.; AbouZaied, M. A.; Khalil, K. M.; Tisa, L. S. *Genome Announc* **2014**, *2* (6). doi:10.1128/genomeA.01273-14
- 14. Donmez Ozkan, H.; Cimen, H.; Ulug, D.; Wenski, S.; Yigit Ozer, S.; Telli, M.; Aydin, N.; Bode, H. B.; Hazir, S. *Front Microbiol* **2019**, *10*, 2672. doi:10.3389/fmicb.2019.02672
- 15. Stachelhaus, T.; Mootz, H. D.; Marahiel, M. A. *Chem. Biol.* **1999**, 6 (8), 493-505. doi: 10.1016/S1074-5521(99)80082-9
- Challis, G. L.; Ravel, J.; Townsend, C. A. *Chem. Biol.* **2000**, 7 (3), 211-224. doi: 10.1016/s1074-5521(00)00091-017.Kim, I.-H.; Aryal, S. K.; Aghai, D. T.; Casanova-Torres, Á. M.; Hillman, K.; Kozuch, M. P.; Mans, E. J.; Mauer, T. J.; Ogier, J.-C.; Ensign, J. C.; Gaudriault, S.; Goodman, W. G.; Goodrich-Blair, H.; Dillman, A. R. *BMC Genomics* **2017**, *18* (1), 927. doi:10.1186/s12864-017-4311-4
- Kim, I.-H.; Aryal, S. K.; Aghai, D. T.; Casanova-Torres, Á. M.; Hillman, K.; Kozuch, M. P.; Mans, E. J.; Mauer, T. J.; Ogier, J.-C.; Ensign, J. C.; Gaudriault, S.; Goodman, W. G.; Goodrich-Blair, H.; Dillman, A. R. *BMC Genomics* **2017**, *18* (1), 927. doi:10.1186/s12864-017-4311-4
- Masschelein, J.; Mattheus, W.; Gao, L.-J.; Moons, P.; van Houdt, R.; Uytterhoeven, B.; Lamberigts, C.; Lescrinier, E.; Rozenski, J.; Herdewijn, P.; Aertsen, A.; Michiels, C.; Lavigne, R. *PLoS ONE* 2013, 8 (1), e54143. doi:10.1371/journal.pone.0054143

- 19. Masschelein, J.; Clauwers, C.; Awodi, U. R.; Stalmans, K.; Vermaelen, W.; Lescrinier, E.; Aertsen, A.; Michiels, C.; Challis, G. L.; Lavigne, R. *Chem. Sci.* **2015**, *6* (2), 923–929. doi:10.1039/c4sc01927j
- 20. Fuchs, S. W.; Grundmann, F.; Kurz, M.; Kaiser, M.; Bode, H. B. *Chembiochem* **2014**, *15* (4), 512–516. doi:10.1002/cbic.201300802