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Abstract 

Background 

Whilst much sequencing effort has focused on key mammalian model organisms such as 

mouse and human, little is known about the correlation between genome sequencing 

techniques for non-model mammals and genome assembly quality. This is especially relevant 

to non-model mammals, where the samples to be sequenced are often degraded and low 

quality. A key aspect when planning a genome project is the choice of sequencing data to 

generate. This decision is driven by several factors, including the biological questions being 

asked, the quality of DNA available, and the availability of funds. Cutting-edge sequencing 

technologies now make it possible to achieve highly contiguous, chromosome-level genome 

assemblies, but relies on good quality high-molecular-weight DNA. The funds to generate 

and combining these data are often only available within large consortiums and sequencing 

initiatives, and are often not affordable for many independent research groups. For many 

researchers, value-for-money is a key factor when considering the generation of genomic 

sequencing data. Here we use a range of different genomic technologies generated from a 

roadkill European Polecat (Mustela putorius) to assess various assembly techniques on this 

low-quality sample. We evaluated different approaches for de novo assemblies and discuss 

their value in relation to biological analyses. 

 

Results 

Generally, assemblies containing more data types achieved better scores in our ranking 

system. However, when accounting for misassemblies, this was not always the case for 

Bionano and low-coverage 10x Genomics (for scaffolding only). We also find that the extra 

cost associated with combining multiple data types is not necessarily associated with better 

genome assemblies. 
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Conclusions 

The high degree of variability between each de novo assembly method (assessed from the 

seven key metrics) highlights the importance of carefully devising the sequencing strategy to 

be able to carry out the desired analysis. Adding more data to genome assemblies not always 

results in better assemblies so it is important to understand the nuances of genomic data 

integration explained here, in order to obtain cost-effective value-for-money when 

sequencing genomes. 

 

Introduction 

Starting in 1990, the Human Genome Project used low-throughput, high-cost Sanger 

sequencing platforms to create the first draft human genome at a cost of USD $300 million. 

Fast-forward 19 years and the cost of sequencing a human genome has dropped to around 

USD $1000. Short-read technologies producing high-throughput, low per-base cost next-

generation sequencing (NGS) means that genomics is no longer restricted to large sequencing 

consortiums and has opened up the field to even the smallest of research groups. The recently 

formed Vertebrate Genomes Project (VGP) [1] aims to produce near-gapless, chromosome-

scale phased genome assemblies for around 66,000 extant vertebrate species. The assembly 

pipeline consists of 60x coverage Pacific Biosciences (PacBio) long read sequencing, 

followed by 10x Genomics linked reads, Bionano optical mapping and Arima Genomics' Hi-

C profiles. These long-read technologies provide highly contiguous genome assemblies. 

Similar consortiums and sequencing initiatives have been formed to sequence a range of 

target organisms such as Bat1K, Bird10K, Oz Mammals Genomics, and Earth BioGenome 

Project (including Darwin UK Tree of Life, Colombia EBP, etc.) [2]. Although such efforts 

make it possible to achieve highly-contiguous, chromosome level genome assemblies, the 
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cost of generating this amount of data and assemble them is considerable and often only 

within reach of a few of these consortiums. It is important for smaller independent research 

groups or initiatives to consider value-for-money against biological questions as a key factor 

when planning the generation of genomic sequencing data.  

 

Non-model organism 

Non-model organisms have the potential to provide new knowledge related to phenotypic and 

genotypic variation. Through comparative genomics, it is possible to identify how different 

organisms are related to each other, how they adapt to novel environments, or the genetic 

basis underlying novel phenotypes. These new findings can be applied to further research, 

such as in the biomedical and food industries through breeding programs with the 

development of marker assisted selection and in conservation biology [3-12] 

De novo assembly of endangered species, followed by low-coverage population-level 

sequencing provides unprecedented information about the amount of genetic diversity within 

populations, past and ongoing gene flow between different populations, and the level of 

inbreeding in small populations.  

 

However, there are a number of difficulties when working with non-model mammals. Firstly, 

the genome size is not always known, hampering the assessment of the completeness of the 

‘assembled’ genome and of the sequencing depth. Additionally, the availability and quality of 

the samples used for sequencing non-model organisms is often substandard. Tissue and blood 

samples are often obtained from wild populations and may need to be acquired from remote 

locations, delaying the time between collection and DNA extraction. Another common issue 

relates to samples which may have been stored in collections such as museums, zoos and 

tissue collections and subjected to a number of different preservation methods such as 
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freezing, storage in ethanol, FFPE, etc. Many current sequencing technologies (e.g. PacBio, 

Bionano, and 10x Genomics) rely on high-molecular-weight DNA with molecules longer 

than 100Kb being optimum. Degraded DNA, as is commonly observed in samples from wild 

populations and is usually sub-optimal for use in many advanced sequencing methods. It is 

therefore difficult, or sometimes impossible, to leverage the full application of these 

technologies. 

 

Many non-model organisms are species from wild populations that are highly heterozygous 

leading to numerous challenges during the assembly step. Allelic differences in a diploid 

genome generates branches and bubbles in the assembly graph [13]. Even though most 

graph-based assemblers have functions to search for and remove these structures, high 

density variation can still make assembly of heterozygous organisms challenging. 

Conversely, high levels of homozygosity, characteristic of endangered (and typically inbred) 

species, hamper the efforts of creating phased genome assemblies, since the ability to phase 

haplotypes is dependent on linked sequences spanning polymorphisms. Additionally, non-

model organisms vary in their ploidy, chromosome number, repeat content, sequence 

composition and GC content, adding further confounding factors to genome assembly. 

 

The example of the European Polecat 

The European Polecat (Mustela putorius) is a medium-sized carnivore found across Europe 

and the Middle East. It is purported to be the ancestral species of the domestic ferret (M. p. 

furo) [14]. Across most of mainland Europe the polecat is in widespread decline [15]. In the 

United Kingdom, the European Polecat has a chequered history. Persecuted to the verge of 

extinction in the early-1900’s, when it was confined to unmanaged forests in central Wales, it 
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has since seen a population increase and is now found throughout Wales and across much of 

central, south-western and eastern England [16]. 

 

Here, a road-kill sample of European Polecat from the Vincent Wildlife Trust collection 

(VWT 693) was used to assess short-read and long-range de novo sequencing strategies for 

non-model mammals. Comparisons between combinations of PCR-free Illumina libraries, 

Nextera long-mate-pair (LMP) libraries, 10x Genomics Chromium libraries and Bionano 

optical maps are made to assess optimum sequencing and assembly strategies. 

 

 

Sequencing technologies 

Short-read sequencing 

The market-leader in short-read high-throughput NGS is Illumina [17]. Recent machines 

produce read-lengths of 100 bps and above and a single Illumina Novaseq run is currently 

capable of generating 600 Gbps of read data. An advantage to Illumina sequencing is the 

generation of paired-end (PE) reads, in which the sequence from both ends of each DNA 

molecule is synthesised. As the input molecules are of an approximate known length, the 

acquisition of PE data provides a greater amount of information. Additionally, using a PCR-

free library preparation removes bias in genomic coverage, previously incorporated by a PCR 

amplification step in older library preparation procedures. PCR-free Illumina sequencing 

requires a minimum of 2-5 μg of genomic DNA (gDNA) at a minimum concentration of 35 

ng/μl in 60 μl. 

 

 

Long Mate Pair sequencing. 
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Long DNA fragments up to around 40 kb can be sequenced to provide PE reads that bridge 

long repeats, thus producing longer contiguous genome assemblies as well as characterising 

structural variants. Under the Nextera LMP protocol [18], a transposase enzyme attaches 19-

bp biotinylated adaptors to both ends of each long DNA fragment. The DNA is then 

circularized, where the biotinylated ends become joined. The circularized DNA is then 

fragmented and biotin enrichment is used to process the fragments containing the adaptors 

that mark the junction. During sequencing, reads are produced from both ends of a fragment, 

resulting in inward-facing reads that read toward and through the adaptors. For Illumina 

Nextera LMP sequencing the Nextclip tool can then be used to trim adaptors and de-duplicate 

reads [19]. Nextera LMP sequencing requires a minimum of 9 μg of gDNA at a minimum 

concentration of 30 ng/μl in 300 μl. 

 

10x Genomics 

The Chromium system from 10x Genomics uses oil emulsion and multiple displacement 

amplification (MDA) to ligate short molecular barcodes to reads from each fragment of DNA 

[20], followed by PE Illumina sequencing. Each fragment receives its own unique barcode 

and hence reads with the same barcodes represents clusters of reads from the same region in 

the genome. These ‘linked-reads’ provide the long-range information missing from standard 

Illumina sequencing and is then used to assemble phased assemblies de novo. 10x Chromium 

libraries require high molecular weight gDNA at a concentration of 20μg/μl in 10μl. gDNA 

should greater than 50kb in length in order to take full advantage of the technology. 

 

Optical mapping (Bionano) 

Bionano technology produces optical maps of nicking/restriction enzyme sites across 

kilobase-long stretches of DNA molecules, providing a high-throughput tool for ordering and 
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orienting contigs of physical maps and validation of genome assemblies [21]. Bionano optical 

maps can be compared to in silico restriction maps produced from an NGS genome assembly 

for validation purposes, to improve contiguity by assigning the shorter NGS scaffolds to the 

longer optical maps, and identifying structural variants. 600 ng of raw gDNA at a 

concentration of 35-200 ng/μl is typically enough DNA to generate about 120 μl of labelled 

molecules – enough to provide adequate coverage for analysis of a human-sized genome (3 

Gb). 

 

Genome contiguity has an effect on what analyses can be achieved (Table 1), so it is 

important to appreciate the power and limitations of each sequencing strategy and 

technology. 

 

Assembly resolution Paired-end Paired-end + 

Long Mate Pair 

Bionano 10x 

Genomics 

Gene content Yes Yes No Yes 

Gene order Yes Yes No Yes 

Repeat spanning No Yes Yes Yes 

Structural variants No Yes Yes Yes 

Haplotype resolution No No No Yes 

 

Table 1. Information regarding the possible resolution for various de novo genome 

sequencing technologies. When planning a genome assembly project, it is important to 

understand the strengths and limits of the various sequencing strategies available. 
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Materials and Methods 

Sequencing 

Using the same sample of a roadkill European Polecat sample stored in 100% ethanol, two 

lanes of PCR-free Illumina HiSeq2500 250bp PE reads (77x coverage), two Illumina LMP 

libraries of size 5 kb (27x coverage) and 7 kb (9x coverage) and four lanes of 150bp PE 10x 

Genomics Chromium using an Illumina HiSeq2500 (85x coverage) are generated. 

The mean molecule length of the European Polecat sample was around 50kb, which was not 

of good enough quality to generate Bionano data (recommended >100kb). Because the 

domestic ferret and its polecat ancestor diverged only around 2000 years ago, and fully 

interbreed we do not expect significant divergence and structural differences between the two 

species. Therefore, the original sample used for the domestic ferret genome assembly [22] 

was obtained and one chip of Bionano Genomics optical genome maps was generated. This 

was used to create Bionano hybrid-scaffold assemblies for the European Polecat genomes 

assembled with the previously mentioned short-read data. We generated 664 Gb of Bionano 

molecules, with an N50 size of 185 kb and a contig coverage of 261x. Of this, 40% of the 

molecules aligned back to the Bionano de novo assembly, leaving an effective coverage of 

110x. A more detailed description of the library preparation methods can be found in the 

Supplementary Methods. 

 

 

Assemblies 

10 different genome assemblies were generated as summarised in Figure 1, (with additional 

information in Supplementary Table S1), and detailed as follows: 
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Assembly A1 (w2rap). 

The PCR-free Illumina reads from polecat were assembled using the w2rap-contigger [23]. 

w2rap is predominantly a contig assembler- reads are used to construct an assembly graph 

which is then traversed to create a contig assembly. A final step involves using the PE 

information to scaffold contigs not joined during the initial assembly process. Using w2rap, 

four different assemblies were created using a range of k-mers (k=180, 200, 224, and 240) 

and simple assembly stats were run to examine contiguity across the assemblies (for all 

contigs and filtering for contigs > 1kb). From these statistics, the assembly constructed with 

k=224 was selected as the final assembly. 

Assembly A2 (w2rap + lmp). 

Using SSPACE [24] the 5 kb and 7 kb Nextera LMPs were used to scaffold the w2rap 

assembly from assembly A1. For all SSPACE LMP assemblies the reads were used only for 

scaffolding and not for contig extension. 

Assembly A3 (10x). 

The 10x Genomics Chromium library were assembled using the 10x Genomics Supernova 

software [20], with default parameters. Similar to w2rap, Supernova creates an initial contig 

assembly but then scaffolds using the molecule-specific barcode information in the reads to 

join contigs known to be from the same molecule [20]. The output style of the resulting 

assembly was ‘pseudohap’, which creates one haplotype per scaffold. 

Assembly A4 (10x + lmp). 

The 5 kb and 7 kb Nextera LMPs were used to scaffold the 10x assembly generated in 

assembly A3. As in assembly A2, the LMP reads were used only for scaffolding and not for 

contig extension. 
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The Bionano data was assembled de novo and then was used to position and orient scaffolds 

from previous assemblies creating a Bionano hybrid-scaffold as follows: 

Assembly A5 (w2rap + bionano). Bionano hybrid-scaffolding with w2rap assembly 

(Assembly A1). 

Assembly A6 (w2rap + lmp + bionano). Bionano hybrid-scaffolding with the w2rap + LMP 

assembly (Assembly A2) 

Assembly A7 (10x + bionano). Bionano hybrid-scaffolding with the 10x assembly 

(Assembly A3). 

Assembly A8 (10x + lmp + bionano). Bionano hybrid-scaffolding with the 10x + LMP 

assembly (Assembly A4). 

 

Finally, the 30x coverage of 10x Genomics data (from the same data generated for assembly 

A3, henceforth referred to in the text as ‘10x-scaffolding’) was used to scaffold two 

assemblies using the scaff10x program from Phusion2 [25], as follows: 

Assembly A9 (w2rap + 10x). The w2rap-only assembly (Assembly A1) with 10x-

scaffolding. 

Assembly A10 (w2rap + lmp + bionano + 10x). The w2rap + LMP + Bionano assembly 

(Assembly A6), with 10x-scaffolding. 

 

 

 

Figure 1. Ten different assembly strategies using a variety of different data types: PCR-free 

Illumina short-read (‘PCR-free’), long mate-pair (‘LMP’), 10x Genomics Chromium library 

(‘10x’), and Bionano Genomics optical maps (‘Bionano’). The blue-boxed assemblies all 

originate from the same PCR-free w2rap assembly (A1) and the black-boxed assemblies all 
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originate from the same 10x Genomics Supernova assembly (A3). Information in brackets 

refers to assembly software pipeline and assembly numbers are annotated below each 

assembly. 

 

Analyses 

Genome contiguity 

For each genome assembly, a number of assembly statistics, such as contig N50, scaffold 

N50, the number of scaffolds over given lengths and scaffolded genome size were calculated. 

To calculate contig N50, any scaffolded-contigs that were joined by 25 or more Ns were 

broken. The percentage of the genome contained in scaffolds greater than 25 kb (the average 

length of a vertebrate gene [26]), and the number of scaffolds greater than 47 Mb (the length 

of the smallest human chromosome), were also calculated 

 

K-mer analysis 

The K-mer Analysis Toolkit (KAT) version 2.3.4 [27] was used to examine k-mers across 

reads and assemblies. KAT enables users to assess levels of errors, bias and contamination at 

various stages of the assembly process. Using the KAT ‘comp’ program with a k-mer size of 

31, k-mers in the PCR-free Illumina reads were compared with those in the resulting 

assemblies (omitting the Bionano assemblies as this technology adds negligible sequence 

content) and for each assembly, the k-mer-spectra was plotted. 

 

Gene content 

BUSCO (v2.0.1) was used to search for single-copy orthologs in each assembly [28]. 

BUSCO reports the number of single-copy orthologs discovered in the input assembly, and 

categorises them as ‘complete’, ‘single-copy’, ‘multi-copy’ or ‘fragmented’. For speed, 27 
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sequences that had tblastn runtimes of over 3 days were removed from the mammalia_odb9 

database, leaving us with a final database of 4077 single-copy orthologs. This custom version 

of mammalia_odb9 was used for the ‘lineage’ parameter in BUSCO and ‘human’ for the 

Augustus species parameter.  

 

Repeat content 

To examine repeat content and compare how repeats were resolved in each genome assembly 

RepeatMasker [29] was used to identify repeat families in each assembly, using all 

Carnivora-specific repeats. As well as identifying repeat sequences, the mean deletion, 

insertion and divergence for each family was also calculated, as well as the mean values 

overall. Mean divergence is calculated as ‘mismatches/(matches + mismatches)’ between 

queries and matches for all repeats. 

 

Assembly errors and misassemblies 

REAPR [30] was used to evaluate the accuracy of each genome assembly by separately 

mapping PCR-free PE and LMP reads back to each assembly. The fragment coverage 

distribution (FCD) error for each assembly was calculated. FCD is the fragment depth from 

only the reads that are mapped to a given base of a fragment. The FCD error is the difference 

between the theoretical and observed FCD and is used to identify assembly errors in the 

regions containing a run of high FCD errors. Mapping information such as the FCD and 

insert size distribution is analysed to locate misassemblies as well as more local per-base 

accuracies. The ‘smalt map’ option in REAPR was used, which uses SMALT [31] to align 

the PCR-free PE and LMP reads back to each assembly utilising the option to map PE reads 

independently. This ensures that read pairs are not artificially forced to map as proper pairs 

within a given insert size. REAPR was then used to identify perfectly and uniquely mapped 
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reads in the PE PCR-free alignment, to accurately call error-free bases in the assembly and 

further used the LMP reads to identify features consistent with misassemblies. Error-free 

bases have at least 5X perfect and unique coverage of paired end reads. REAPR summary 

scores were calculated for each assembly by multiplying the number of error-free bases with 

the square of the REAPR broken scaffold N50 length, and then dividing by the original 

scaffold N50, i.e. ‘No. error-free bases * (broken N502/assembly N50)’. This test was first 

used to evaluate genome assemblies in the Assemblathon series [26] and rewards local 

accuracy, overall contiguity and correct scaffolding of an assembly. In order to independently 

asses the performance of each datatype for scaffolding the number of REAPR breaks were 

compared between the w2rap-only assembly (A1) and that assembly scaffolded with one 

datatype, namely LMP (A2), Bionano (A5) and 10x (A9). 

 

Value-for-money 

Cost is a huge factor in research and ultimately, impacts on decisions made regarding the 

technologies used. A metric was created to reflect ‘value-for-money’ by estimating the cost 

of each assembly and the N50 achieved. This metric is provided as N50/$1K and calculated 

for contig N50, scaffold N50 and the REAPR broken scaffold N50.  

 

Ranking assemblies 

Each assembly was ranked with regard to its performance for seven key metrics. Each 

assembly was given a rank-score according to its position in each metric. The top-placed 

assembly that performed best in a given metric, was given a rank-score of 10, the second-

placed assembly was given a rank score of 9, and so on, down to the bottom-placed assembly 

which was given a rank-score of 1.  

Assemblies were ranked for the following metrics:  
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1. Scaffold N50 

2. REAPR broken scaffold N50 

3. Contig N50 

4. Percentage of genome represented by scaffolds >25 kb 

5. Single-copy BUSCO orthologs 

6. REAPR summary score 

7. REAPR broken scaffold N50/$1K 

 

Z-scores 

Z-scores were used to combine scores from datasets with different means, ranges, and 

standard deviations and have the benefit of rewarding/penalising those assemblies with 

exceptionally high/low scores in any one metric. The influence of each of the seven metrics 

was tested by removing each metric in turn and recalculating the z-score for each assembly. 

These recalculations were then used to produce error bars for the final z-score figure, by 

providing the minimum and maximum z-score that might have occurred if any combination 

of six metrics was used. 

  

Results 

Assembly contiguity and connectivity 

Assembly Statistics 

After assembling the 10 genomes as described in Figure 1, a number of metrics were 

calculated for each assembly to examine contiguity and connectivity, measured by the lengths 

and distribution of the scaffolds within each assembly (Table 2). The mean assembly size for 

all genomes was 2.52Gb, slightly larger than the 2.41Gb assembly of the domestic ferret [22]. 
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10x-based assemblies erred on having smaller genome assembly sizes (2.46 – 2.50Gb) with 

the larger assemblies (2.47 – 2.66Gb) being from the PCR-free Illumina-based assemblies.  

 

No. Assembly 

No. 

scaffolds 

>100 kb 

No. 

scaffolds 

>1 Mb 

No. 

scaffolds 

>47 Mb 

% 

genome 

>= 25kb 

Longest 

scaffold 

(Mb) 

Contig 

N50 

(kb) 

Scaffold 

N50 

(Mb) 

Assembly 

Size 

(Gb) 

A1 w2rap 

6,290 

(10.7%) 

176 

(0.3%) 

0 

94.9 

2.52 182.93 0.30 2.47 

A2 

w2rap + 

lmp 

1,680 

(4.9%) 

682 

(2.0%) 

0 

94.8 

15.65 271.16 2.62 2.60 

A3 10x 

1,023 

(3.9%) 

501 

(1.9%) 

0 

93.3 

32.15 207.98 5.26 2.46 

A4 10x + lmp 

669 

(4.2%) 

346 

(2.2%) 

1 

94.7 

58.16 210.72 10.33 2.50 

A5 

w2rap + 

bionano 

4,361 

(7.7) 

626 

(1.1%) 

0 

93.8 

6.89 182.93 0.85 2.66 

A6 

w2rap + 

lmp + 

bionano 

990 

(3.0%) 

468 

(1.4%) 

0 

94.8 

34.30 271.16 5.73 2.60 

A7 

10x + 

bionano 

604 

(2.3%) 

336 

(1.3%) 

0 

97.5 

46.79 207.98 10.84 2.48 

A8 

10x + lmp 

+ bionano 

409 

(2.6%) 

218 

(1.4%) 

7 

97.6 

104.38 210.72 21.01 2.50 

A9 

w2rap + 

10x 

1,097 

(2.4%) 

467  

(1%) 

0 

97.6 

35.44 182.93 5.58 2.47 

A10 

w2rap + 

lmp + 

bionano + 

10x 

447 

(1.4%) 

235 

(0.7%) 

3 

97.5 

65.13 271.16 14.05 2.60 
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Table 2. Genome assembly statistics (for sequences >1kb) for all assemblies. % scores refer 

to percentage of scaffolds over given threshold. 47Mb is size of smallest human chromosome 

and hence and indication of the number of chromosome-sized scaffolds. 

 

Contig N50 for the assemblies varied between 183 kb to 271 kb. Scaffold N50 for the 

assemblies varied between 300 kb to 21 Mb. The increase from contig N50 to scaffold N50 

varied greatly (Figure 2). The addition of LMP data to an initial short-read assembly had a 

varying effect. On the relatively fragmented w2rap assembly (A1), the addition of LMP reads 

lead to an almost 9-fold increase of the scaffold N50 but adding LMPs to the more 

contiguous 10x assembly (A3) resulted in a 2-fold increase. This is not unexpected as the 

N90 value for the 10x assembly (800kb) is 20 times greater than that of the w2rap assembly 

(40kb), hence the chance of mate pairs spanning the same contig and not adding to the 

contiguity of the assembly is much higher in the already contiguous 10x assembly. The 

addition of Bionano data to assemblies leads to a similar scaffold N50 increases across all 

assemblies, namely between a 2 and 2.8 fold increase. Finally, 10x-scaffolding data was 

added to scaffold assembly A1 (w2rap) and assembly A6 (w2rap + lmp + bionano). As might 

be expected, the effect of 10x-scaffolding data on less contiguous genomes was greater than 

that on more contiguous genomes. There was an 18.6-fold increase in N50 between assembly 

A1 (w2rap) and assembly A9 (w2rap + 10x), whereas the increase in N50 between assembly 

A6 (w2rap + lmp + bionano) and assembly A10 (w2rap + lmp + bionano + 10x) was less 

contrasting at 2.5-fold.  
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Generally speaking, assemblies created with one or two data types, where one of the data 

types was Illumina short reads, showed the smallest increase from contig N50 to scaffold 

N50 (Figure 2). 

 

 

Figure 2. Log-scale lengths of contig N50 (blue) and scaffold N50 (red) of all ten assemblies, 

sorted (left to right) by scaffold N50. 

 

Assembly errors and misassemblies 

REAPR was used to assess the accuracy of the polecat genome assemblies by looking at low-

quality regions, breakpoints (Table 3), and summary scores. (Figure 3). The percentage of 

error-free bases for each assembly varied between 76.05% to 85.9%. All the w2rap-based 

assemblies were on the low end of the scale (76.05% - 81.09%), whilst 10x-based assemblies 

were on the high end (84.65 % - 85.9%). Conversely, there was a trend for w2rap-based 

assemblies to be less affected by misassemblies (excluding those with 10x-scaffolding). Their 

REAPR broken N50 size reduced between 2% - 64%, whilst 10x-based assemblies reduced 

in N50 size between 68% - 91%. A similar pattern is seen with the number of FCD errors, 

where all w2rap-based assemblies (bar A10, with 10x-scaffolding) have less than 8214 FCD 

errors and all 10x-based assemblies have 9095 errors or more.  

 

No. Assembly name % 

error-

free 

Original 

N50 

REAPR 

broken 

N50 

% reduction 

of N50 after 

breaking 

FCD 

errors 

A1 w2rap 80.83 300334 294835 2 6065 

A2 w2rap + lmp 79.10 2616045 1125605 57 8213 
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A3 10x 85.90 5258708 1688764 68 11379 

A4 10x + lmp 85.35 10328293 1860493 82 9095 

A5 w2rap + bionano 76.05 847448 521948 38 4523 

A6 w2rap + lmp + 

bionano 

78.38 5729516 2058901 64 7392 

A7 10x + bionano 84.65 10843127 1999584 82 13068 

A8 10x + lmp + bionano 84.75 21007819 1863460 91 11531 

A9 w2rap + 10x 81.09 5579606 573665 90 7601 

A10 w2rap + lmp + 

bionano + 10x 

77.80 14054335 1751796 88 9488 

 

Table 3. REAPR statistics showing the percentage of error-free bases in the assembly, N50s 

before and after breaking at breakpoints, the percentage decrease in scaffold N50 after 

breaking and the fragment coverage distribution errors (FCD errors) including errors across 

gaps. 

 

 

 

Figure 3. REAPR summary scores for each polecat assembly. REAPR summary scores were 

calculated for each assembly by multiplying the number of error-free bases with the square of 

the REAPR broken scaffold N50 length, and then dividing by the original scaffold N50. 

 

Finally, the performance of each technology was independently assessed for scaffolding by 

comparing the number of REAPR breaks between the w2rap assembly (A1) and those 

scaffolded with only one datatype (LMP, Bionano, and 10x-scaffolding) (Table 4). After 
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accounting for the 2756 breaks introduced by REAPR in the w2rap-only assembly (A1), it 

was found that Bionano (assembly A5) clearly performed best, containing only 729 more 

breaks than the original assembly (A1). Conversely, LMP (6843 more breaks) and 10x-

scaffolding (7353 more breaks) datatypes had at least 9 times more breaks introduced by 

REAPR than Bionano. A comparison was made between the number of breaks (5252) in the 

10x assembly (A3) to the 10x + LMP assembly (A4) and the 10x + Bionano assembly (A7) 

(Table 5). A similar pattern as above was found, with the LMP assembly having 2785 more 

breaks than the 10x assembly but with the Bionano assembly having only 61 more breaks, 

again demonstrating the accuracy of Bionano for scaffolding. 

 

No. Assembly name 

Assembled 

sequences  

No. seqs after 

breaking REAPR breaks  

A1 w2rap 929245 932001 2756 

A2 w2rap + lmp 887887 897486 9599 (6843) 

A5 w2rap + bionano 927316 930801 3485 (729) 

A9 w2rap + 10x 916014 926123 10109 (7353) 

 

Table 4. Comparison of the number of breaks introduced by REAPR for each of the 

technologies used to scaffold the w2rap-only assembly (A1). The number of breaks in 

brackets represent the number of breaks after accounting for the 2756 breaks introduce into 

the comparison assembly (A1). 
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No. Assembly name 

Assembled 

sequences  

No. seqs after 

breaking REAPR breaks  

A3 10x 26253 31505 5252 

A4 10x + lmp 16018 24055 8037 (2785) 

A7 10x + bionano 25834 31147 5313 (61) 

 

Table 5. Comparison of the number of breaks introduced by REAPR for each of the 

technologies used to scaffold the 10x assembly (A3). The number of breaks in brackets 

represent the number of breaks after accounting for the 5252 breaks introduced into the 

comparison assembly (A3). 

 

Assembly Completeness 

K-mer content 

‘KAT comp’ [27] was used to compare k-mers in the Illumina PCR-free reads with k-mers in 

the non-Bionano assemblies (A1 – A4 and A9). ‘KAT plot’ was then used to visualise the 

output (Figure 4 and Supplementary Figure S1). The plots all show a similar distribution of 

k-mers. The black distribution at the start of the x-axis represents sequencing errors in reads 

and its increased width represents an increased number of errors in the reads. K-mers in these 

reads have not been incorporated into the final assembly. The extension of the black line 

along the x-axis (up to a k-mer-multiplicity of 40 on the x-axis) represents collapsed 

haplotypes, where k-mers from one side of a bubble in the assembly graph have been 

removed to construct a linear path through the graph. Any extension of the black line along 

the x-axis into the main red distribution (>40 k-mer-multiplicity) represents a small number 

of high-copy k-mers in the reads missing from the assembly. The red area in all graphs 
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represent a normal distribution of k-mers found in the reads and occurring once in the 

assembly.  

 

Despite all of the assemblies being compared to the PCR-free Illumina short reads, virtually 

the same distribution of k-mers between the reads and assemblies was observed, showing an 

almost-identical distribution of k-mers from all the different read sequences and their 

resulting assemblies. The KAT-plots involving 10x assemblies (Supplementary Figure S1, C 

and D) are also characterised by some high-copy read k-mers missing from the assemblies.  

This suggests that the minimum size of contigs included in the final assembly (1kb) may be 

too high. This may also explain the slightly smaller assembly sizes obtained from the 10x-

based assemblies when compared to the w2rap-based assemblies (Table 2). 

 

 

 

Figure 4. KAT k-mer plots comparing k-mer content of Illumina PCR-free reads with w2rap 

assembly (A1). The black area of the graphs represents the distribution of k-mers present in 

the reads but not in the assembly and the red area represents the distribution of k-mers 

present in the reads and once in the assembly. 

 

Gene content 

BUSCO was used to look at single-copy orthologs in the assemblies (Figure 5) and examine 

the number of single-copy, duplicated, fragmented and missing orthologs. The number of 

complete orthologs reconstructed varied from 3762 (92%) in Assembly A1 and 3895 (96%) 

in assembly A2. Of the 4077 mammalian orthologs examined 3578 (87%) were found in 

single copies across every assembly, 65 were missing, 31 were fragmented, and 21 duplicated 
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across all assemblies. The w2rap assembly (A1) had the highest number of missing orthologs 

(117) and fragmented orthologs (198), probably down to the fragmented nature of the 

assembly. Adding Bionano to datasets did little to improve ortholog reconstruction (A5) and 

in many cases was detrimental, reducing single-copy and increasing the number of 

fragmented orthologs (A6, A7 and A8). Contrastingly, the addition of LMP data (A2) or 10x-

scaffolding data (A9) assembly showed much improved results when compared to Bionano. 

Assemblies A2 (w2rap + lmp) and A9 (w2rap + 10x) both showed a significant increase in 

single-copy orthologs and decrease in fragmented and duplicate orthologs when compared to 

their single-data initial assemblies (Assemblies A1 and A3). The 10x + lmp (A4) assembly 

also shows improved results over the 10x-only assembly (A3), but to a lesser extent than the 

previous w2rap assemblies. 

 

 

 

Figure 5. Number of single-copy (blue), duplicated (orange), fragmented (grey) and missing 

(yellow) orthologs from BUSCO. In order to visualise the number of duplicated, fragmented 

and missing orthologs, the first 3500 single-copy orthologs present in each assembly are 

truncated. 

 

Repeats 

RepeatMasker was used to look at Carnivora-specific repeat content in the assemblies. Long 

Interspersed Nuclear Elements (LINEs) and Short Interspersed Nuclear Elements (SINEs) 

were by far the most common classes of repeats and these are concentrated on here. A very 

similar picture was found between all datasets. The percentage of the genome assemblies that 

were masked for repeats varied between 35.82% - 39.49%, with SINEs varying between 
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8.4% - 9.81%. The w2rap-based assemblies were on the lower-end of both of these scales 

with the 10x-based assemblies on the higher-end.  

A slightly different pattern was found when examining LINEs, the composition of which 

varied between 19.2% and 20.73%. In these repeats the w2rap-based assemblies clustered at 

the lower end of the scale, with the exception of assembly A1 (w2rap) and assembly A9 

(w2rap + 10x), which grouped with the 10x assemblies at the higher end of the scale.  

 

Mean divergence between each assembly and all repeat families was also calculated. It was 

found that the divergence between assemblies was small (24.52 – 24.60), with no defined 

grouping of the assemblies by datatype. This suggests an overall similar ability of each 

datatype to accurately reconstruct repeat sequences (Table 8) 

 

 

No. Assembly name % masked % 

SINEs 

% 

LINEs 

mean 

divergence 

A1 w2rap 38.31 8.99 20.53 24.52 

A2 w2rap-lmp 37.24 8.75 19.95 24.56 

A3 10x 39.49 9.81 20.73 24.53 

A4 10x-lmp 39.1 9.71 20.52 24.54 

A5 w2rap-bionano 35.82 8.40 19.20 24.52 

A6 w2rap-lmp-bionano 36.79 8.64 19.71 24.52 

A7 10x-bionano 39.11 9.72 20.53 24.60 

A8 10x-lmp-bionano 38.89 9.66 20.41 24.58 

A9 w2rap 10x 38.32 8.99 20.54 24.55 

A10 w2rap_lmp_bionano_10x 36.79 8.64 19.70 24.53 
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Table 8. Repeat content of assemblies. % masked refers to the amount of the genome masked 

for all repeats, % SINEs and % LINEs reflect the percentage of the genome found to contain 

each of these classes, and mean divergence is calculated as ‘mismatches/(matches + 

mismatches)’ between queries and matches for all repeats. 

 

Value-for-money 

The N50/$1K metric (see Methods) was calculated in order to provide a metric for value-for-

money when considering the choice of technology and the return on money spent (Figure 6). 

For contig N50/$1K, the w2rap-based assemblies provide by far the best value-for-money, 

with the exception of those with 10x-scaffolding. Value-for-money decreases as more data is 

added to the w2rap assemblies. So, for contig assemblies a basic PCR-free Illumina short-

read assembly provides the best value-for-money. 

 

However, when looking at scaffold N50/$1K, the trend changes. Five of the six lowest-

scoring assemblies constitute w2rap-based assemblies, generated with between one and three 

datatypes. The 10x-based assemblies show better performance when looking at scaffold 

N50/$1K, with three of the four highest-scoring assemblies being 10x-based. The difference 

in scaffold N50 between the w2rap-based and 10x-based assemblies might be expected as the 

short-read Illumina data does not contain the additional molecule specific linked-read 

information present in 10x data. Another trend is that adding more scaffolding data to a 

‘base’ assembly (A1 and A3) increased the scaffold N50/$1K. Hence, adding more data to 

increase scaffold contiguity provides value for money, although one must judge if the amount 

of increase justifies the extra cost. 



 26 

 

 

 

Figure 6. N50/$1K, providing an estimate to the cost of contig (orange), scaffold (blue) and 

REAPR broken scaffold (yellow) contiguity for each genome assembly. Assemblies are 

ranked in order of scaffold N50/$1K.  

 

Ranking assemblies 

Assemblies were ranked on a number of key metrics (see Methods), allocated a final rank-

score (Supplementary Figure S2) and z-scores were calculated for each assembly (Figure 7). 

The order of ranking in both scoring methods agree, but the z-scores provides a better 

assessment of the performance of each assembly across all the metrics and not just their 

position in the final ranking. The general trend was that the more data included, the higher 

the assembly ranked. For example, the second-highest ranked assembly was A10, the only 

assembly with four different data types (w2rap + lmp + bionano + 10x). The highest placed 

assembly was assembly A6 (assembly A10, but without the final 10x scaffolding data). 

 

 

 

Figure 7. Cumulative z-scores of assemblies (solid black circles) with error bars (blue). Error 

bars represent the min and max cumulative z-score after removing each metric in turn and 

recalculating the z-score for each assembly. Wide error bars show assemblies that are 

strongly affected by a given metric. For example, the 10x + lmp + bionano assembly (A8) has 

a long lower-boundary error-bar as it has an exceptionally high scaffold N50 z-score (double 
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that of the next nearest ranking assembly) and hence omitting this metric results in the 

assembly scoring much lower. 

 

Discussion 

Although chromosome-scale assemblies are now achievable, it is often not possible or 

necessary to assemble the genomes of non-model organisms to such precision. A number of 

difficulties are faced when sequencing and assembling non-model organisms. Genome size 

(and as a consequence, sequencing depth), chromosome number, sequence composition and 

GC content are often unknown or inaccurate, the species can be highly heterozygous, and 

samples are often degraded. We address these factors and identify which sequencing and 

assembly strategies are required to answer various biological questions. PCR-free Illumina 

short-read, 10x Genomics linked-read, long mate paired read, and Bionano optical maps were 

generated from a roadkill European Polecat to create ten different genome assemblies, using 

different combinations of the data. The assemblies were assessed using a range of tools and 

ranked using seven key metrics. We find that although some genomes assemble to high 

contiguity, this is often at the expense of accuracy and it is often not necessary to spend 

additional funds on increasing contiguity to answer biological questions.   

 

Assembly contiguity and connectivity 

As a general rule, adding more data to an assembly increases the contiguity (scaffold N50). 

This was observed in the assemblies here, with each assembly having a higher scaffold N50 

than any ‘parent’ assembly before it. The linked reads from 10x Genomics data constantly 

outperform the equivalent PCR-free short-read-based assemblies, with the barcoded linked 

reads acting as an additional scaffolding dataset. The assemblies with the best contig N50 

were those based on w2rap + LMP (namely, A2, A6 and A10). For scaffold N50 and 
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percentage of the genome represented by scaffolds >25Kb, 10x + LMP + Bionano (A8) 

provided by far the best contiguity. When REAPR breaks are taken into consideration, the 

w2rap + LMP + Bionano assembly (A6) provides the best scaffold N50, although assembly 

A8, with the best initial contig N50, is still ranked third. It should be noted that Bionano and 

10x (for scaffolding) added no sequence data to the assemblies and hence do not extend the 

contig lengths or have not connected contigs together without the need to add ‘N’s. Those 

assemblies scaffolded with LMPs however do increase in contig N50, reflecting previously 

unconnected contigs being joined without Ns. 

 

An increase in REAPR summary scores was seen when LMP and Bionano data are added to 

PCR-free short read assemblies, but a decrease in summary scores when 10x-scaffolding 

reads are included. For 10x-based assemblies, the addition of extra data leads to a reduction 

in summary scores. Additionally, 10x-based assemblies tended to have more FCD errors and 

the breaking of assemblies at these errors affected 10x-based assemblies to a greater degree 

than w2rap-based assemblies. Finally, the number of breaks created by REAPR for each 

scaffolding technology showed that Bionano-scaffolded genomes had significantly fewer 

breaks than both LMPs and 10x-scaffolding. The addition of 10x-scaffolding data led to an 

overall reduction in summary scores suggesting that although 10x-scaffolded assemblies 

provide a good increase in scaffold N50, much of this increase is through misassemblies.  

 

The increase in misassemblies with the addition of extra data is understandable. An initial, 

one-technology de novo assembly will have all the ‘easy joins’ put together and most of those 

will be correct. When a new datatype is added, it will have the ‘difficult joins’ to put 

together, making it very likely that a significant number of these will be incorrect. Bionano 

performs best at connecting these ‘difficult joins’  
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Assembly completeness 

Assembly completeness was assessed by the number of resolved BUSCO single-copy 

orthologs (gene content) and repeat content. Gene content was increased by adding LMP data 

but Bionano data tended to fragment orthologs, suggesting a degree of misassembly in the 

gene space. In all assemblies scaffolded with LMPs or 10x reads, the additional data was only 

used to scaffold the input assembly, so the introduction of extra sequence data was not 

responsible for the increase in ortholog reconstruction. Therefore, sequence-based scaffolding 

methods (LMP and 10x-scaffolding in this case) performed better in the gene space than 

Bionano optical mapping approach. It was considered that this might be due to the fact that 

domestic ferret Bionano data was used on wild polecats. However, a similar pattern was seen 

after scaffolding the domestic ferret genome (Ensembl MusPutFur1.0) with the Bionano data, 

which was obtained from the same sample used for the assembly (single copy orthologs 

dropped from 3857 to 3853 when scaffolded with the Bionano data).  

 

There was a small amount of difference in repeat content between assemblies. The tendency 

of 10x assemblies to have a slightly higher percentage of the genome assembled as repeats 

probably reflects the ability of this technology to better resolve repeats than the standard 

short-read assemblies which collapse a large proportion of the repeats. Those repeats that 

were resolved in assemblies all showed a very similar divergence, regardless of the data types 

used. 

 

Value-for-money 
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For contig assembly, a basic PCR-free short read assembly provides the best value-for-money 

(A1). Adding more data does not increase the contig N50 enough to warrant the extra 

expense. For scaffold assembly, the story is very different. The 10x + lmp + bionano (A8) 

offers the best value for money. The more data added to an initial assembly, the higher the 

scaffold N50/$1K. When REAPR broken assemblies are taken into consideration, the 10x-

based and LMP-scaffolded assemblies provide the best value, with the w2rap + lmp + 

bionano assembly (A6) being ranked top (Figure 6). Another feature when considering 

REAPR broken assemblies, is the poor performance of 10x-scaffolding (A9 and A10). 

Compared to an Illumina PCR-free library, 10x Chromium libraries are expensive to produce 

due to higher cost of the library preparation and the additional hands-on time required 

associated with the protocol. This increased cost for the 10x Genomics scaffolding data and 

the high misassembly rate when used as a scaffolding technology, means that it scores low in 

this metric. 

In summary, when looking at genome contiguity, if contigs are all that are required from a 

genome assembly, then PCR-free short-read assemblies with no additional datatypes provide 

the best value-for-money. If accurate scaffolds are more important, 10x data, often 

augmented with LMPs or Bionano provide good value-for-money, with Bionano 

misassembling significantly fewer scaffolds than LMPs (although LMPs perform much better 

in the gene space than Bionano).  

 

Ranking assemblies 

As expected, the general trend was that the more data included, the higher the assembly 

ranked, although we provide evidence against the use of low-coverage 10x Genomics as a 

scaffolding-only technology. 
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Application to non-model mammals. 

Although the sample quality used for non-model organisms is often sub-standard, sequencing 

technologies and software are still successful in assembling these samples into highly 

contiguous genomes. As a general rule, adding more data to an assembly increases the 

contiguity (scaffold N50), but the additional expense of incorporating additional data to 

increase contiguity is not always necessary.  

For population genetics approaches, SNP-calling and large multi-species comparisons, basic 

short-read assemblies such as w2rap (A1) or 10x (A3) provides enough accuracy and 

contiguity to achieve interpretable results. 10x assemblies also have the added advantage of 

haplotype resolution. Where structural variation, long repeat content, gene order, or gene 

clusters are of importance an additional scaffolding dataset is often necessary to obtain the 

required precision for these analyses (A2, A4, A5, and A7), with LMP being the better data 

to incorporate if working in the gene space. Examples where this might be important is when 

dealing with gene clusters of similar genes, such as immune-related gene clusters (e.g. MHC, 

Interleukin, toll-like receptors, etc.). When looking at more long-range features, such as 

genome synteny, Bionano provides additional contiguity. Bionano though, is dependent on 

high-quality HMW DNA which might not be available for many organisms and appears to be 

the first datatype to suffer from sample degradation.  

 

 

Experimental design 

Assemblies with both short contig lengths and a high number of misassemblies, can 

sometimes be found in very heterozygous species. Knowing the distribution of molecule 

lengths from a sample will provide information about the limitations of which sequencing 

technologies can be successfully supplied. Researchers can then design their assembly and 
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analysis pipeline to accommodate the limitations of the sample. For example, if the molecule 

lengths are only in the region of 1kb, then PCR-free Illumina paired-end sequencing is the 

only viable option. Longer molecules, between 10 – 40 kb allow the preparation of LMP 

libraries and between 20 – 100 kb permit the inclusion of 10x Genomics data. Beyond that 

(100kb+), Bionano optical maps may also be included.  

 

Adding long-read data, such as low-coverage PacBio or Nanopore data, will often be the only 

solution to overcoming complexities such as high heterozygosity or long repeats. 

Unfortunately, long-read data relies on high molecular weight DNA with long molecules, but 

as described previously, DNA samples from non-model organisms are often of low-quality 

and the application of these technologies may not be suitable. The quality of sample should 

reflect the experimental design and assembly pipeline. Development in new DNA extraction 

(e.g. Nanobind Magnetic Disks [32]) and sequencing technologies may provide access to low 

quantity and quality of DNA, which may be a potential solution to overcome the sample 

extraction issues.  

 

As mentioned, with longer molecules, using long-read technologies such as PacBio and 

Nanopore becomes a possibility, but these require significantly more DNA (>20ng) to work 

successfully, as well as being associated with a much higher cost. This overcomes some of 

the limitations of short-read assemblies, such as characterising structural variation, 

sequencing through extended repetitive regions, discriminate paralogous genes and detecting 

disease-associated mutations, although with the drawback of requiring high-coverage due to 

the lower base accuracy of long read sequencing.  

 

Limitations of this study 
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In this study a combination of four different technologies have been used to create 10 

different genome assemblies. An exhaustive assessment would produce many more different 

assemblies, so a choice of what was considered a good representation of all practical 

combinations was used. Additionally, different assembly software (including versions 

thereof) may produce slightly different results depending on the algorithms used within them. 

Finally, test metrics can bias results. For example, the inclusion of more cost-related metrics 

would bias rankings to favour cheaper assemblies, whereas more contiguity-related tests 

would bias results for assemblies with higher N50s. The choice of metrics was made to 

encapsulate genome contiguity, accuracy, error, biologically meaningful content, and cost 

whilst not unduly biasing the results towards any one feature of the assemblies. 

 

Summary 

We address how different sequencing and assembly strategies are required to answer various 

biological questions in non-model mammals. We find that although some genomes assemble 

to high contiguity, this is often at the expense of accuracy and it is often not necessary to 

spend additional funds on increasing contiguity to answer biological questions.   

 

Sequencing technologies and assembly software are always progressing with new sequencing 

chemistry releases providing longer and more accurate read sequences. Also, novel assembly 

algorithms promise more contiguous and accurate assemblies. Often each algorithm is 

dependent on the input of specific data types, with some new assembly software providing 

more contiguous assemblies at the expense of accuracy. It is important to fully assess the 

performance of an assembly by using a number of different quality assessment approaches as 

shown in our study, rather than relying on simple statistics such as scaffold N50, which itself 

can be biased by the exclusion of shorter sequences from the calculations. 
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Finally, given the accuracy of PCR-free assemblies and the contiguity of the 10x linked-read 

technology, if a PCR-free linked-read sequencing technology existed, it would provide 

accurate, contiguous and cheap assemblies.  
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We are pleased to submit to you our paper “Sequencing smart: De novo sequencing and 
assembly approaches for non-model mammals”. 
As we approach an age of ‘kitchen sink’ assembly, we feel that the paper is timely in that it 
addresses and questions how much and what type of genomic data actually needs to be 
generated to address various biological questions. The manuscript describes the pros-and-
cons of various data types used in de novo assemblies and how using these datatypes in 
different combinations affects the final genome assembly. We examine assembly contiguity 
and connectivity (assembly stats, errors, and misassemblies), and assembly completeness 
(k-mer content, gene content, and repeats). It ranks assemblies on a number of metrics and 
addresses value-for-money when planning genome assembly projects. 
 
The manuscript should be a valuable resource for researchers establishing a genome project 
and considering if it is necessary to invest tens of thousands of dollars in a ‘chromosome-
scale’ assembly when the biological questions they are asking could be answered by a 
genome costing a fraction of that, leaving valuable funds for population-level resequencing. 
I hope you will consider this manuscript for inclusion in GigaScience. 
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