

Supporting Information

Ligand Effects on the Electronic Structure of Heteroleptic Antimony-Centered Radicals

Christoph Helling, George E. Cutsail III,* Hanns Weinert, Christoph Wölper, and Stephan Schulz*

anie_202000586_sm_miscellaneous_information.pdf

Supporting Information

Figure S0. Solutions (1 mM) of 2-B (left), 2-C (middle), and 2-N (right) in toluene.

Table of Contents

Figure S1. Buried volumes for [L(Cl)Ga], B, C, N.

1. Experimental Details

General Procedures.

Syntheses of 1-*R*, 2-*R*, and [K([2.2.2]crypt)][2-*B*]. Figure S2-S5. ¹H, ¹¹B, ¹³C NMR, and IR spectra of 1-*B*. Figure S6-S8. ¹H, ¹³C NMR, and IR spectra of 1-*C*. Figure S9-S11. ¹H, ¹³C NMR, and IR spectra of 1-*N*. Figure S12-S14. (VT) ¹H NMR and IR spectra of 2-*B*. Figure S15-S17. (VT) ¹H NMR and IR spectra of 2-*C*. Figure S18-S20. (VT) ¹H NMR and IR spectra of 2-*N*. Figure S21-S24. ¹H, ¹¹B, ¹³C NMR, and IR spectra of [K([2.2.2]crypt)][2-*B*].

2. EPR Spectroscopic Details

Figure S25. First integral of EPR spectra. Figure S26. Variable temperature X-band EPR of 2-*B* and 2-*N*.

¹¹B Hyperfine Analysis of 2-B

Figure S27. Additional ¹¹B ENDOR simulations.

Additional ¹⁴N Hyperfine Discussion

Figure S28. Additional EPR simulations of 2-*N* with ¹⁴N hyperfine.

3. Crystallographic Details

Table S1. Crystallographic details of **2**-*B*, **2**-*C*, **2**-*N*, and [K([2.2.2]crypt)][**2**-*B*].

Table S2. Bond lengths and angles for 2-B.

 Table S3. Bond lengths and angles for 2-C.

Table S4. Bond lengths and angles for 2-N.

Table S5. Bond lengths and angles for [K([2.2.2]crypt)][2-B].

4. Computational Details

Figure S25. Mulliken spin density plots of 2-*R*.

Table S6. Calculated UV-Vis absorption properties of **2-***R* by TD-DFT.

Figure S26. UV-Vis spectrum, calculated absorptions, and corresponding main orbital contributions of 2-*B*.

Figure S27. UV-Vis spectrum, calculated absorptions, and corresponding main orbital contributions of 2-*C*.

Figure S28. UV-Vis spectrum, calculated absorptions, and corresponding main orbital contributions of 2-N.

 Table S7. Cartesian coordinates for the optimized geometry of 2-B.

 Table S8. Cartesian coordinates for the optimized geometry of 2-C.

 Table S9. Cartesian coordinates for the optimized geometry of 2-N.

Table S10. Cartesian coordinates for the optimized geometry of $[2-B]^-$.

5. References

Figure S1. Steric maps and buried volumes V_{bur} of a) [L(Cl)Ga], b) *B*, c) *C*, and d) *N*. The sphere radius was set at 3.5 Å. The distance from the coordinating center to the center of the sphere were chosen as follows: a) 2.590 Å, mean Sb-Ga bond length in **VI**; b) 2.257 Å, Sb-B bond length observed in the comparable boryl complex [DipNC(*t*-Bu)NN(Ph)B]SbPh₂; c) 2.156 Å, mean Sb-C bond length observed for compounds of the type ArSbX₂; d) 2.036 Å, mean Sb-N bond length observed for compounds of the type (Ar)(SiR₂X)NSbX₂.

1. Experimental Details

General Procedures. All manipulations were carried out using standard Schlenk and glove-box techniques under argon, which was dried by passing through pre-heated Cu₂O pellets and molecular sieves columns. *n*-Hexane was dried with a MBraun Solvent Purification System, THF and benzene were distilled from Na/K alloy, and fluorobenzene was distilled from CaH₂. Deuterated solvents were dried over activated molecular sieves (4 Å) and degassed prior to use. Starting reagents LGa ($L = HC[C(Me)N(Dip)]_2$, Dip = 2,6-*i*-Pr₂C₆H₃),^[1] Cp*SbCl₂ (Cp* = C₅Me₅),^[2] **B**Li(THF)₂ (**B** = B[N(Dip)CH]₂),^[3] **C**Li (**C** = 2,6-Mes₂C₆H₃, Mes = 2,4,6-Me₃C₆H₂),^[4] and NLi ($N = N(Dip)(SiMe_3)$)^[5] were prepared according to literature methods. $[K([2.2.2]crypt)][C_{10}H_8]$ was prepared from equimolar amounts of [2.2.2]cryptand, potassium metal, and naphthalene in THF and dried in vacuo.^[6] ¹H (300 MHz, 600 MHz), ¹¹B (96.3 MHz, 192.5 MHz), and ¹³C{¹H} (75.5 MHz, 150.9 MHz) NMR spectra were recorded using a Bruker Avance DPX-300 or a Bruker Avance III HD 600 spectrometer and referenced to internal C₆D₅H (¹H: δ = 7.16; ¹³C: δ = 128.06), $C_6D_5CD_2H$ (¹H: $\delta = 2.08$; ¹³C: $\delta = 20.43$) or THF- d_7 (¹H: $\delta = 1.72$; ¹³C: $\delta = 25.31$). Solution-state magnetic susceptibilities $\chi_{\rm M}$ and effective magnetic moments $\mu_{\rm eff}$ were determined by ¹H NMR spectroscopy using Evans' method^[7] with pure solvent as internal reference and neglecting diamagnetic contributions according to equations given in the literature.^[8] IR spectra were recorded in a glovebox using an ALPHA-T FT-IR spectrometer equipped with a single reflection ATR sampling module. UV-Vis spectra were recorded on a Jasco V-550 spectrophotometer in sealed cuvettes under argon atmosphere. Cyclic voltammetry measurements were performed in a glovebox using a Metrohm Autolab PGSTAT 204 potentiostat with a three electrodes setup consisting of a Pt disc (d = 1 mm) working electrode. Pt wire counter electrode, and Ag wire pseudo-reference electrode, and ferrocene as internal standard. Microanalyses were performed at the elemental analysis laboratory of University of Duisburg-Essen. Melting points were measured in sealed glass capillaries under argon atmosphere using a Thermo Scientific 9300 apparatus and are uncorrected.

Synthesis of *B***Sb**(**Cl**)**Cp*** (1-*B*). An orange suspension of Cp*SbCl₂ (0.33 g, 1.00 mmol) and [HCN(Dip)]₂BLi(THF)₂ (0.54 g, 1.00 mmol) in *n*-hexane (40 mL) was stirred for 15 minutes at ambient temperature, filtered and the solvent was removed from the filtrate *in vacuo*, yielding an orange solid. Yield: 0.61 g (0.84 mmol, 84 %). *Note: Compound* **1-B** *contains approximately* 9 % of **B***H*, *that are always present in isolated samples of* **B***Li*(*THF*)₂^[3] *and a further purification of* **1-B** *was precluded by its high solubility in common organic solvents*. M.p. 56 °C (dec.). Anal. Calcd. for C₃₆H₅₁BClN₂Sb·0.1 C₂₆H₃₇BN₂: C, 64.51; H, 7.67; N, 4.29. Found: C, 65.1; H, 7.71; N, 4.47 %. IR (neat): v 2961, 2925, 2866, 1458, 1378, 1324, 1270, 1235, 1115, 1059, 934, 899, 803, 757, 708, 635, 455, 419 cm⁻¹. ¹H NMR (300 MHz, C₆D₆, 25 °C): δ 7.18 (m, 3 H, C₆H₃(*i*-Pr)₂), 7.14 (m, 3 H, C₆H₃(*i*-Pr)₂), 6.33 (s, 2 H, NC*H*), 3.53 (sept, ³*J*_{HH} = 6.9 Hz, 2 H, C*H*(CH₃)₂), 1.37 (s, 15 H, C₅(CH₃)₅), 1.45 (d, ³*J*_{HH} = 6.9 Hz, 6 H, CH(CH₃)₂), 1.17 (d, ³*J*_{HH} = 6.9 Hz, 6 H, CH(CH₃)₂), 1.15 (d, H, CH(CH₃)₂), 1.15 (d,

 ${}^{3}J_{\text{HH}} = 6.9 \text{ Hz}, 6 \text{ H}, \text{CH}(\text{C}H_{3})_{2}$). ¹¹B NMR (96.3 MHz, C₆D₆, 25 °C): δ 38.1 (br s, Sb*B*N₂). ¹³C NMR (75.5 MHz, C₆D₆, 25 °C): δ 146.7, 146.4, 139.4, 128.6, 123.9, 123.7 (*C*₆H₃(*i*-Pr)₂), 123.1 (NCH), 122.2 (*C*₅(CH₃)₅), 29.2, 28.8 (*C*H(CH₃)₂), 27.3, 26.2, 23.5 (CH(CH₃)₂), 12.2 (C₅(CH₃)₅).

Synthesis of *C*Sb(Cl)Cp* (1-*C*). An orange suspension of Cp*SbCl₂ (0.33 g, 1.00 mmol) and 2,6-Mes₂C₆H₃Li (0.32 g, 1.00 mmol) in *n*-hexane (40 mL) was stirred at ambient temperature for 15 minutes, filtered and the solvent was removed from the filtrate *in vacuo*, yielding an orange solid. Yield: 0.46 g (0.77 mmol, 77 %). M.p. 109 °C. Anal. Calcd. for C₃₄H₄₀ClSb: C, 67.40; H, 6.65. Found: C, 66.9; H, 6.56 %. IR (neat): *v*2913, 2856, 1610, 1557, 1439, 1376, 1300, 1031, 849, 803, 737, 589, 573, 497, 405 cm⁻¹. ¹H NMR (300 MHz, C₆D₆, 25 °C): δ 7.16 (t, ³*J*_{HH} = 7.5 Hz, 1 H, C₆*H*₃), 6.94 (d, ³*J*_{HH} = 7.5 Hz, 2 H, C₆*H*₃), 6.82 (s, 4 H, C₆*H*₂), 2.25 (s, 12 H, *o*-CH₃), 2.16 (s, 6 H, *p*-CH₃), 1.67 (s, 15 H, C₅(CH₃)₅). ¹³C NMR (75.5 MHz, C₆D₆, 25 °C): δ 161.1, 148.7, 139.4, 137.5, 137.4 (2,4,6-Me₃C₆H₂ & 2,6-Me₅₂C₆H₃), 131.0, 129.9 (2,6-Me₅₂C₆H₃), 128.6 (2,4,6-Me₃C₆H₂), 123.7 (C₅(CH₃)₅), 22.3 (*o*-CH₃), 21.2 (*p*-CH₃), 11.4 (C₅(CH₃)₅).

Synthesis of *N***Sb**(**Cl**)**Cp*** (1-*N*). A yellow suspension of Cp*SbCl₂ (0.33 g, 1.00 mmol) and Dip(Me₃Si)NLi (0.26 g, 1.00 mmol) in *n*-hexane (40 mL) was stirred for 15 minutes at ambient temperature, filtered and the solvent was removed from the filtrate *in vacuo*, yielding a yellow solid. Yield: 0.47 g (0.87 mmol, 87 %). M.p. 124 °C. Anal. Calcd. for C₂₅H₄₁ClNSbSi: C, 55.51; H, 7.64; N, 2.59. Found: C, 56.0; H, 7.55; N, 2.62 %. IR (neat): *v* 3050, 2958, 2913, 2864, 1574, 1460, 1431, 1383, 1310, 1247, 1159, 1099, 1037, 898, 835, 786, 754, 674, 521, 432, 409, cm⁻¹. ¹H NMR (300 MHz, C₆D₆, 25 °C): δ 7.05 (m, 3 H, C₆H₃(*i*-Pr)₂), 3.87 (sept, ³*J*_{HH} = 6.8 Hz, 2 H, C*H*(CH₃)₂), 1.90 (s, 15 H, C₅(CH₃)₅), 1.26 (d, ³*J*_{HH} = 6.8 Hz, 6 H, CH(CH₃)₂), 0.36 (s, 9 H, Si(CH₃)₃). ¹³C NMR (75.5 MHz, C₆D₆, 25 °C): δ 149.1, 141.9, 126.2 (*C*₆H₃(*i*-Pr)₂), 125.1 (*C*₅(CH₃)₅), 124.7 (*C*₆H₃(*i*-Pr)₂), 27.6 (*C*H(CH₃)₂), 27.5, 24.7 (CH(*C*H₃)₂), 11.6 (C₅(CH₃)₅), 4.5 (Si(CH₃)₃).

Synthesis of L(Cl)GaSb*B* **(2-***B***). A solution of LGa (50 mg, 0.1026 mmol) and 1-***B* **(70 mg, 0.1026 mmol) in benzene (1.5 mL) was heated to 95 °C for one hour, during which time a dark red solution formed. All volatiles were removed** *in vacuo* **and the resulting residue dissolved in warm** *n***-hexane (1.2 mL). Storage of the solution for 12 h at ambient temperature yielded red crystals of 2**-*B*. Yield: 43 mg (0.0410 mmol, 40 %). M.p. 224 °C. Anal. Calcd. for C₅₅H₇₇BClGaN₄Sb: C, 64.01; H, 7.52; N, 5.43. Found: C, 65.1; H, 7.52; N, 5.55 %. IR (neat): *v*2958, 2928, 2864, 1527, 1438, 1376, 1316, 1257, 1177, 1106, 1057, 1020, 935, 901, 863, 799, 757, 694, 634, 533, 451 cm⁻¹. ¹H NMR (300 MHz, C₆D₆, 25 °C): *δ*7.38, 6.00, 5.83, 5.48, 4.08, 3.30, 1.22, 0.20. Evans NMR (300 MHz, Tol-*d*₈, 25 °C): μ_{eff} 1.58 μ_B. UV-Vis (toluene): *λ* (*ε*) 526 (786), 562 (679), 875 (123) nm (mol⁻¹ dm³ cm⁻¹).

Synthesis of L(Cl)GaSbC (2-C). A solution of LGa (50 mg, 0.1026 mmol) and 1-C (62 mg, 0.1026 mmol) in benzene (1.5 mL) was heated to 80 °C for 15 minutes, during which time an orange solution formed. All volatiles were removed *in vacuo* and the resulting solid residue was dissolved in *n*-hexane (1.2 mL) and stored at 0 °C. Yellow crystals of CSb=SbC (9 mg, 0.0103 mmol, 10 %) formed within 12 h. The crystals

were separated, the remaining solution was slightly concentrated and stored at -30 °C for 12 h, resulting in the formation of orange crystals of **2-***C*. Yield: 45 mg (0.0470 mmol, 46 %). M.p. 176 °C. Anal. Calcd. for C₅₃H₆₆ClGaN₂Sb: C, 66.45; H, 6.94; N, 2.92. Found: C, 67.2; H, 6.97; N, 2.88 %. IR (neat): *v* 2962, 2922, 2866, 1527, 1438, 1379, 1316, 1261, 1177, 1100, 1018, 937, 845, 796, 758, 638, 575, 529, 447 cm⁻¹. ¹H NMR (300 MHz, C₆D₆, 25 °C): δ 9.34, 7.02, 6.07, 5.35, 4.27, 2.44, 1.32. Evans NMR (300 MHz, Tol-*d*₈, 25 °C): μ_{eff} 1.61 μ_{B} . UV-Vis (toluene): λ (ϵ) 457 (181), 746 (79) nm (mol⁻¹ dm³ cm⁻¹).

Synthesis of L(Cl)GaSb*N* (2-*N*). A solution of LGa (50 mg, 0.1026 mmol) and 1-*N* (56 mg, 0.1026 mmol) in benzene (1.5 mL) was heated to 95 °C for 1.5 hours, during which time a dark red solution formed. All volatiles were removed *in vacuo*, the resulting solid residue dissolved in *n*-hexane (1.0 mL) and stored at - 30 °C. Green crystals of 2-*N* formed within 12 h. Yield: 42 mg (0.0470 mmol, 46 %). M.p. 170 °C (dec.). Anal. Calcd. for C₄₄H₆₇ClGaN₃SbSi: C, 59.18; H, 7.56; N, 4.71. Found: C, 59.9; H, 7.40; N, 4.79 %. IR (neat): *v* 3064, 2961, 2924, 2866, 1551, 1524, 1461, 1434, 1383, 1313, 1245, 1177, 1100, 1021, 909, 829, 793, 756, 675, 626, 530, 435 cm⁻¹. ¹H NMR (300 MHz, C₆D₆, 25 °C): *δ*7.35, 5.92, 4.94, 4.19, 2.45, 1.35. Evans NMR (300 MHz, Tol-*d*₈, 25 °C): μ_{eff} 1.56 μ_{B} . UV-Vis (toluene): λ (*ε*) 417 (1334), 605 (87) nm (mol⁻¹ dm³ cm⁻¹).

Synthesis of [K([2.2.2]crypt)][L(CI)GaSbB] ([K([2.2.2]crypt)][2-B]). THF (5 mL) was added to a mixture of L(Cl)GaSb**B** (67 mg, 0.0640 mmol) and [K([2.2.2]crypt)][C₁₀H₈] (35 mg, 0.0640 mmol) at -78 °C and the mixture was allowed to slowly come to room temperature over the course of 5 hours. The resulting dark green solution was filtered and volatiles were removed in vacuo. The residue was dissolved in warm fluorobenzene (3 mL) and stored at ambient temperature overnight, yielding dark green crystals of [K([2.2.2]crypt)][2-B]. Yield: 37 mg (0.0237 mmol, 37 %). M.p. 172 °C (dec.). Anal. Calcd. for C₇₃H₁₁₃BClGaKN₆O₆Sb: C, 60.57; H, 7.87; N, 5.81. Found C, 58.4; H, 7.46; N, 5.03%. IR (neat): v 2955, 2862, 2817, 1554, 1521, 1401, 1360, 1224, 1100, 1076, 950, 932, 794, 754, 685, 632, 521 cm⁻¹. ¹H NMR (600 MHz, THF- d_8 , 25 °C): δ 6.92 (dd, J_{HH} = 7.5, 1.5 Hz, 2 H, C₆ $H_3(i-\text{Pr})_2$), 6.88 (m, 4 H, C₆ $H_3(i-\text{Pr})_2$), 6.82 (m, 6 H, C₆ $H_3(i$ -Pr)₂), 5.83 (s, 2 H, NCH), 4.79 (s, 1 H, γ -CH), 3.66 (sept, ${}^{3}J_{HH} = 6.7$ Hz, 2 H, $CH(CH_3)_2$), 3.59 (s, 12 H, crypt- CH_2), 3.55 (dd, ${}^{3}J_{HH} = 5.5$, 4.3 Hz, 12 H, crypt- CH_2), 3.25 (m, 6 H, $CH(CH_3)_2$, 2.57 (dd, ${}^{3}J_{HH} = 5.5$, 4.3 Hz, 12 H, crypt- CH_2), 1.50 (s, 6 H, CCH₃), 1.18 (d, ${}^{3}J_{HH} = 6.7$ Hz, 6 H, CH(CH₃)₂), 1.08 (d, ${}^{3}J_{HH} = 6.8$ Hz, 6 H, CH(CH₃)₂), 0.96 (d, ${}^{3}J_{HH} = 6.8$ Hz, 12 H, CH(CH₃)₂), 0.92 (d, ${}^{3}J_{\text{HH}} = 6.8 \text{ Hz}, 12 \text{ H}, \text{CH}(\text{C}H_{3})_{2}), 0.87 \text{ (d, }{}^{3}J_{\text{HH}} = 6.7 \text{ Hz}, 6 \text{ H}, \text{CH}(\text{C}H_{3})_{2}), 0.85 \text{ (d, }{}^{3}J_{\text{HH}} = 6.8 \text{ Hz}, 6 \text{ H},$ CH(CH₃)₂). ¹¹B NMR (192.5 MHz, THF-*d*₈, 25 °C): δ31.8 (br s, Sb*B*N₂). ¹³C NMR (150.9 MHz, THF-*d*₈, 25 °C): δ164.9 (CCH₃), 147.5, 146.1, 145.8, 144.7, 144.4, 125.6, 125.3, 123.7, 123.1 (C₆H₃(*i*-Pr)₂), 120.7 (NCH), 97.2 (y-CH), 71.4, 68.5, 54.8 (crypt-CH₂), 29.8 (CH(CH₃)₂), 28.9 (CH(CH₃)₂), 28.7, 28.1 (CH(CH₃)₂), 25.6 (CH(CH₃)₂), 25.2 (CH(CH₃)₂ & CCH₃), 25.0, 24.4 (CH(CH₃)₂).

Figure S2. ¹H NMR spectrum (300 MHz, C₆D₆, 25 °C) of $BSb(Cl)Cp^*$ (1-B). ($\circ = BH$)

Figure S3. ¹¹B NMR spectrum (96.3 MHz, C₆D₆, 25 °C) of **B**Sb(Cl)Cp* (1-**B**). (° = **B**H)

Figure S4. ¹³C NMR spectrum (75.5 MHz, C₆D₆, 25 °C) of **B**Sb(Cl)Cp* (1-**B**).

Figure S5. ATR-IR spectrum of *B*Sb(Cl)Cp* (1-*B*).

~2.25 ~2.16 —1.67

Figure S6. ¹H NMR spectrum (300 MHz, C₆D₆, 25 °C) of $CSb(Cl)Cp^*$ (1-C). (\circ = unidentified impurity)

Figure S7. ¹³C NMR spectrum (75.5 MHz, C₆D₆, 25 °C) of $CSb(Cl)Cp^*$ (1-C). (\circ = unidentified impurity)

Figure S8. ATR-IR spectrum of CSb(Cl)Cp* (1-C).

Figure S9. ¹H NMR spectrum (300 MHz, C₆D₆, 25 °C) of *N*Sb(Cl)Cp* (1-*N*).

Figure S10. ¹³C NMR spectrum (75.5 MHz, C₆D₆, 25 °C) of *N*Sb(Cl)Cp* (1-*N*).

Figure S11. ATR-IR spectrum of *N*Sb(Cl)Cp* (1-*N*).

Figure S12. ¹H NMR spectrum (300 MHz, C₆D₆, 25 °C) of L(Cl)GaSb*B* (2-*B*).

Figure S13. Variable-temperature ¹H NMR study (300 MHz, C₇D₈) of L(Cl)GaSb*B* (2-*B*).

Figure S14. ATR-IR spectrum of L(Cl)GaSb*B* (2-*B*).

Figure S15. ¹H NMR spectrum (300 MHz, C₆D₆, 25 °C) of L(Cl)GaSb*C* (2-*C*). (\circ = unidentified impurity,

• = n-hexane from crystal lattice)

Figure S16. Variable-temperature ¹H NMR study (300 MHz, C₇D₈) of L(Cl)GaSb*C* (2-*C*).

Figure S17. ATR-IR spectrum of L(Cl)GaSb*C* (2-*C*).

Figure S18. ¹H NMR spectrum (300 MHz, C₆D₆, 25 °C) of L(Cl)GaSbN (2-N). (\circ = unidentified impurities, \bullet = *n*-hexane from crystal lattice)

Figure S19. Variable-temperature ¹H NMR study (300 MHz, C₇D₈) of L(Cl)GaSbN (2-N).

Figure S20. ATR-IR spectrum of L(Cl)GaSbN (2-N).

Figure S21. ¹H NMR spectrum (600 MHz, THF- d_8 , 25 °C) of [K([2.2.2]crypt)][**2**-**B**]. (\circ = fluorobenzene from crystal lattice)

Figure S22. ¹¹B NMR spectrum (192.5 MHz, THF-*d*₈, 25 °C) of [K([2.2.2]crypt)][**2-***B*].

---31.8

Figure S23. ¹³C NMR spectrum (150.9 MHz, THF- d_8 , 25 °C) of [K([2.2.2]crypt)][**2-***B*]. (\circ = fluorobenzene from crystal lattice)

Figure S24. ATR-IR spectrum of [K([2.2.2]crypt)][**2-***B*].

2. EPR Spectroscopic Details

Continuous-wave (CW) X-band (~9.635 GHz) EPR was a collected on frozen solutions of **2-***R* in toluene with a Bruker E500 spectrometer equipped with an Oxford liquid helium flow cryostat operated at 20 K. The spectrum was collected with 100 kHz field modulation at 4 G amplitude, a 20.48 time constant and 10.24 conversion time for the 8,192 point spectrum for a single scan. CW Q-band (33.98 GHz) on a Bruker Elexsys E580 and a Bruker ER5106 QT Q-band resonator. Spectra were recorded at 25 K through the utilization of with an Oxford C-935 liquid helium cryostat. Field modulation of 100 kHz and 6.0 G amplitude was employed to detect the 8,128 point spectrum with a 29.53 ms conversion time for a minimum of 15 averaged scans. Q-band ENDOR of **2-***B* was collected on a Bruker Elexsys E580 with a home-built up/down Q-band pulse conversion accessory and home-built TE₀₁₁ microwave resonator.^[9] Spectra were recorded at 8 K through the utilization of with an Oxford C-935 liquid helium cryostat. The Davies ENDOR sequence, $\pi_{inv} - T_{RF} - t_{wait} - \pi/2 - \tau - \pi - echo$, where the RF pulse is applied during T_{RF} (25 µs) and detection delay time of t_{wait} (5 µs) is applied before detection. Here, the inversion pulse length, π_{inv} , is equal to π (80 ns). The interpulse timing τ was 400 ns and the entire pulse sequence was applied at a repetition rate of 3.0 ms. All EPR data was processed and analyzed in Matlab 2017a and simulated using the EasySpin package (v. 5.2). Simulation parameters are given in figure captions.^[10,11]

Figure S25. First integral of EPR spectra as displayed in Figure 3 and corresponding simulations.

Figure S26. Variable temperature X-band (~9.5 GHz) EPR of **2-***B* and **2-***N* collected on a Magnetech 5000 EPR spectrometer with a liquid nitrogen temperature controller. Data of the solution spectra were simulated with an isotropic g as reported in the figure. Data were collected with a 100 kHz field modulation at an amplitude of 4.0 G and a sweep time of 4.0 minutes. A digital RC filter was applied with an effective time constant of 0.4 s for the ~60,000 point scan. Note: the broad feature at ~ 2,350 G is a cavity background signal.

Figure S27. (Top) Boron Q-band Davies ENDOR spectra of **2**-*B* at 11600 G showing ENDOR responses from both ¹¹B and ¹⁰B. The ENDOR doublets are centered at their Larmor frequency (v_n) indicated by a triangle and the hyperfine doublets marked by the goalposts. (*) indicates the third harmonic of the ¹H signal. (Bottom) Only the v_+ feature of the ¹¹B Larmor (v_n) centered ENDOR doublet is plotted in the 2D field-frequency ENDOR pattern with simulations in red based on the following parameters: **g**, **A**(Sb), and **A**(Ga) as reported in Table 1; **A**(¹¹B) = [20.8, 23.5, 25.1] MHz; **A**(¹¹B)[α , β , γ] = [-10°, 35°, 0], ENDOR linewidth = 0.5 MHz (fwhm). Collected at 8 K.

The 2D field-frequency pattern of the ¹¹B ENDOR shows that the hyperfine tensor is highly isotropic with a large a_{iso} value of 23.1 MHz (Fig. 4). Simulation of the complete hyperfine tensor, $A(^{11}B) = [20.8, 23.5, 25.1]$ MHz, and its orientation relative to the *g*-tensor represented by a set of Euler angles ($\alpha = -10^\circ$, $\beta = 35^\circ$) well-reproduces the complete pattern. The s orbital spin-density is approximated from the ratio of the measured a_{iso} coupling to the isotropic hyperfine coupling constant (isotropic coupling constant $a_0(^{11}B) = 2547$ MHz; anisotropic coupling constant $b_0 = 63.6$ MHz), $^{[12]}$ yielding $\rho(s) \sim 0.009$. The anisotropic hyperfine coupling component ($\mathbf{T} = \mathbf{A} - a_{iso}$) is nearly rhombic, $\mathbf{T} = [-2.3 \ 0.4 \ 2.0]$ MHz, matching the form of [-*t*, 0, *t*]. The observed tensor is a mixture of both non-local dipolar interaction and the anisotropic

hyperfine coupling component of the local p orbital. Subtraction of the non-local (through-space) dipolar contribution allows for the local anisotropic contribution to be estimated.

The Sb-B distance of 2.245 Å allows for the non-local interaction to be estimated within a first approximation based on point-dipole equation $T_{nonloc} = \rho_{Sb}g_e\beta_e g_n\beta_n/r^3$. Using +0.9 for the spin density of Sb center (ρ_{Sb}), an estimated t = +2.0 MHz interaction is found belonging to an axial tensor ($\mathbf{T}_{non-loc} = [2t, -t, -t]$). The point-dipole approximation may further be corrected for both the observed g-anisotropy and relative orientations of the Sb p orbital and B center.^[13] Taking z as perpendicular to the Ga-Sb-B plane and x and y in the in Ga-Sb-B plane, the applied magnetic field is now described by directional cosines: (l_z , l_y , l_x) = (sin θ , $0, \pm \cos \theta$). The final form of the nonlocal contribution is:

 $\mathbf{T}_{nonloc} = t[(g_z/g_e)(3\sin^2\theta - 1), -(g_y/g_e)(-t), (g_z/g_e)(3\cos^2\theta - 1)].$

The unpaired Sb electron is expected to be in a p orbital normal to the Ga-Sb-B plane. The dihedral angle of the Ga-Sb-B plane and N-B-N plane is 63°. This makes the principle hyperfine component of the ¹¹B *A*-tensor rotated ~27° from the unique axis of the *g*-tensor (where x and y (g_3 and g_2) are unknown in the Ga-Sb-B plane). The Euler angle rotation of $\beta = 35^\circ$ for the *A*-tensor is in qualitative agreement with the anticipated angle determined from the crystal structure. This same angle will apply for the nonlocal dipolar tensor.

Using the $\beta = 35^{\circ}$ value for θ (as found by simulation), a rhombic $\mathbf{T}_{nonlocal} = [-0.03, +2.1, -2.0]$ MHz is estimated. Subtraction of \mathbf{T}_{nonloc} from the observed anisotropic coupling, \mathbf{T}_{obs} , yields the local anisotropic contribution of $\mathbf{T}_{loc} = [-2.3, -1.7, +4.0]$ MHz. This axial contribution reflects a majority B p orbital bonding character and the $T_{loc} \sim 2.0$ MHz yields a B p orbital spin density of 0.031, significantly greater than the 0.009 s orbital spin density estimate.

Neither v_+ signals of the ¹¹B or ¹⁰B responses exhibit resolved quadrupole splittings, Figure 4. The ¹⁰B isotope possesses a greater nuclear spin (I = 3) compared to ¹¹B (I = 3/2) and a twice as large quadrupole moment,^[12] but only a single sharp feature is observed. Comparison with previously well-resolved ¹¹B quadrupolar splittings,^[14,15] and simulation of possible quadrupole splittings allow for an upper limit of $P_{max} \sim 0.1$ MHz to be estimated (Fig. S28).

Figure S28. ¹¹B ENDOR simulations using without quadrupole interaction (P) and a 0.5 MHz ENDOR linewidth (fwhm) as reported in manuscript compared with smaller ENDOR linewidth (0.1 MHz) and variable quadrupole interaction. Maximum quadrupole interaction is $P_{max} = 0.1$ MHz at this field position and generally retains the correct line shape.

Additional ¹⁴N Hyperfine Discussion

No identifiable ¹⁴N ENDOR responses were observed for **2**-*N*. If the same approximate spin densities of **2**-*B* are used to estimate the hyperfine parameters for **2**-*N*, [isotropic coupling constant $a_0(^{14}N) = 1811$ MHz; anisotropic coupling constant $b_0(^{14}N) = 55.5$ MHz] a small isotropic coupling of $a_{iso}(^{14}N) \sim 16$ MHz is expected. The spin density of a coordinated heteroatom is inversely related to the heteroatom's electronegativity.^[16] As demonstrated previously for π bonded aromatic radicals, the spin density observed for various substituents decreases when replacing N atom substituent for a more electronegative O substituents.^[16] In other words, larger spin delocalization onto the ligand is achieved by less electronegative ligand atoms.^[17] Therefore, it is expected that **2**-*N* has less spin density (and proportional hyperfine coupling) at the N atom than **2**-*B* has at the B atom. However, attempted ¹⁴N Mims (for small couplings) and Davies (for large couplings) ENDOR yielded no identifiable responses. The ¹⁴N ENDOR may not be well-resolvable by ENDOR spectroscopy under certain circumstances. For instance, the 'powder'-pattern observed in the 2D field-frequency ENDOR pattern is complicated by the additional quadrupole splitting

of the ¹⁴N, I = 1, nuclei, with additional quadrupole splitting upwards of 2 MHz. Additionally, the magnitude of the anisotropic component will be larger for ¹⁴N than observed for ¹¹B, making the expected ENDOR response much broader. The ENDOR response may also be significantly broadened in the cases of non-coaxial *g*-, *A*-, (and quadrupole) tensors, as was the case for **2**-*B*. Lastly, the large Sb hyperfine coupling of the complex, and reduced *g*-anisotropy of **2**-*N* decreases the potential for orientation-selective ENDOR spectra to be collected and the a sharp 'single-crystal-like' position to be found. Furthermore, other advanced techniques such as ESEEM and HYSCORE failed to identify any unique ¹⁴N couplings of **2**-*N*.

Figure S29. EPR simulations of the low-field edge of the X-band spectrum of **2**-*N* utilizing the same EPR simulation parameters detailed in Figure 3 but with varying ¹⁴N hyperfine coupling along g_3 with a constant 1.5 G EPR linewidth and no 14N hyperfine and 5.0 G EPR linewidth.

Some maximum estimates of the ¹⁴N hyperfine coupling can be made from simulations of the EPR spectra. The low-field edge features of the X-band spectrum of **2**-*N* in the range of 2300 to 2550 G is actually low-field edge of the g_3 feature. Inclusion of a single A_3 ¹⁴N hyperfine coupling up to ~40 MHz broadens the EPR linewidth but does not further split the spectrum. However, simulation of the EPR with $A_3(^{14}N) = 50$ MHz begins to yield new splittings not observed in the experimental spectrum. Simulations of larger ¹⁴N hyperfine couplings no longer reproduce the observed EPR spectrum at g_3 However, comparable, if not better reproduction of the low field g_3 feature is possible with a large EPR linewidth and no ¹⁴N hyperfine interaction. This demonstrates the difficulty of the determining possible weak hyperfine interaction in the broad EPR lineshapes.

3. Crystallographic Details

The crystals of 2-C, 2-N, and $[2-B]^-$ were mounted on nylon loops in inert oil. Data were collected on a Bruker AXS D8 Kappa diffractometer with APEX2 detector (monochromated Mo_{K α} radiation, $\lambda = 0.71073$ Å) at 100(2) K. The structures were solved by Direct Methods (SHELXS-97)^[18] and refined anisotropically by full-matrix least-squares on F^2 (SHELXL-2014)^[19,20]. Absorption corrections were performed semiempirically from equivalent reflections on basis of multi-scans (Bruker AXS APEX2). The crystal of 2-B was mounted on nylon loops in inert oil. Data were collected on a Bruker AXS D8 Venture diffractometer with Photon II detector (monochromated Cu_{Ka} radiation, $\lambda = 1.54178$ Å, micro-focus source) at 100(2) K. Absorption corrections were performed semi-empirically from equivalent reflections on basis of multiscans (Bruker AXS APEX3). Hydrogen atoms were refined using a riding model or rigid methyl groups. 2-B was refined as a 2-component twin against HKLF5 data. In 2-C an *i*-Pr group is disordered over two positions. Its bond lengths were restrained to be equal (SADI). RIGU and ISOR restraints were applied to the adp of the corresponding atoms. The structure contains highly disordered solvent - likely one molecule of n-hexane. The final refinement was done with a solvent free dataset from a PLATON/SQUEEZE run.^[20] Since exact amount of the solvent is not clear it was not included in the sum formula. 2-N contains an nhexane molecule highly disordered over a center of inversion. The final refinement was done with a solvent free dataset from a PLATON/SQUEEZE run.^[21]

CCDC-1953135 (**2**-*B*), -1953136 (**2**-*C*), -1953137 (**2**-*N*), and -1953139 ([K([2.2.2]crypt)][**2**-*B*]) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

	2- <i>B</i>	2- <i>C</i>	2- <i>N</i>	[K([2.2.2]crypt)][2-B]
Empirical formula	C55H77BClGaN4Sb	C ₅₃ H ₆₆ ClGaN ₂ Sb	C47H74ClGaN3SbSi	C ₇₉ H ₁₁₈ BClFGaKN ₆ O ₆ Sb
Μ	1031.93	957.99	936.10	1543.62
Crystal size [mm]	$0.278 \times 0.065 \times 0.035$	$0.288 \times 0.190 \times 0.094$	$0.334 \times 0.083 \times 0.040$	$0.283 \times 0.209 \times 0.171$
<i>T</i> [K]	100(2)	100(2)	100(2)	100(2)
Crystal system	monoclinic	triclinic	triclinic	triclinic
Space group	$P2_{1}/c$	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1
<i>a</i> [Å]	19.641(3)	11.3632(7)	10.2031(6)	12.8626(11)
<i>b</i> [Å]	12.983(2)	12.3196(8)	12.3035(7)	17.0784(16)
<i>c</i> [Å]	21.277(3)	20.1887(18)	20.9514(13)	18.9615(18)
α [°]	90	98.742(5)	82.058(4)	90.934(5)
β[°]	98.314(7)	91.762(5)	86.480(3)	93.004(4)
γ[°]	90	114.515(3)	68.750(3)	104.684(4)
V[Å ³]	5368.6(15)	2527.7(3)	2427.6(3)	4021.9(6)
Ζ	4	2	2	2
$D_{\text{calc}} \left[g \cdot \text{cm}^{-3} \right]$	1.277	1.259	1.281	1.275
$\mu(K_{\alpha} \text{ [mm^{-1}]})$	5.339(Cu)	1.154(Mo)	1.224(Mo)	0.811
Transmissions	0.75/0.52	0.75/0.66	0.75/0.65	0.75/0.68
<i>F</i> (000)	2156	994	980	1628
Index ranges	$-25 \le h \le 24$	$-17 \le h \le 17$	$-14 \le h \le 14$	$-19 \le h \le 18$
	$0 \le k \le 16$	$-19 \le k \le 19$	$-17 \le k \le 17$	$-25 \le k \le 26$
	$0 \le l \le 26$	$-33 \le l \le 31$	$-29 \le l \le 30$	$-29 \le l \le 29$
θ_{\max} [°]	81.358	36.502	30.705	33.609
Reflections collected	201453	100431	87556	207976
Independent reflections	23012	21237	15004	29776
$R_{ m int}$	0.0955	0.0363	0.0360	0.0413
Refined parameters	587	560	477	892
$R_1 \left[I > 2\sigma(I) \right]$	0.0483	0.0363	0.0378	0.0304
wR_2 [all data]	0.1573	0.0866	0.0837	0.0762
GooF	1.057	1.009	1.070	1.025
$\Delta \rho_{\text{final}} (\text{max/min})$ [e·Å ⁻³]	1.929/-0.849	1.550/-1.304	3.763/-2.650	1.090/-1.197

Table S1. Crystallographic details of 2-*B*, 2-*C*, 2-*N*, and [K([2.2.2]crypt)][2-*B*].

Sb(1)-B(1)	2.245(5)	C(8)-C(9)	1.377(9)	C(33)-C(34)	1.401(7)
Sb(1)-Ga(1)	2.5959(7)	C(9)-C(10)	1.386(8)	C(33)-C(38)	1.524(6)
Ga(1)-N(2)	1.964(4)	C(10)-C(11)	1.401(7)	C(34)-C(35)	1.372(8)
Ga(1)-N(1)	1.970(4)	C(11)-C(15)	1.528(7)	C(35)-C(36)	1.389(8)
Ga(1)-Cl(1)	2.2085(13)	C(12)-C(13)	1.520(8)	C(36)-C(37)	1.398(7)
N(1)-C(1)	1.344(6)	C(12)-C(14)	1.527(8)	C(37)-C(40)	1.517(6)
N(1)-C(6)	1.445(6)	C(15)-C(16)	1.526(9)	C(38)-C(41)	1.517(7)
N(2)-C(3)	1.342(6)	C(15)-C(17)	1.534(9)	C(38)-C(39)	1.524(7)
N(2)-C(18)	1.431(6)	C(18)-C(23)	1.409(7)	C(40)-C(44)	1.522(7)
N(3)-C(30)	1.399(6)	C(18)-C(19)	1.421(7)	C(40)-C(42)	1.523(8)
N(3)-B(1)	1.434(6)	C(19)-C(20)	1.394(8)	C(43)-C(45)	1.398(7)
N(3)-C(32)	1.437(6)	C(19)-C(24)	1.520(8)	C(43)-C(47)	1.415(7)
N(4)-C(31)	1.411(6)	C(20)-C(21)	1.385(10)	C(45)-C(50)	1.404(7)
N(4)-B(1)	1.433(6)	C(21)-C(22)	1.377(10)	C(45)-C(46)	1.512(8)
N(4)-C(43)	1.440(6)	C(22)-C(23)	1.395(8)	C(46)-C(52)	1.533(8)
C(1)-C(2)	1.398(7)	C(23)-C(27)	1.521(7)	C(46)-C(51)	1.541(8)
C(1)-C(4)	1.509(7)	C(24)-C(26)	1.523(10)	C(47)-C(48)	1.404(7)
C(2)-C(3)	1.396(7)	C(24)-C(25)	1.545(8)	C(47)-C(53)	1.523(7)
C(3)-C(5)	1.496(7)	C(27)-C(28)	1.528(8)	C(48)-C(49)	1.382(8)
C(6)-C(11)	1.395(7)	C(27)-C(29)	1.533(8)	C(49)-C(50)	1.383(9)
C(6)-C(7)	1.413(7)	C(30)-C(31)	1.344(7)	C(53)-C(56)	1.523(8)
C(7)-C(8)	1.394(8)	C(32)-C(33)	1.396(6)	C(53)-C(55)	1.525(9)
C(7)-C(12)	1.527(7)	C(32)-C(37)	1.419(6)		
			•		
B(1)-Sb(1)-Ga(1)	113.40(14)	C(6)-C(11)-C(10)	118.7(5)	C(35)-C(34)-C(33)	121.5(5)
N(2)-Ga(1)-N(1)	96.09(17)	C(6)-C(11)-C(15)	123.8(4)	C(34)-C(35)-C(36)	120.1(5)
N(2)-Ga(1)-Cl(1)	105.03(12)	C(10)-C(11)-C(15)	117.5(5)	C(35)-C(36)-C(37)	121.3(5)
N(1)-Ga(1)-Cl(1)	103.22(12)	C(13)-C(12)-C(7)	111.9(5)	C(36)-C(37)-C(32)	117.2(5)
N(2)-Ga(1)-Sb(1)	104.45(12)	C(13)-C(12)-C(14)	111.1(5)	C(36)-C(37)-C(40)	121.8(4)
N(1)-Ga(1)-Sb(1)	120.93(12)	C(7)-C(12)-C(14)	110.1(5)	C(32)-C(37)-C(40)	120.9(4)
Cl(1)-Ga(1)-Sb(1)	122.76(5)	C(16)-C(15)-C(11)	110.5(5)	C(41)-C(38)-C(39)	110.4(5)
C(1)-N(1)-C(6)	117.7(4)	C(16)-C(15)-C(17)	109.7(5)	C(41)-C(38)-C(33)	110.7(4)
C(1)-N(1)-Ga(1)	118.8(3)	C(11)-C(15)-C(17)	112.3(5)	C(39)-C(38)-C(33)	113.2(4)
C(6)-N(1)-Ga(1)	123.3(3)	C(23)-C(18)-C(19)	120.9(4)	C(37)-C(40)-C(44)	113.1(4)
C(3)-N(2)-C(18)	119.9(4)	C(23)-C(18)-N(2)	120.7(4)	C(37)-C(40)-C(42)	109.7(4)
C(3)-N(2)-Ga(1)	119.7(3)	C(19)-C(18)-N(2)	118.3(4)	C(44)-C(40)-C(42)	111.2(5)
C(18)-N(2)-Ga(1)	120.4(3)	C(20)-C(19)-C(18)	117.9(5)	C(45)-C(43)-C(47)	121.6(5)
C(30)-N(3)-B(1)	108.4(4)	C(20)-C(19)-C(24)	120.1(5)	C(45)-C(43)-N(4)	120.0(4)
C(30)-N(3)-C(32)	121.0(4)	C(18)-C(19)-C(24)	122.0(5)	C(47)-C(43)-N(4)	118.3(4)
B(1)-N(3)-C(32)	130.5(4)	C(21)-C(20)-C(19)	121.3(6)	C(43)-C(45)-C(50)	118.6(5)
C(31)-N(4)-B(1)	108.2(4)	C(22)-C(21)-C(20)	120.2(5)	C(43)-C(45)-C(46)	122.1(5)
C(31)-N(4)-C(43)	117.9(4)	C(21)-C(22)-C(23)	121.3(6)	C(50)-C(45)-C(46)	119.2(5)
B(1)-N(4)-C(43)	132.9(4)	C(22)-C(23)-C(18)	118.3(5)	C(45)-C(46)-C(52)	111.5(5)
N(1)-C(1)-C(2)	124.5(4)	C(22)-C(23)-C(27)	119.4(5)	C(45)-C(46)-C(51)	112.1(5)
N(1)-C(1)-C(4)	119.4(4)	C(18)-C(23)-C(27)	122.3(4)	C(52)-C(46)-C(51)	109.1(5)
C(2)-C(1)-C(4)	116.1(4)	C(19)-C(24)-C(26)	111.7(6)	C(48)-C(47)-C(43)	117.5(5)
C(3)-C(2)-C(1)	129.2(5)	C(19)-C(24)-C(25)	112.1(5)	C(48)-C(47)-C(53)	119.8(5)
N(2)-C(3)-C(2)	122.5(4)	C(26)-C(24)-C(25)	110.0(5)	C(43)-C(47)-C(53)	122.6(4)
N(2)-C(3)-C(5)	119.7(5)	C(23)-C(27)-C(28)	111.6(5)	C(49)-C(48)-C(47)	121.2(5)

|

Table S2. Bond lengths [Å] and angles [°] for 2-B.

C(2)-C(3)-C(5)	117.8(4)	C(23)-C(27)-C(29)	110.3(5)	C(48)-C(49)-C(50)	120.5(5)
C(11)-C(6)-C(7)	121.0(5)	C(28)-C(27)-C(29)	111.0(5)	C(49)-C(50)-C(45)	120.5(5)
C(11)-C(6)-N(1)	120.3(4)	C(31)-C(30)-N(3)	109.6(4)	C(47)-C(53)-C(56)	112.3(5)
C(7)-C(6)-N(1)	118.7(5)	C(30)-C(31)-N(4)	109.0(4)	C(47)-C(53)-C(55)	110.8(5)
C(8)-C(7)-C(6)	117.8(5)	C(33)-C(32)-C(37)	122.0(4)	C(56)-C(53)-C(55)	110.4(6)
C(8)-C(7)-C(12)	120.7(5)	C(33)-C(32)-N(3)	119.5(4)	N(4)-B(1)-N(3)	104.8(4)
C(6)-C(7)-C(12)	121.3(5)	C(37)-C(32)-N(3)	118.5(4)	N(4)-B(1)-Sb(1)	133.3(3)
C(9)-C(8)-C(7)	121.8(5)	C(32)-C(33)-C(34)	117.8(4)	N(3)-B(1)-Sb(1)	119.5(3)
C(8)-C(9)-C(10)	119.6(5)	C(32)-C(33)-C(38)	121.4(4)		
C(9)-C(10)-C(11)	120.8(5)	C(34)-C(33)-C(38)	120.7(4)		

Table S3. Bond lengths [Å] and angles [°] for 2-C.

Sb(1)-C(30)	2.1716(16)	C(12)-C(14)	1.520(3)	C(33)-C(34)	1.373(3)
Sb(1)-Ga(1)	2.6335(3)	C(15)-C(17)	1.526(2)	C(34)-C(35)	1.397(2)
Ga(1)-N(2)	1.9597(13)	C(15)-C(16)	1.533(2)	C(35)-C(45)	1.499(2)
Ga(1)-N(1)	1.9649(13)	C(18)-C(23)	1.407(3)	C(36)-C(37)	1.403(2)
Ga(1)-Cl(1)	2.2178(5)	C(18)-C(19)	1.408(3)	C(36)-C(41)	1.404(2)
N(1)-C(1)	1.336(2)	C(19)-C(20)	1.397(3)	C(37)-C(38)	1.396(2)
N(1)-C(6)	1.448(2)	C(19)-C(24)	1.517(3)	C(37)-C(42)	1.504(2)
N(2)-C(3)	1.338(2)	C(20)-C(21)	1.372(3)	C(38)-C(39)	1.388(3)
N(2)-C(18)	1.447(2)	C(21)-C(22)	1.373(3)	C(39)-C(40)	1.384(3)
C(1)-C(2)	1.403(2)	C(22)-C(23)	1.404(2)	C(39)-C(43)	1.511(3)
C(1)-C(4)	1.510(2)	C(23)-C(27)	1.519(3)	C(40)-C(41)	1.394(3)
C(2)-C(3)	1.397(2)	C(24)-C(25')	1.528(8)	C(41)-C(44)	1.502(3)
C(3)-C(5)	1.509(2)	C(24)-C(26)	1.531(5)	C(45)-C(46)	1.403(3)
C(6)-C(11)	1.395(2)	C(24)-C(25)	1.534(5)	C(45)-C(50)	1.405(3)
C(6)-C(7)	1.411(2)	C(24)-C(26')	1.551(9)	C(46)-C(47)	1.397(3)
C(7)-C(8)	1.397(3)	C(27)-C(28)	1.530(3)	C(46)-C(51)	1.506(3)
C(7)-C(12)	1.521(3)	C(27)-C(29)	1.532(3)	C(47)-C(48)	1.384(4)
C(8)-C(9)	1.381(3)	C(30)-C(31)	1.411(2)	C(48)-C(49)	1.376(4)
C(9)-C(10)	1.369(3)	C(30)-C(35)	1.414(2)	C(48)-C(52)	1.518(3)
C(10)-C(11)	1.403(2)	C(31)-C(32)	1.397(2)	C(49)-C(50)	1.400(3)
C(11)-C(15)	1.513(2)	C(31)-C(36)	1.500(2)	C(50)-C(53)	1.504(3)
C(12)-C(13)	1.518(3)	C(32)-C(33)	1.382(3)		
C(30)-Sb(1)-Ga(1)	114.80(4)	C(13)-C(12)-C(7)	113.11(17)	C(34)-C(33)-C(32)	118.97(17)
N(2)-Ga(1)-N(1)	94.82(5)	C(14)-C(12)-C(7)	111.00(18)	C(33)-C(34)-C(35)	121.35(16)
N(2)-Ga(1)-Cl(1)	101.93(4)	C(11)-C(15)-C(17)	110.78(14)	C(34)-C(35)-C(30)	120.13(16)
N(1)-Ga(1)-Cl(1)	103.47(4)	C(11)-C(15)-C(16)	110.83(15)	C(34)-C(35)-C(45)	114.98(15)
N(2)-Ga(1)-Sb(1)	125.45(4)	C(17)-C(15)-C(16)	110.31(14)	C(30)-C(35)-C(45)	124.88(15)
N(1)-Ga(1)-Sb(1)	103.81(4)	C(23)-C(18)-C(19)	121.89(16)	C(37)-C(36)-C(41)	119.85(15)
Cl(1)-Ga(1)-Sb(1)	121.870(14)	C(23)-C(18)-N(2)	119.79(15)	C(37)-C(36)-C(31)	119.68(15)
C(1)-N(1)-C(6)	121.13(13)	C(19)-C(18)-N(2)	118.32(16)	C(41)-C(36)-C(31)	119.29(15)
C(1)-N(1)-Ga(1)	118.94(11)	C(20)-C(19)-C(18)	117.68(19)	C(38)-C(37)-C(36)	119.14(16)
C(6)-N(1)-Ga(1)	119.82(10)	C(20)-C(19)-C(24)	120.44(18)	C(38)-C(37)-C(42)	119.52(16)
C(3)-N(2)-C(18)	118.84(13)	C(18)-C(19)-C(24)	121.88(16)	C(36)-C(37)-C(42)	121.28(15)
C(3)-N(2)-Ga(1)	118.31(11)	C(21)-C(20)-C(19)	121.3(2)	C(39)-C(38)-C(37)	121.81(17)
C(18)-N(2)-Ga(1)	122.59(10)	C(20)-C(21)-C(22)	120.51(18)	C(40)-C(39)-C(38)	118.04(16)
N(1)-C(1)-C(2)	122.71(14)	C(21)-C(22)-C(23)	121.4(2)	C(40)-C(39)-C(43)	120.81(19)

N(1)-C(1)-C(4)	120.01(14)	C(22)-C(23)-C(18)	117.30(18)	C(38)-C(39)-C(43)	121.14(19)
C(2)-C(1)-C(4)	117.28(14)	C(22)-C(23)-C(27)	119.39(18)	C(39)-C(40)-C(41)	122.26(17)
C(3)-C(2)-C(1)	127.65(14)	C(18)-C(23)-C(27)	123.31(15)	C(40)-C(41)-C(36)	118.87(17)
N(2)-C(3)-C(2)	124.46(14)	C(19)-C(24)-C(25')	112.2(4)	C(40)-C(41)-C(44)	119.88(17)
N(2)-C(3)-C(5)	119.39(14)	C(19)-C(24)-C(26)	113.3(2)	C(36)-C(41)-C(44)	121.22(17)
C(2)-C(3)-C(5)	116.12(14)	C(19)-C(24)-C(25)	113.8(3)	C(46)-C(45)-C(50)	120.13(18)
C(11)-C(6)-C(7)	121.39(15)	C(26)-C(24)-C(25)	108.7(3)	C(46)-C(45)-C(35)	119.18(17)
C(11)-C(6)-N(1)	120.45(15)	C(19)-C(24)-C(26')	109.5(6)	C(50)-C(45)-C(35)	119.99(17)
C(7)-C(6)-N(1)	118.02(15)	C(25')-C(24)-C(26')	109.5(4)	C(47)-C(46)-C(45)	118.5(2)
C(8)-C(7)-C(6)	118.10(18)	C(23)-C(27)-C(28)	110.29(16)	C(47)-C(46)-C(51)	120.7(2)
C(8)-C(7)-C(12)	119.77(17)	C(23)-C(27)-C(29)	112.90(15)	C(45)-C(46)-C(51)	120.78(19)
C(6)-C(7)-C(12)	122.08(16)	C(28)-C(27)-C(29)	109.33(16)	C(48)-C(47)-C(46)	122.2(2)
C(9)-C(8)-C(7)	120.87(19)	C(31)-C(30)-C(35)	118.18(15)	C(49)-C(48)-C(47)	118.4(2)
C(10)-C(9)-C(8)	120.23(18)	C(31)-C(30)-Sb(1)	123.17(12)	C(49)-C(48)-C(52)	120.6(3)
C(9)-C(10)-C(11)	121.45(19)	C(35)-C(30)-Sb(1)	117.10(12)	C(47)-C(48)-C(52)	121.0(3)
C(6)-C(11)-C(10)	117.88(17)	C(32)-C(31)-C(30)	119.62(15)	C(48)-C(49)-C(50)	122.0(2)
C(6)-C(11)-C(15)	123.22(14)	C(32)-C(31)-C(36)	113.88(15)	C(49)-C(50)-C(45)	118.7(2)
C(10)-C(11)-C(15)	118.90(16)	C(30)-C(31)-C(36)	126.48(14)	C(49)-C(50)-C(53)	120.71(19)
C(13)-C(12)-C(14)	109.73(17)	C(33)-C(32)-C(31)	121.74(17)	C(45)-C(50)-C(53)	120.52(18)

Table S4. Bond lengths [Å] and angles [°] for 2-N.

2.0502(18)	C(6)-C(11)	1.407(3)	C(22)-C(23)	1.400(3)
2.6258(3)	C(6)-C(7)	1.414(3)	C(23)-C(27)	1.518(3)
1.9532(18)	C(7)-C(8)	1.393(3)	C(24)-C(25)	1.530(4)
1.9654(17)	C(7)-C(12)	1.526(3)	C(24)-C(26)	1.532(4)
2.2213(6)	C(8)-C(9)	1.387(4)	C(27)-C(29)	1.529(4)
1.7388(19)	C(9)-C(10)	1.381(3)	C(27)-C(28)	1.535(4)
1.860(3)	C(10)-C(11)	1.396(3)	C(33)-C(38)	1.405(3)
1.866(3)	C(11)-C(15)	1.527(3)	C(33)-C(34)	1.410(3)
1.870(2)	C(12)-C(14)	1.531(3)	C(34)-C(35)	1.396(3)
1.331(3)	C(12)-C(13)	1.533(3)	C(34)-C(39)	1.517(4)
1.445(3)	C(15)-C(16)	1.528(3)	C(35)-C(36)	1.373(4)
1.334(3)	C(15)-C(17)	1.540(3)	C(36)-C(37)	1.384(4)
1.448(3)	C(18)-C(23)	1.405(3)	C(37)-C(38)	1.399(3)
1.445(3)	C(18)-C(19)	1.407(3)	C(38)-C(42)	1.514(4)
1.404(3)	C(19)-C(20)	1.394(3)	C(39)-C(40)	1.531(5)
1.509(3)	C(19)-C(24)	1.522(3)	C(39)-C(41)	1.535(5)
1.399(3)	C(20)-C(21)	1.387(4)	C(42)-C(44)	1.533(4)
1.508(3)	C(21)-C(22)	1.377(4)	C(42)-C(43)	1.533(4)
111.45(5)	C(2)-C(3)-C(5)	117.39(19)	C(22)-C(23)-C(18)	117.9(2)
95.66(7)	C(11)-C(6)-C(7)	121.19(19)	C(22)-C(23)-C(27)	119.2(2)
103.56(6)	C(11)-C(6)-N(1)	120.46(18)	C(18)-C(23)-C(27)	122.9(2)
101.03(5)	C(7)-C(6)-N(1)	118.30(18)	C(19)-C(24)-C(25)	113.0(2)
103.16(5)	C(8)-C(7)-C(6)	118.2(2)	C(19)-C(24)-C(26)	111.4(2)
120.13(5)	C(8)-C(7)-C(12)	120.6(2)	C(25)-C(24)-C(26)	109.4(2)
127.529(18)	C(6)-C(7)-C(12)	121.1(2)	C(23)-C(27)-C(29)	111.4(2)
108.31(12)	C(9)-C(8)-C(7)	121.1(2)	C(23)-C(27)-C(28)	111.5(2)
112.50(12)	C(10)-C(9)-C(8)	119.9(2)	C(29)-C(27)-C(28)	110.5(2)
	2.0502(18) 2.6258(3) 1.9532(18) 1.9654(17) 2.2213(6) 1.7388(19) 1.860(3) 1.866(3) 1.870(2) 1.331(3) 1.445(3) 1.445(3) 1.445(3) 1.448(3) 1.445(3) 1.445(3) 1.445(3) 1.509(3) 1.509(3) 1.508(3) 111.45(5) 95.66(7) 103.56(6) 101.03(5) 103.16(5) 120.13(5) 127.529(18) 108.31(12) 112.50(12)	$\begin{array}{c cccc} 2.0502(18) & C(6)-C(11) \\ 2.6258(3) & C(6)-C(7) \\ 1.9532(18) & C(7)-C(8) \\ 1.9654(17) & C(7)-C(12) \\ 2.2213(6) & C(8)-C(9) \\ 1.7388(19) & C(9)-C(10) \\ 1.860(3) & C(10)-C(11) \\ 1.866(3) & C(10)-C(11) \\ 1.866(3) & C(11)-C(15) \\ 1.870(2) & C(12)-C(14) \\ 1.331(3) & C(12)-C(13) \\ 1.445(3) & C(15)-C(16) \\ 1.334(3) & C(15)-C(16) \\ 1.334(3) & C(15)-C(17) \\ 1.448(3) & C(18)-C(23) \\ 1.445(3) & C(18)-C(23) \\ 1.445(3) & C(18)-C(19) \\ 1.404(3) & C(19)-C(20) \\ 1.509(3) & C(19)-C(24) \\ 1.399(3) & C(20)-C(21) \\ 1.508(3) & C(21)-C(22) \\ \end{array}$ $\begin{array}{c} 111.45(5) & C(2)-C(3)-C(5) \\ 95.66(7) & C(11)-C(6)-N(1) \\ 103.56(6) & C(11)-C(6)-N(1) \\ 103.16(5) & C(8)-C(7)-C(6) \\ 120.13(5) & C(8)-C(7)-C(12) \\ 127.529(18) & C(6)-C(7) \\ 112.50(12) & C(10)-C(9)-C(8) \\ \end{array}$	$\begin{array}{c ccccc} 2.0502(18) & C(6)-C(11) & 1.407(3) \\ 2.6258(3) & C(6)-C(7) & 1.414(3) \\ 1.9532(18) & C(7)-C(8) & 1.393(3) \\ 1.9654(17) & C(7)-C(12) & 1.526(3) \\ 2.2213(6) & C(8)-C(9) & 1.387(4) \\ 1.7388(19) & C(9)-C(10) & 1.381(3) \\ 1.860(3) & C(10)-C(11) & 1.396(3) \\ 1.866(3) & C(11)-C(15) & 1.527(3) \\ 1.870(2) & C(12)-C(14) & 1.531(3) \\ 1.331(3) & C(12)-C(13) & 1.533(3) \\ 1.445(3) & C(15)-C(16) & 1.528(3) \\ 1.334(3) & C(15)-C(17) & 1.540(3) \\ 1.448(3) & C(18)-C(23) & 1.405(3) \\ 1.445(3) & C(19)-C(20) & 1.394(3) \\ 1.509(3) & C(19)-C(24) & 1.522(3) \\ 1.399(3) & C(20)-C(21) & 1.387(4) \\ 1.508(3) & C(21)-C(22) & 1.377(4) \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

C(32)-Si(1)-C(31)	110.23(15)	C(9)-C(10)-C(11)	121.5(2)	C(38)-C(33)-C(34)	120.4(2)
N(3)-Si(1)-C(30)	108.21(10)	C(10)-C(11)-C(6)	118.06(19)	C(38)-C(33)-N(3)	119.8(2)
C(32)-Si(1)-C(30)	110.67(12)	C(10)-C(11)-C(15)	118.29(19)	C(34)-C(33)-N(3)	119.8(2)
C(31)-Si(1)-C(30)	106.92(13)	C(6)-C(11)-C(15)	123.64(19)	C(35)-C(34)-C(33)	118.9(2)
C(1)-N(1)-C(6)	121.29(17)	C(7)-C(12)-C(14)	113.4(2)	C(35)-C(34)-C(39)	118.8(2)
C(1)-N(1)-Ga(1)	119.12(14)	C(7)-C(12)-C(13)	111.63(18)	C(33)-C(34)-C(39)	122.3(2)
C(6)-N(1)-Ga(1)	119.21(13)	C(14)-C(12)-C(13)	109.42(18)	C(36)-C(35)-C(34)	121.1(3)
C(3)-N(2)-C(18)	120.08(18)	C(11)-C(15)-C(16)	111.77(18)	C(35)-C(36)-C(37)	120.0(2)
C(3)-N(2)-Ga(1)	119.41(14)	C(11)-C(15)-C(17)	110.72(18)	C(36)-C(37)-C(38)	121.2(2)
C(18)-N(2)-Ga(1)	120.51(13)	C(16)-C(15)-C(17)	109.34(19)	C(37)-C(38)-C(33)	118.4(2)
C(33)-N(3)-Si(1)	120.76(14)	C(23)-C(18)-C(19)	121.5(2)	C(37)-C(38)-C(42)	119.5(2)
C(33)-N(3)-Sb(1)	109.17(13)	C(23)-C(18)-N(2)	120.35(19)	C(33)-C(38)-C(42)	122.1(2)
Si(1)-N(3)-Sb(1)	130.05(10)	C(19)-C(18)-N(2)	118.07(19)	C(34)-C(39)-C(40)	113.1(3)
N(1)-C(1)-C(2)	123.72(19)	C(20)-C(19)-C(18)	118.1(2)	C(34)-C(39)-C(41)	110.1(3)
N(1)-C(1)-C(4)	120.36(19)	C(20)-C(19)-C(24)	119.1(2)	C(40)-C(39)-C(41)	109.8(3)
C(2)-C(1)-C(4)	115.91(18)	C(18)-C(19)-C(24)	122.8(2)	C(38)-C(42)-C(44)	111.0(2)
C(3)-C(2)-C(1)	128.59(19)	C(21)-C(20)-C(19)	121.1(2)	C(38)-C(42)-C(43)	111.8(2)
N(2)-C(3)-C(2)	123.1(2)	C(22)-C(21)-C(20)	120.0(2)	C(44)-C(42)-C(43)	111.2(2)
N(2)-C(3)-C(5)	119.5(2)	C(21)-C(22)-C(23)	121.3(2)		

Table S5. Bond lengths [Å] and angles $[\circ]$ for [K([2.2.2]crypt)][2-B].

K11-O41	2.7956(10)	Ga12-N12	2.0156(10)	C242-C262	1.5239(19)
K11-O61	2.7978(10)	Ga12-N22	2.0395(10)	C242-C252	1.5305(19)
K11-O11	2.7996(10)	Ga12-Cl12	2.2820(4)	C272-C292	1.5266(18)
K11-O31	2.8151(10)	B12-N42	1.4511(17)	C272-C282	1.5346(18)
K11-O51	2.8203(10)	B12-N32	1.4569(17)	C302-C312	1.3379(19)
K11-O21	2.9015(10)	N12-C12	1.3378(15)	C322-C332	1.3977(19)
K11-N11	3.0229(11)	N12-C62	1.4374(15)	C322-C372	1.4039(19)
K11-N21	3.0470(12)	N22-C32	1.3264(15)	C332-C342	1.3964(19)
O11-C31	1.4264(16)	N22-C182	1.4434(15)	C332-C382	1.514(2)
O11-C21	1.4277(16)	N32-C302	1.3971(16)	C342-C352	1.381(2)
O21-C41	1.4230(17)	N32-C322	1.4302(16)	C352-C362	1.381(2)
O21-C51	1.4291(17)	N42-C312	1.4057(15)	C362-C372	1.394(2)
O31-C81	1.4219(16)	N42-C442	1.4302(15)	C372-C412	1.516(2)
O31-C91	1.4249(16)	C12-C22	1.3944(17)	C382-C402	1.526(2)
O41-C101	1.4190(18)	C12-C42	1.5117(17)	C382-C392	1.534(2)
O41-C111	1.4203(17)	C22-C32	1.4088(17)	C412-C422	1.516(2)
O51-C151	1.4280(16)	C32-C52	1.5139(16)	C412-C432	1.520(2)
O51-C141	1.4308(17)	C62-C112	1.4053(17)	C442-C452	1.4006(18)
O61-C171	1.4220(18)	C62-C72	1.4077(18)	C442-C492	1.4053(17)
O61-C161	1.4280(17)	C72-C82	1.3948(19)	C452-C462	1.3997(18)
N11-C11	1.4693(16)	C72-C122	1.5195(18)	C452-C502	1.5184(19)
N11-C71	1.4705(17)	C82-C92	1.380(2)	C462-C472	1.3823(19)
N11-C131	1.4747(17)	C92-C102	1.385(2)	C472-C482	1.3814(19)
N21-C61	1.4631(19)	C102-C112	1.3941(18)	C482-C492	1.3961(18)
N21-C121	1.4735(19)	C112-C152	1.5209(18)	C492-C532	1.5176(18)
N21-C181	1.4735(18)	C122-C142	1.532(2)	C502-C522	1.527(2)
C11-C21	1.5084(19)	C122-C132	1.534(2)	C502-C512	1.535(2)
C31-C41	1.498(2)	C152-C162	1.523(2)	C532-C552	1.5175(19)
			520		

C51-C61	1.508(2)	C152-C172	1.5265(19)	C532-C542	1.5218(19)
C71-C81	1.5103(19)	C182-C192	1.4046(17)	F13-C13	1.347(2)
C91-C101	1.499(2)	C182-C232	1.4100(17)	C13-C63	1.365(3)
C111-C121	1.501(2)	C192-C202	1.3964(18)	C13-C23	1.377(3)
C131-C141	1.5102(19)	C192-C242	1.5177(18)	C23-C33	1.390(3)
C151-C161	1.499(2)	C202-C212	1.3848(19)	C33-C43	1.365(3)
C171-C181	1.511(2)	C212-C222	1.3826(19)	C43-C53	1.380(3)
Sb12-B12	2.2067(13)	C222-C232	1.3948(17)	C53-C63	1.367(3)
Sb12-Ga12	2.5344(2)	C232-C272	1.5207(17)		
		I			
O41-K11-O61	93.33(3)	N21-C61-C51	113.32(12)	C202-C192-C182	118.49(12)
O41-K11-O11	127.48(3)	N11-C71-C81	113.67(11)	C202-C192-C242	119.95(11)
O61-K11-O11	134.00(3)	O31-C81-C71	108.27(11)	C182-C192-C242	121.38(11)
O41-K11-O31	60.39(3)	O31-C91-C101	108.34(12)	C212-C202-C192	121.24(12)
O61-K11-O31	120.59(3)	O41-C101-C91	108.81(11)	C222-C212-C202	119.60(12)
O11-K11-O31	99.91(3)	O41-C111-C121	108.47(12)	C212-C222-C232	121.50(12)
O41-K11-O51	129.48(3)	N21-C121-C111	113.98(12)	C222-C232-C182	118.24(11)
O61-K11-O51	60.59(3)	N11-C131-C141	113.50(11)	C222-C232-C272	118.56(11)
O11-K11-O51	97.92(3)	O51-C141-C131	108.64(11)	C182-C232-C272	123.20(11)
O31-K11-O51	94.67(3)	O51-C151-C161	108.68(11)	C192-C242-C262	113.99(12)
O41-K11-O21	99.74(3)	O61-C161-C151	108.74(12)	C192-C242-C252	109.36(11)
O61-K11-O21	98.22(3)	O61-C171-C181	108.38(12)	C262-C242-C252	109.95(11)
011-K11-021	59.01(3)	N21-C181-C171	113.42(12)	C232-C272-C292	110.67(11)
O31-K11-O21	135.66(3)	B12-Sb12-Ga12	110.79(4)	C232-C272-C282	111.62(10)
051-K11-021	124.68(3)	N12-Ga12-N22	92.13(4)	C292-C272-C282	110.13(11)
041-K11-N11	120.12(3)	N12-Ga12-Cl12	97,59(3)	C312-C302-N32	108.82(11)
O61-K11-N11	120.12(3) 121.24(3)	N22-Ga12-Cl12	96 16(3)	C302-C312-N42	109.81(11)
011-K11-N11	59 97(3)	N12-Ga12-Sh12	110.03(3)	C332-C322-C372	121.77(12)
O31-K11-N11	59.98(3)	N22-Ga12-Sb12	120.82(3)	C332-C322-N32	119.64(12)
051-K11-N11	60.90(3)	Cl12-Ga12-Sb12	131.518(11)	C372-C322-N32	118.51(12)
021-K11-N11	118 83(3)	N42-B12-N32	10232(10)	C342-C332-C322	118.03(13)
041-K11-N21	60 30(3)	N42-B12-Sb12	139 94(9)	C342-C332-C382	120.63(13)
O61-K11-N21	59.63(3)	N32-B12-Sb12	117 47(9)	C322-C332-C382	120.03(12) 121.31(12)
011-K11-N21	118 83(3)	C12-N12-C62	11726(10)	C352-C342-C332	121.06(14)
O31-K11-N21	120.53(3)	C12-N12-Ga12	119 73(8)	C342-C352-C362	120.04(13)
051-K11-N21	119.87(3)	C62-N12-Ga12	123.01(8)	C352-C362-C372	120.01(13) 121.17(14)
021-K11-N21	59.98(3)	C32-N22-C182	119.61(10)	C362-C372-C322	117.89(13)
N11-K11-N21	178,78(3)	C32-N22-Ga12	120.52(8)	C362-C372-C412	120.31(13)
C31-O11-C21	112.40(10)	C182-N22-Ga12	119.24(7)	C322-C372-C412	120.01(12) 121.80(12)
C31-O11-K11	119.68(8)	C302-N32-C322	118.96(10)	C332-C382-C402	112.17(13)
C21-O11-K11	119.80(7)	C302-N32-B12	109.93(10)	C332-C382-C392	109.95(13)
C41-O21-C51	110.60(10)	C322-N32-B12	130.27(10)	C402-C382-C392	111.16(13)
C41-O21-K11	111 57(8)	C312-N42-C442	116.02(10)	C422-C412-C372	111.62(14)
C51-O21-K11	112.39(8)	C312-N42-B12	109.12(10)	C422-C412-C432	111.81(16)
C81-O31-C91	112.09(0)	C442-N42-B12	133.71(10)	C372-C412-C432	111.34(12)
C81-O31-K11	112.02(10) 116 70(7)	N12-C12-C22	123.77(11)	C452-C442-C492	121.57(12)
C91-O31-K11	114 86(8)	N12-C12-C22	120 30(11)	C452-C442-N42	119 23(11)
$C101_041_C111$	111 75(11)	$C^{2} C^{2} C^{2} C^{2} C^{4}$	115 85(11)	C492-C442-N42	118 80(11)
C101 - 041 - K11	113 76(8)	C12-C12-C+2	127 87(11)	C462-C452-C442	118 20(12)
C111-O41-K11	118 20(8)	N22-C32-C32	124 12(10)	C462-C452-C442	120 32(12)
C151-051-C141	111 03(10)	N22-C32-C22	121 23(11)	C442 C452 C502	120.32(12) 121 46(11)
0.01 0.01-0141	111.05(10)	1122 052-052	121.23(11)		121.70(11)

C151-O51-K11	111.13(8)	C22-C32-C52	114.63(10)	C472-C462-C452	120.91(13)
C141-O51-K11	116.11(8)	C112-C62-C72	120.69(11)	C482-C472-C462	120.06(12)
C171-O61-C161	112.15(11)	C112-C62-N12	120.60(11)	C472-C482-C492	121.28(12)
C171-O61-K11	117.44(8)	C72-C62-N12	118.70(10)	C482-C492-C442	117.93(12)
C161-O61-K11	116.26(8)	C82-C72-C62	118.75(12)	C482-C492-C532	121.00(11)
C11-N11-C71	109.15(10)	C82-C72-C122	118.65(12)	C442-C492-C532	121.00(11)
C11-N11-C131	110.67(10)	C62-C72-C122	122.51(11)	C452-C502-C522	112.12(12)
C71-N11-C131	109.68(10)	C92-C82-C72	121.13(13)	C452-C502-C512	110.86(12)
C11-N11-K11	109.54(8)	C82-C92-C102	119.52(13)	C522-C502-C512	109.82(12)
C71-N11-K11	109.88(7)	C92-C102-C112	121.63(12)	C552-C532-C492	113.12(11)
C131-N11-K11	107.90(8)	C102-C112-C62	118.23(12)	C552-C532-C542	110.56(12)
C61-N21-C121	109.79(12)	C102-C112-C152	120.33(11)	C492-C532-C542	111.04(11)
C61-N21-C181	110.14(12)	C62-C112-C152	121.43(11)	F13-C13-C63	118.10(18)
C121-N21-C181	110.08(11)	C72-C122-C142	109.01(11)	F13-C13-C23	119.32(18)
C61-N21-K11	109.48(8)	C72-C122-C132	113.07(12)	C63-C13-C23	122.58(17)
C121-N21-K11	107.39(8)	C142-C122-C132	110.73(12)	C13-C23-C33	117.92(17)
C181-N21-K11	109.91(8)	C112-C152-C162	111.61(12)	C43-C33-C23	120.38(17)
N11-C11-C21	114.26(11)	C112-C152-C172	113.17(11)	C33-C43-C53	119.74(18)
O11-C21-C11	108.81(10)	C162-C152-C172	110.48(12)	C63-C53-C43	121.13(18)
O11-C31-C41	108.50(11)	C192-C182-C232	120.93(11)	C13-C63-C53	118.19(17)
O21-C41-C31	109.55(11)	C192-C182-N22	119.23(11)		
O21-C51-C61	108.56(12)	C232-C182-N22	119.83(10)		

4. Computational Details

The ground-state geometry optimizations of **2-***R* and $[2-B]^-$ were calculated using a B3LYP density functional and def2-TZVP basis set as implemented in Gaussian16.^[22,23] Dispersion effects were taken into account by utilizing Grimme's D3 correction with Becke-Johnson damping.^[24,25] The obtained geometries were characterized as true minima *via* harmonic frequency calculation. Natural bond orbital analysis was performed using the NBO version 3.1.^[26] Electronic excitations were calculated using the time-dependent DFT (TD-DFT) formalism at the B3LYP/def2-TZVP level. Solvent effects (toluene) have been taken into account by means of the conductor-like polarized continuum model (C-PCM).^[27]

Figure S25. Mulliken spin density plots of 2-*R*.

	Excited	Excitation	Wavelength	Oscillator	Transition nature
	state	energy E [eV]	λ [nm]	strength f	(orbital contributions > 10 %)
	1	1.4704	843.19	0.0030	HOMO(β) → SOMO(β) (80 %), HOMO-2(β) → SOMO(β) (19 %)
2- <i>B</i>	2	2.0882	593.73	0.0100	HOMO-2(β) \rightarrow SOMO(β) (75 %),
					$HOMO(\beta) \rightarrow SOMO(\beta) (20\%)$
2-C	1	1.7151	722.89	0.0018	$HOMO(\beta) \rightarrow SOMO(\beta) (96 \%)$
20	3	2.7035	458.61	0.0118	HOMO-2(β) \rightarrow SOMO(β) (96 %)
	1	2 1574	574 69	0.0012	HOMO-1(β) \rightarrow SOMO(β) (53 %),
) N	1	2.1371	071109	0.0012	$HOMO(\beta) \rightarrow SOMO(\beta) (41 \%)$
2-N	5	2.7539	450.22	0.0536	HOMO-3(β) \rightarrow SOMO(β) (63 %), HOMO-4(β) \rightarrow SOMO(β) (15 %)

Table S6. Calculated UV-Vis absorption properties of 2-*R* by TD-DFT.

Figure S26. UV-Vis spectrum, calculated absorptions (vertical bars), and corresponding main orbital contributions of 2-*B*.

Figure S27. UV-Vis spectrum, calculated absorptions (vertical bars), and corresponding main orbital contributions of 2-*C*.

Figure S28. UV-Vis spectrum, calculated absorptions (vertical bars), and corresponding main orbital contributions of 2-*N*.

 Table S7. Cartesian coordinates (x,y,z) for the optimized geometry of L(Cl)GaSbB (2-B).

Sb	-0.1425910000	0.5477900000	-1.0612650000
В	-1.6892100000	1.7575190000	-0.0042110000
Ν	3.0250120000	-1.1208850000	-0.2875440000
С	1.9479350000	-3.7448250000	0.7106110000
Ga	1.2411900000	-0.9473550000	0.5758790000
Ν	0.9144540000	-2.9091900000	0.6551040000
С	3.2829270000	-3.3689440000	0.5113320000
Н	4.0108530000	-4.1485580000	0.6711270000
Cl	1.7282990000	-0.4596300000	2.7007840000
Ν	-1.6053530000	2.9315660000	0.8117720000
С	1.7061910000	-5.2058430000	0.9948780000
Н	1.5313810000	-5.3536240000	2.0607890000
Н	0.8257140000	-5.5747200000	0.4730910000
Н	2.5701120000	-5.7982650000	0.7049540000
Ν	-3.0632510000	1.7140150000	-0.4226360000
С	5.2593300000	-2.1247260000	-0.3199080000
H	5.6884570000	-3.1230080000	-0.3557700000
Н	5.4695100000	-1.6067110000	-1.2526580000
Н	5.7558120000	-1.5651190000	0.4759610000
С	-0.4219070000	-3.4256600000	0.7589440000
C	-1.1650100000	-3.5957390000	-0.4240740000
C	-2.4394270000	-4.1495130000	-0.3337660000
H	-3.0259730000	-4.2836360000	-1.2313310000
С	-2.9675510000	-4.5315980000	0.8894780000
H	-3.9565850000	-4.9687530000	0.9412230000
C	-2.2371060000	-4.3264120000	2.0473550000
H	-2.6687110000	-4.5957760000	3.0020770000
C	-0.9642540000	-3.7585510000	2.0124410000
C	-0.5810980000	-3.2353620000	-1.7775600000
H	0.1512510000	-2 4474410000	-1.6105300000
C	0.1709110000	-4 4205030000	-2.3963980000
с Н	-0 4994440000	-5 2710580000	-2 5385420000
н	0.5787670000	-4 1441340000	-3 3707110000
н	1 0005390000	-4 7435240000	-1 7682250000
C	-1 620256000	-2 6763070000	-2 747800000
н	-2 185800000	-1 8628500000	-2 2976440000
н	-1 1255700000	-2 2874530000	-3 6384770000
н	-2 3291210000	-3 4389910000	-3 0750830000
C	-0.2398830000	-3 4881080000	3 3189980000
н	0.7767610000	-3 1745450000	3 0890270000
C	-0 1674900000	-4 7239860000	4 2242660000
ч	-1 15/960000	-5.0082160000	4.5925050000
н ц	0.2502080000	-5.5890120000	4.3923030000
н ц	0.4577550000	-4.5129560000	5.0026050000
п С	0.4377330000	-4.5129500000	4 0671240000
	-0.3072140000	2.0002460000	4.0071240000
н ц	-0.3489090000	-1.429383400000	4.9743730000 2.4546210000
н Н	-0.3331300000	-1.4233030000	7 2402620000
 C	-1.3304330000	-2.3040030000	4.3433030000 _1 11100E0000
	3.3130430000 2.360060000	-0.0330320000 _0.1170670000	-1.1113320000
	3.2000000000	-0.11/00/0000	-2.43/3/80000
L L	3.7036200000	0.9310000000	-3.2311100000
п С	5.5160/30000		
L	4.3710090000	2.01//00000	-2.7514050000

Н	4.7006720000	2.8280740000	-3.3890660000
С	4.6019700000	2.0681540000	-1.3884970000
Н	5.1111510000	2.9239330000	-0.9653700000
С	4.1806830000	1.0413950000	-0.5440690000
С	2.5480880000	-1.3079720000	-3.1155220000
н	1.9125570000	-1.7376140000	-2.3424230000
С	1.6476020000	-0.9285960000	-4.2926950000
н	0.9658670000	-0.1222090000	-4.0246820000
н	2.2270110000	-0.6159910000	-5.1632780000
н	1.0527560000	-1.7918070000	-4.5952110000
C	3.5396840000	-2.4003630000	-3.5404110000
H	3.0077750000	-3.2391070000	-3.9938920000
Н	4.2486070000	-2.0105360000	-4.2742660000
Н	4.1058730000	-2.7859780000	-2.6947860000
C C	5 9239900000	1 3432850000	1 2636730000
н	6 5375740000	0 5601030000	0.8154950000
н	6 2918300000	2 3022570000	0.01345500000
н ц	6.0814130000	1 3239610000	2 2/272200000
п С	0.0814130000	1.5259010000	2.3437320000
	4.4362790000	1.1508390000	0.9459160000
H C	4.1124120000	0.2245280000	1.4157720000
	3.6023280000	2.2824780000	1.5523650000
н	3.7276650000	2.3148540000	2.63516/0000
H	3.9013740000	3.2496080000	1.144/190000
H	2.5410/10000	2.1497050000	1.3519820000
C	-0.5004220000	3.5028720000	1.5111800000
С	0.4044520000	4.3162080000	0.8148000000
С	1.4284610000	4.9252050000	1.5372110000
Н	2.1371150000	5.5604350000	1.0220050000
С	1.5582500000	4.7230000000	2.9005950000
Н	2.3649280000	5.1983860000	3.4440220000
С	0.6654390000	3.8987490000	3.5680270000
Н	0.7847790000	3.7358830000	4.6303470000
С	-0.3808830000	3.2759370000	2.8925710000
С	0.2810990000	4.5668150000	-0.6763630000
Н	-0.5303740000	3.9445400000	-1.0510730000
С	1.5537320000	4.1616500000	-1.4264960000
Н	1.8110960000	3.1197140000	-1.2384600000
Н	1.4171930000	4.2832130000	-2.5028990000
н	2.4080900000	4.7725290000	-1.1282880000
С	-0.0958210000	6.0255880000	-0.9614890000
Н	0.6815070000	6.7093420000	-0.6137370000
Н	-0.2276340000	6.1839290000	-2.0340740000
н	-1.0269660000	6.2940880000	-0.4600810000
С	-1.3836970000	2,4203680000	3.6465260000
H	-1.8889430000	1.7893110000	2.9148180000
C	-2.4471110000	3,2977210000	4.3241780000
с Н	-3 1843290000	2 6749490000	4 8357450000
н	-1 9847430000	3 9530960000	5 0659080000
н	-2 9750480000	3 9227620000	3 60539300000
 C	-0 730700000	1 4979210000	2 6788850000
с Н	0.0601550000		A 2210250000
н Н	_0.20720/0000	2 0622500000	5 5172/0000
11 Ll		2.0023300000	5.5125400000
11 C	-1.4/995/0000	0.0212330000	3.0343310000
L	-3.7209340000	0.7077030000	-1.1843860000

С	-3.6659240000	0.7474940000	-2.5842600000
С	-4.3132450000	-0.2614530000	-3.2966440000
Н	-4.2814490000	-0.2561110000	-4.3775950000
С	-4.9908680000	-1.2745810000	-2.6398890000
Н	-5.4794770000	-2.0550760000	-3.2094580000
С	-5.0454700000	-1.2933350000	-1.2534520000
Н	-5.5820430000	-2.0880580000	-0.7556050000
С	-4.4246890000	-0.3014280000	-0.4989070000
С	-2.9670900000	1.8791720000	-3.3133660000
Н	-2.2845890000	2.3518110000	-2.6079980000
С	-2.1331350000	1.3981560000	-4.5030120000
Н	-2.7582470000	1.0037490000	-5.3063830000
Н	-1.5571400000	2.2287050000	-4.9151360000
Н	-1.4339150000	0.6187790000	-4.1997140000
С	-3.9845380000	2.9445510000	-3.7441570000
Н	-4.5289060000	3.3364370000	-2.8841660000
Н	-3.4811980000	3.7790560000	-4.2371690000
Н	-4.7124470000	2.5253790000	-4.4425360000
С	-4.4883750000	-0.2970110000	1.0193010000
Н	-4.5535140000	0.7456820000	1.3345710000
С	-3.2129000000	-0.8828020000	1.6359040000
Н	-3.0929190000	-1.9245460000	1.3479200000
Н	-2.3238450000	-0.3423370000	1.3172600000
Н	-3.2634100000	-0.8352930000	2.7247770000
С	-5.7167580000	-1.0169120000	1.5786720000
Н	-5.7758180000	-0.8572250000	2.6565540000
Н	-6.6413900000	-0.6505310000	1.1294090000
Н	-5.6621460000	-2.0951100000	1.4151510000
С	-2.8598030000	3.5445570000	0.8385700000
Н	-3.0233120000	4.4633760000	1.3728660000
С	-3.7305190000	2.8164410000	0.1083500000
Н	-4.7772900000	2.9881300000	-0.0741890000
С	3.7825790000	-2.1794710000	-0.0271380000

Table S8. Cartesian coordinates (x,y,z) for the optimized geometry of L(Cl)GaSbC (2-C).

Sb	0.4338020000	0.9133830000	-1.0481420000
Ga	0.1726010000	-1.0662640000	0.6813770000
Cl	1.5172590000	-1.1752540000	2.4723620000
Ν	0.7138480000	-2.6627200000	-0.4032110000
Ν	-1.4666000000	-1.9406110000	1.3781540000
С	0.4313760000	-3.8763260000	0.0436470000
С	-0.4730800000	-4.1229230000	1.0879120000
Н	-0.5435070000	-5.1501700000	1.4084870000
С	-1.4126530000	-3.2514320000	1.6366310000
С	1.0919450000	-5.0803750000	-0.5754900000
Н	2.0789500000	-5.2206510000	-0.1312220000
Н	1.2363280000	-4.9542720000	-1.6459060000
Н	0.5058910000	-5.9776140000	-0.3919160000
С	-2.4380400000	-3.8532780000	2.5636990000
Н	-2.3112320000	-4.9304770000	2.6302020000
Н	-3.4534840000	-3.6349340000	2.2381290000
Н	-2.3291590000	-3.4233650000	3.5606500000

С	1.5552660000	-2.4827720000	-1.5522280000
С	0.9531110000	-2.2154070000	-2.7978490000
С	1.7792950000	-2.0202270000	-3.9008080000
Н	1.3408200000	-1.8128550000	-4.8658150000
С	3.1598010000	-2.0725060000	-3.7829650000
н	3.7841950000	-1.9124400000	-4.6526510000
С	3.7344600000	-2.3158420000	-2.5489520000
н	4.8122200000	-2.3375640000	-2.4573100000
С	2.9513770000	-2.5238260000	-1.4142710000
С	-0.5575130000	-2.1506520000	-2.9492160000
H	-0.9558970000	-1.7247760000	-2.0267940000
С	-1.0091800000	-1.2447920000	-4.0963610000
н	-2.0896370000	-1.1127380000	-4.0612990000
н	-0.7655450000	-1 6733880000	-5.0702610000
н	-0 5492230000	-0.2588580000	-4 0282090000
C C	-1 1697110000	-3 5497910000	-3 1016200000
н	-0.9824740000	-4 1722370000	-2 2283990000
н ц	-0.7542080000	-4.0553810000	-2.2203330000
п	-0.7542080000	-4.0555810000	-3.9739720000
	-2.2508760000	-3.4797020000	-3.2338440000
	3.6330330000	-2.7329350000	-0.0767390000
H C	2.8740890000	-2.9737750000	0.664/3/0000
	4.6484870000	-3.8814070000	-0.10/01/0000
н	5.0392770000	-4.0601230000	0.8964490000
H	5.4969230000	-3.6482210000	-0.7531050000
H	4.2051870000	-4.8098980000	-0.4701110000
С	4.3036170000	-1.4334500000	0.3739430000
Н	4.7177030000	-1.5453060000	1.3766370000
Н	3.5950800000	-0.6097960000	0.4038430000
Н	5.1120170000	-1.1576250000	-0.3055820000
С	-2.6792850000	-1.2432410000	1.7009360000
С	-3.7203770000	-1.2548010000	0.7559070000
С	-4.9319890000	-0.6577190000	1.0959030000
Н	-5.7472070000	-0.6683620000	0.3841970000
С	-5.1154590000	-0.0670880000	2.3351990000
Н	-6.0669880000	0.3838440000	2.5870800000
С	-4.0725160000	-0.0442640000	3.2465420000
Н	-4.2165600000	0.4322840000	4.2069450000
С	-2.8404060000	-0.6233610000	2.9509210000
С	-3.5789390000	-1.9504480000	-0.5866270000
Н	-2.5430800000	-2.2659940000	-0.6881080000
н	-3.7922690000	-1.5430230000	-2.6993760000
С	-3.8941470000	-1.0118560000	-1.7522310000
Н	-3.2256200000	-0.1523070000	-1.7634140000
Н	-4.9162250000	-0.6347790000	-1.6972560000
С	-4.4476280000	-3.2135000000	-0.6564070000
н	-4.3070940000	-3.7178670000	-1.6143410000
н	-5.5069630000	-2.9675710000	-0.5574070000
Н	-4.1926280000	-3.9201460000	0.1333450000
С	-1.7146870000	-0.5603900000	3,9635060000
- H	-0.9329810000	-1.2461780000	3,6437980000
C	-1.0986390000	0.8432790000	3.9847120000
- H	-0 2479240000	0.8758220000	4,6659840000
н	-1 8314150000	1 5869750000	4 3060340000
н	-0 7415670000	1 1323060000	2 9965640000
••	0.7 713070000	1.1323000000	2.33030-0000

H -2.626335000 -1.9637460000 5.366890000 H -2.8590600000 0.2728220000 6.0308000000 C 0.4305740000 2.8162740000 0.029669000 C 1.5533810000 3.905960000 0.7127270000 C 1.5007110000 4.585311000 1.2804000000 H 2.370981000 4.954887000 1.808198000 C 0.3562110000 6.3734410000 0.425699000 H -1.5821320000 5.844422000 0.2839050000 C -0.6891750000 3.647135000 -0.1442760000 C 3.2871550000 2.077119000 2.044480000 C 3.2871550000 2.07719000 3.048290000 C 3.2871550000 1.564066000 1.087906000 C 3.2871550000 2.087499000 -0.125444000 C 3.2871550000 2.087499000 -0.7972310000 C 3.2871550000 2.087499000 -0.797491000 C 3.2462950000 1.5640660000 -0.797493000	С	-2.1520890000	-0.9810010000	5.3700920000
H -2.859600000 -0.2728220000 5.8062970000 H -1.2841120000 -1.0266190000 6.0300800000 C 0.4305740000 2.8162740000 0.2726270000 C 1.5535810000 3.3095960000 0.712270000 C 1.5007110000 4.5855310000 1.8284090000 H 0.35652110000 5.384669000 1.1514440000 H 0.3556310000 5.3444220000 0.283990000 C -0.7088970000 4.914470000 0.425699000 C -0.6891750000 2.674135000 -0.1442760000 C 2.8605310000 2.544220000 0.8108290000 C 3.2871550000 2.077119000 2.0448480000 C 5.642095000 1.564066000 1.0879060000 C 5.0231760000 2.0807499000 -0.1250440000 C 5.0231760000 2.08026000 -1.25449000 C 5.0231760000 2.08026000 -3.2532480000 C 5.0231760000 2.08027000 -2.884910000	Н	-2.6269350000	-1.9637460000	5.3660890000
H -1.284120000 -1.0266190000 6.03060000 C 0.4305740000 2.8162740000 0.0296690000 C 1.5037110000 4.9585310000 1.280400000 C 0.376405000 4.9548870000 1.8081980000 C 0.3764050000 5.384699000 1.1514440000 H 0.3562110000 6.373041000 0.4256990000 C -0.7088970000 4.919470000 0.4256990000 C -0.6891750000 3.6471350000 -0.1482760000 C 3.2871550000 2.594922000 0.8108290000 C 3.2871550000 2.0640630000 2.01284430000 C 3.287150000 2.0800260000 -0.1250440000 C 5.420950000 2.097499000 -0.9702310000 C 3.7402110000 2.999130000 3.2532480000 H 2.6958480000 1.3616970000 3.2832480000 H 2.6958480000 1.3616970000 3.2532480000 H 2.436320000 3.1932140000 3.2532480000	Н	-2.8590600000	-0.2728220000	5.8062970000
C 0.4305740000 2.8162740000 0.029669000 C 1.5535810000 3.309596000 0.7127270000 C 1.5007110000 4.5855310000 1.2804000000 H 2.3709810000 4.9548870000 1.88198000 C 0.376405000 5.384669000 1.1514440000 H 0.3562110000 6.3730410000 0.42599000 C -0.7088970000 4.9194470000 0.42599000 C -0.6891750000 3.6471350000 -0.1442760000 C 3.80750000 2.949220000 0.1442760000 C 3.42871550000 1.5640630000 2.1584230000 C 5.0231760000 2.0800260000 -0.1250440000 C 5.0231760000 2.0974990000 -0.97231000 C 5.0231760000 2.9991030000 -0.2849010000 C 3.740211000 2.9991030000 -0.2849010000 C 3.74021000 1.930217000 2.988670000 H 1.356752000 1.9302170000 2.9886470000	Н	-1.2841120000	-1.0266190000	6.0300800000
C 1.5535810000 3.095960000 0.71227000 C 1.5007110000 4.5855310000 1.280400000 H 2.3709810000 4.954870000 1.8081980000 C 0.376410000 6.3730410000 1.5926870000 C 0.7088970000 4.9194770000 0.4256990000 C 0.7088970000 3.6471350000 0.8108290000 C 0.6891750000 3.6471350000 2.0448480000 C 3.2871550000 2.0771190000 2.044848000 C 4.5704440000 1.5640650000 1.01874260000 C 5.4620950000 1.0640650000 1.0250440000 C 5.7020590000 2.0974990000 -0.284910000 C 3.7402110000 2.5931370000 3.2532480000 C 3.7402110000 2.593520000 -2.1580363000 H 1.3567520000 1.9302170000 3.2532480000 C 3.3936470000 1.361970000 3.2532480000 H 7.321073000 1.3572290000 2.188280000 <	С	0.4305740000	2.8162740000	0.0296690000
C 1.5007110000 4.9548870000 1.2804000000 H 2.3709810000 4.9548870000 1.8081980000 C 0.3764050000 5.3846690000 1.1514440000 C -0.7088970000 4.9194470000 0.4256990000 C -0.708970000 3.6471350000 0.2839050000 C -0.6891750000 3.6471350000 0.8108290000 C 2.8605310000 2.5949220000 0.8108290000 C 3.2871550000 2.0771190000 2.0448480000 C 4.5704440000 1.5640650000 1.0879060000 C 5.033760000 2.0800250000 -0.1254040000 C 5.033760000 2.0974990000 -0.9702310000 C 3.740211000 2.599103000 -0.2849010000 C 3.740211000 2.988470000 3.9785630000 H 2.6958480000 1.3616970000 3.7985630000 H 2.4346300000 3.039410000 3.7402510000 C 6.8491960000 1.035740000 3.2985790000	С	1.5535810000	3.3095960000	0.7127270000
H 2.3709810000 4.9548870000 1.8081980000 C 0.3764050000 5.3846690000 1.1514440000 H 0.3562110000 6.3730410000 0.4256990000 C -0.7088970000 4.9194470000 0.4256990000 C -0.6891750000 3.6471350000 -0.1442760000 C -0.6891750000 3.671350000 -0.1442760000 C 3.2871550000 2.0771190000 2.0448440000 C 4.5740440000 1.5640660000 1.057906000 C 5.4620950000 2.0574990000 -0.1250440000 C 5.02176000 2.080026000 -0.1250440000 C 3.7402110000 2.9974990000 -0.9702310000 C 3.740205000 2.115130000 3.2532480000 H 2.6958480000 1.3616970000 3.7408970000 C 6.8491960000 1.0035740000 1.2395790000 H 7.342672000 1.28695000 -402630000 H 7.342672000 1.286950000 -402630000	С	1.5007110000	4.5855310000	1.2804000000
C 0.3764050000 5.3846690000 1.1514440000 H 0.3562110000 6.3730410000 0.425699000 C -0.708897000 4.9194470000 0.425699000 H -1.5821320000 5.5444220000 0.2839050000 C 2.8605310000 2.5949220000 0.8108290000 C 3.8671550000 2.0771190000 2.0448480000 C 4.850720000 1.15640630000 2.158423000 C 5.4620950000 1.5640660000 1.087906000 C 5.0231760000 2.097499000 -0.9702310000 C 3.7402110000 2.5991030000 -0.92849010000 C 3.7402110000 2.99749000 3.78553000 H 2.695484000 1.361679000 3.978563000 H 2.495484000 1.361679000 3.2932480000 H 2.49548000 1.361679000 3.2352480000 H 2.49584000 1.361679000 3.2352480000 C 6.849196000 1.0035740000 1.2395790000	Н	2.3709810000	4.9548870000	1.8081980000
H 0.3562110000 6.3730410000 1.5926870000 C -0.708897000 4.9194470000 0.4256990000 C -0.6891750000 3.6471350000 -0.1442760000 C 2.8605310000 2.5949220000 0.1442760000 C 3.8271550000 2.0771190000 2.0448440000 C 4.5740440000 1.5640630000 2.1584230000 H 4.8907920000 1.1559130000 3.1121440000 C 5.4620950000 2.0974990000 -0.702310000 C 3.7402110000 2.5991030000 3.078630000 C 2.393520000 2.151300000 3.786630000 H 1.356752000 1.3616970000 3.786630000 H 7.321073000 1.357229000 2.188260000 C 3.3504670000 3.135130000 -1.4286750000 H 7.321073000 1.357229000 -2.266330000 C 3.3504670000 3.416979000 -2.26630000 H 4.236803000 3.4169790000 -2.266430000	С	0.3764050000	5.3846690000	1.1514440000
C -0.7088970000 4.9194470000 0.4256990000 H -1.5821320000 5.5444220000 0.2839050000 C -0.6891750000 3.6471350000 -0.1442760000 C 2.8605310000 2.5949220000 0.8108290000 C 3.2871550000 2.0771190000 2.0444480000 C 4.5740440000 1.5640650000 1.087960000 C 5.023176000 2.0800260000 -0.1250440000 C 3.7402110000 2.599103000 -0.2849010000 C 3.7402110000 2.599103000 -0.2849010000 C 3.7402110000 2.997499000 3.978563000 H 2.495848000 1.3616790000 3.278248000 H 2.495848000 1.3616790000 3.240970000 C 6.8491960000 1.0035740000 1.2352480000 H 7.321073000 1.3572290000 2.1582860000 H 7.321073000 1.3572290000 2.1582860000 H 7.321073000 3.2504670000 1.2869350000	Н	0.3562110000	6.3730410000	1.5926870000
H -1.5821320000 5.5444220000 0.2839050000 C -0.6891750000 3.6471350000 0.1442760000 C 2.8605310000 2.594220000 0.810829000 C 3.2871550000 2.0771190000 2.0448480000 C 4.5740440000 1.5640650000 2.158423000 C 5.462095000 1.5640660000 0.0879060000 C 5.0231760000 2.0974990000 -0.9702310000 C 3.7402110000 2.5991030000 -0.2849910000 C 3.7402110000 2.997499000 -0.9702310000 C 3.7402110000 2.98302170000 3.978563000 H 1.3567520000 1.1351300000 3.2532480000 H 2.4346300000 3.0936410000 3.7400970000 C 6.849196000 1.0035740000 1.2385790000 C 3.3504670000 3.1941920000 -1.615780000 H 7.321073000 3.1841920000 -1.615780000 C 3.3504670000 3.1941920000 -1.615780000 <td>С</td> <td>-0.7088970000</td> <td>4.9194470000</td> <td>0.4256990000</td>	С	-0.7088970000	4.9194470000	0.4256990000
C -0.6891750000 3.6471350000 -0.1442760000 C 2.8605310000 2.5949220000 0.810829000 C 3.2871550000 2.0771190000 2.0448480000 C 4.5740440000 1.5640630000 3.1821440000 C 5.462095000 1.5640660000 1.0879060000 C 5.0231760000 2.0800260000 -0.1250440000 H 5.7020590000 2.151300000 3.253248000 C 2.393520000 2.151300000 3.253248000 C 2.393520000 2.151300000 3.253248000 H 2.695848000 1.3616970000 3.978563000 H 2.434630000 3.0936410000 3.740097000 C 6.849196000 1.0035740000 1.238579000 H 7.3210730000 1.357229000 2.158286000 C 3.3504670000 3.194192000 -1.612678000 H 7.735633000 4.112390000 -2.46430000 C -3.8011000 3.288570000 -3.1267350000	н	-1.5821320000	5.5444220000	0.2839050000
C 2.8605310000 2.5949220000 0.8108290000 C 3.2871550000 2.0771190000 2.0448480000 C 4.5740440000 1.5640630000 2.1584230000 H 4.8907920000 1.1569130000 3.1121440000 C 5.4620950000 2.0800260000 -0.2150440000 C 5.702059000 2.0974990000 -0.970231000 C 3.740211000 2.5991030000 -0.2849010000 C 3.740211000 2.599103000 3.732348000 H 2.695848000 1.3616970000 3.978563000 H 2.434630000 3.093641000 3.7400970000 C 6.849196000 1.0035740000 1.239579000 H 7.321073000 1.3567290000 1.286036000 H 7.48472000 1.286935000 0.4002630000 H 7.321073000 3.1941920000 1.286056000 C 3.350467000 3.1941920000 -1.612678000 H 2.73563000 3.1410239000 -2.0264300000	С	-0.6891750000	3.6471350000	-0.1442760000
C 3.2871550000 2.0771190000 2.0448480000 C 4.5740440000 1.5640630000 2.158423000 H 4.890792000 1.1569130000 3.1121440000 C 5.462095000 2.080026000 -0.1250440000 C 5.0231760000 2.0974990000 -0.9702310000 C 3.7402110000 2.5991030000 -0.284901000 C 2.393520000 2.115130000 3.253248000 H 2.695848000 1.3616970000 3.978563000 H 2.434630000 3.0936410000 3.7400970000 C 6.849196000 1.0035740000 1.2395790000 H 7.321073000 1.357229000 2.168260000 H 7.484872000 1.286950000 0.40263000 H 4.236803000 3.141979000 -1.6126780000 H 4.236803000 3.416979000 -2.06430000 H 2.7325480000 2.53661000 -3.1929100000 C -3.021650000 2.7489100000 -3.6217670000	С	2.8605310000	2.5949220000	0.8108290000
C 4.5740440000 1.5640630000 2.1584230000 H 4.8907920000 1.1569130000 3.1121440000 C 5.4620950000 2.0800260000 -0.1250440000 H 5.7020590000 2.0974990000 -0.9702310000 C 3.7402110000 2.599103000 -0.284901000 C 2.3935200000 2.115130000 3.2532480000 H 2.6958480000 1.3616970000 3.9785630000 H 2.4346300000 3.0936410000 3.7402570000 H 7.321073000 1.357229000 2.182860000 H 7.321073000 1.285935000 0.400263000 H 7.321073000 1.28693000 3.12144000 C 3.8504670000 3.1941920000 1.1860560000 H 4.236803000 3.416979000 -2.16430000 H 2.73548000 2.503661000 -2.1929100000 C -3.820467000 3.25847000 -0.620750000 C -1.8615110000 3.2289670000 -0.6207207000	C	3.2871550000	2.0771190000	2.0448480000
H 4.8907920000 1.1569130000 3.1121440000 C 5.4620950000 1.5640660000 1.0879060000 C 5.0231760000 2.080260000 -0.1250440000 H 5.7020590000 2.0974990000 -0.9702310000 C 3.7402110000 2.5991030000 -0.2849010000 C 2.3935200000 2.1151300000 3.253248000 H 2.6958480000 1.9302170000 2.9880470000 H 2.434630000 3.0936410000 3.7400970000 C 6.8491960000 1.035740000 1.285790000 H 7.3210730000 1.2869350000 0.4002630000 H 7.848720000 1.2869350000 0.4002630000 H 4.2368030000 3.1941920000 -1.6126780000 H 2.735530000 4.1120390000 -2.064300000 H 2.7355430000 2.748910000 -2.489300000 C -3.8504670000 3.2289670000 -0.9672707000 C -4.1214810000 2.4092530000 -1.1204750000 </td <td>C</td> <td>4.5740440000</td> <td>1.5640630000</td> <td>2.1584230000</td>	C	4.5740440000	1.5640630000	2.1584230000
C 5.4620950000 1.5640660000 1.0879060000 C 5.0231760000 2.08026000 -0.1250440000 H 5.7020590000 2.0974990000 -0.9702310000 C 3.7402110000 2.5991030000 -0.2849010000 C 2.3935200000 2.115130000 3.2532480000 H 2.6958480000 1.3616970000 3.7475630000 H 2.43630000 3.0936410000 3.740970000 C 6.849196000 1.0035740000 1.2895790000 H 7.3210730000 1.3572290000 2.1582860000 H 7.3210730000 1.2869560000 0.4002630000 H 7.3210730000 3.1941920000 1.6126780000 C 3.3504670000 3.1941920000 -1.6126780000 H 4.2368030000 3.4169790000 -2.064300000 C -1.8615110000 3.2289670000 -0.9672070000 C -1.8615110000 2.409253000 -1.1204750000 C -4.1214810000 2.409253000 -2.5058410000	н	4.8907920000	1.1569130000	3.1121440000
C 5.0231760000 2.080026000 -0.1250440000 H 5.7020590000 2.0974990000 -0.9702310000 C 3.7402110000 2.599130000 -0.284901000 C 2.3935200000 2.115130000 3.2532480000 H 2.6958480000 1.3616970000 3.9785630000 H 2.4346300000 3.0936410000 3.740970000 C 6.8491960000 1.0035740000 1.2895790000 C 6.8491960000 1.0357229000 2.158286000 H 7.43210730000 1.286935000 0.4002630000 H 7.484872000 1.286935000 0.4002630000 C 3.3504670000 3.1941920000 -1.6126780000 C 3.3504670000 3.1941920000 -1.6126780000 H 2.775633000 4.112039000 -1.4898300000 C -3.8021650000 2.748910000 -0.9427070000 C -3.0201650000 2.748910000 -0.342740000 C -4.121481000 2.409253000 -1.1204750000 <	C	5.4620950000	1.5640660000	1.0879060000
H 5.7020590000 2.097499000 -0.9702310000 C 3.7402110000 2.5991030000 -0.2849010000 C 2.3935200000 2.1151300000 3.2532480000 H 2.6958480000 1.3616970000 3.9785630000 H 2.4346300000 3.0936410000 3.7400970000 C 6.8491960000 1.0035740000 1.2395790000 C 6.8491960000 1.0357290000 2.158286000 H 7.3210730000 1.3572290000 2.158260000 H 7.4848720000 1.0882070000 1.286056000 C 3.3504670000 3.1941920000 -1.6126780000 H 4.2368030000 3.4169790000 -2.2064300000 H 2.7325480000 2.5036610000 -2.1929100000 C -3.80201650000 2.748910000 -0.967270000 C -4.1214810000 2.409253000 -1.1204750000 C -4.1214810000 2.409253000 -1.204750000 C -4.1214810000 2.303048000 -6.297980000	C	5.0231760000	2.0800260000	-0.1250440000
C 1.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	H	5,7020590000	2 0974990000	-0.9702310000
C 2.393520000 2.115130000 3.2532480000 H 2.6958480000 1.3616970000 3.9785630000 H 1.3567520000 1.9302170000 2.9880470000 H 2.434630000 3.0936410000 3.7400970000 C 6.8491960000 1.0035740000 1.2395790000 H 7.3210730000 1.3572290000 2.1582860000 H 7.4848720000 1.2869350000 0.4002630000 H 6.8273270000 -0.0882070000 1.286056000 C 3.3504670000 3.1941920000 -1.6126780000 H 4.2368030000 3.4169790000 -2.2064300000 H 2.775533000 4.1120390000 -1.4898300000 C -1.8615110000 3.2289670000 -0.9672070000 C -4.8015110000 2.4092530000 -1.1204750000 C -4.1214810000 2.4092530000 -1.1204750000 C -4.1027340000 3.0235870000 -3.6073660000 C -2.9499440000 3.02358710000 -3.1076360000 </td <td>C</td> <td>3,7402110000</td> <td>2 5991030000</td> <td>-0.2849010000</td>	C	3,7402110000	2 5991030000	-0.2849010000
H 2.6958480000 1.3616970000 3.9785630000 H 1.3567520000 1.9302170000 2.9880470000 H 2.434630000 3.0936410000 3.7400970000 C 6.8491960000 1.0035740000 1.2395790000 C 6.8491960000 1.3572290000 2.1582860000 H 7.3210730000 1.285935000 0.4002630000 H 6.8273270000 -0.0882070000 1.2860560000 C 3.3504670000 3.1941920000 -1.6126780000 H 4.2368030000 3.4169790000 -2.2064300000 H 2.7756330000 4.112039000 -1.4898300000 H 2.7325480000 2.5036610000 -2.1929100000 C -1.8615110000 3.2289670000 -0.9672707000 C -3.0201650000 2.7489100000 -0.3412740000 C -4.1214810000 2.4092530000 -1.1204750000 C -4.1214810000 2.5281990000 -2.5058410000 C -2.9499440000 3.0235870000 -3.1076360000	C	2 3935200000	2,1151300000	3,2532480000
H 1.3567520000 1.9302170000 2.9880470000 H 2.4346300000 3.0936410000 3.7400970000 C 6.8491960000 1.0035740000 1.2395790000 H 7.3210730000 1.3572290000 2.1582860000 H 7.4848720000 1.2869350000 0.4002630000 H 6.8273270000 -0.0882070000 1.2865560000 C 3.3504670000 3.1941920000 -1.6126780000 H 4.2368030000 3.4169790000 -2.2064300000 H 2.7352480000 2.5036610000 -2.1929100000 C -1.8615110000 3.2289670000 -0.9872070000 C -3.0201650000 2.7489100000 -0.3412740000 C -4.1214810000 2.4092530000 -1.1204750000 H -5.0099250000 2.0300480000 -0.6297980000 C -4.1027340000 3.22587000 -3.1076360000 C -4.1027340000 3.235871000 -3.1076360000 C -2.923187000 3.1430810000 -4.18503500	H	2.6958480000	1.3616970000	3,9785630000
H 2.434630000 3.0936410000 3.740097000 C 6.8491960000 1.0035740000 1.2395790000 H 7.3210730000 1.3572290000 2.1582860000 H 7.4848720000 1.286935000 0.4002630000 H 6.8273270000 -0.0882070000 1.2860560000 C 3.3504670000 3.1941920000 -1.6126780000 H 4.2368030000 3.4169790000 -2.2064300000 H 2.7756330000 4.1120390000 -1.4898300000 C -3.0201650000 2.5036610000 -2.1929100000 C -3.0201650000 2.7489100000 -0.3412740000 C -4.121481000 2.4092530000 -1.1204750000 H -5.0099250000 2.0300480000 -0.6297980000 C -4.1027340000 3.235870000 -3.1076360000 C -2.9499440000 3.0235870000 -3.1076360000 C -2.30719620000 2.5910190000 1.1504750000 H -2.2367750000 1.8288210000 1.48408800	Н	1.3567520000	1 9302170000	2,9880470000
C 6.8491960000 1.0035740000 1.239579000 H 7.3210730000 1.3572290000 2.1582860000 H 7.4848720000 1.2869350000 0.4002630000 H 6.8273270000 -0.0882070000 1.286056000 C 3.3504670000 3.1941920000 -1.6126780000 H 4.2368030000 3.4169790000 -2.2064300000 H 2.7755330000 4.1120390000 -1.4898300000 C -1.8615110000 3.2289670000 -0.9672070000 C -1.8615110000 2.4092530000 -1.1204750000 C -4.1214810000 2.4092530000 -1.1204750000 C -4.1214810000 2.0300480000 -0.6297980000 C -4.1214810000 3.0235870000 -3.107636000 H -2.9231870000 3.1430810000 -4.1850350000 C -3.0719620000 2.5910190000 1.1504750000 H -2.3677050000 1.828210000 1.4840880000 C -3.0719620000 2.5910190000 1.5047550	н	2,4346300000	3 0936410000	3,7400970000
H 7.3210730000 1.3572290000 2.1582860000 H 7.4848720000 1.286935000 0.4002630000 H 6.8273270000 -0.0882070000 1.2860560000 C 3.3504670000 3.1941920000 -1.6126780000 H 4.2368030000 3.4169790000 -2.2064300000 H 2.7756330000 4.1120390000 -1.4898300000 C -3.3201650000 2.5036610000 -2.1929100000 C -3.0201650000 2.7489100000 -0.3412740000 C -4.1214810000 2.4092530000 -1.1204750000 H -5.0099250000 2.0300480000 -0.6297980000 C -4.1027340000 2.5281990000 -2.5058410000 C -2.9499440000 3.0235870000 -3.1076360000 C -2.9499440000 3.0235870000 -3.1076360000 C -2.943974000 2.888210000 1.484088000 H -2.8677050000 1.8288210000 1.484088000 C -3.0719620000 2.872200000 1.4840880	C C	6 8491960000	1 0035740000	1 2395790000
H 7.4848720000 1.286935000 0.400263000 H 6.8273270000 -0.0882070000 1.2860560000 C 3.3504670000 3.1941920000 -1.6126780000 H 4.2368030000 3.4169790000 -2.2064300000 H 2.7756330000 4.1120390000 -1.4898300000 C -1.8615110000 3.2289670000 -0.9672070000 C -3.0201650000 2.7489100000 -0.3412740000 C -4.1214810000 2.4092530000 -1.1204750000 H -5.0099250000 2.0300480000 -0.6297980000 C -4.1027340000 2.5281990000 -2.5058410000 C -2.949944000 3.0235870000 -3.1076360000 C -2.94397000 3.1430810000 -4.1850350000 C -2.94397000 2.5910190000 1.1504750000 H -2.9231870000 3.875130000 -2.3631350000 C -3.0719620000 2.5910190000 1.4840880000 H -2.8015280000 3.5141920000 1.4840880	H	7.3210730000	1.3572290000	2.1582860000
H 6.827327000 -0.0882070000 1.286056000 C 3.3504670000 3.1941920000 -1.6126780000 H 4.2368030000 3.4169790000 -2.2064300000 H 2.7756330000 4.1120390000 -1.4898300000 H 2.7325480000 2.5036610000 -2.1929100000 C -1.8615110000 3.2289670000 -0.9672070000 C -3.0201650000 2.7489100000 -0.3412740000 C -4.1214810000 2.4092530000 -1.1204750000 C -4.1027340000 2.5281990000 -2.5058410000 C -4.1027340000 3.0235870000 -3.1076360000 C -2.9499440000 3.0235870000 -3.1076360000 C -3.0719620000 2.5910190000 1.1504750000 H -2.9231870000 3.8375130000 -2.3631350000 C -3.0719620000 2.872200000 1.4752570000 H -2.8015280000 3.5141920000 1.6640620000 C -5.827890000 2.1030240000 -3.33	Н	7 4848720000	1,2869350000	0.4002630000
C 3.504570000 3.1941920000 -1.6126780000 H 4.236803000 3.416979000 -2.206430000 H 2.775633000 4.112039000 -1.489830000 H 2.732548000 2.503661000 -2.192910000 C -1.861511000 3.228967000 -0.967207000 C -3.0201650000 2.748910000 -0.3412740000 C -3.0201650000 2.4092530000 -0.629798000 C -4.121481000 2.4092530000 -0.629798000 C -4.1027340000 2.5281990000 -2.5058410000 C -2.9499440000 3.0235870000 -3.1076360000 C -2.9499440000 3.023587000 -3.631350000 C -3.0719620000 2.5910190000 1.1504750000 H -2.367705000 1.8288210000 1.4840880000 H -2.8015280000 3.5141920000 1.6640620000 C -5.153458000 1.0703440000 -3.3351190000 H -5.153458000 2.1030240000 -3.3351190000	Н	6.8273270000	-0.0882070000	1.2860560000
H 4.2368030000 3.4169790000 -2.2064300000 H 2.7756330000 4.1120390000 -2.2064300000 H 2.7325480000 2.5036610000 -2.1929100000 C -1.8615110000 3.2289670000 -0.9672070000 C -3.0201650000 2.7489100000 -0.3412740000 C -4.1214810000 2.4092530000 -1.1204750000 H -5.0099250000 2.0300480000 -0.6297980000 C -4.1027340000 2.5281990000 -2.5058410000 C -2.9231870000 3.1430810000 -4.1850350000 C -2.9231870000 3.3875130000 -2.3631350000 C -3.0719620000 2.5910190000 1.504750000 H -2.8677050000 1.8288210000 1.484088000 H -4.0628680000 2.2872200000 1.6640620000 C -5.1534580000 3.0345000 -3.3551190000 H -5.2827890000 2.103046000 -3.6973990000 H -5.4078950000 2.7438300000 -3.69	C	3.3504670000	3,1941920000	-1.6126780000
H 2.7756330000 4.1120390000 -1.489830000 H 2.7325480000 2.5036610000 -2.1929100000 C -1.8615110000 3.2289670000 -0.9672070000 C -3.0201650000 2.7489100000 -0.3412740000 C -4.1214810000 2.4092530000 -1.1204750000 H -5.0099250000 2.0300480000 -0.6297980000 C -4.1027340000 2.5281990000 -2.5058410000 C -2.9231870000 3.1430810000 -4.1850350000 H -2.9231870000 3.3875130000 -2.3631350000 C -3.0719620000 2.5910190000 1.484088000 H -2.3677050000 1.8288210000 1.484088000 H -2.8615280000 3.5141920000 1.6640620000 C -5.1534580000 2.103044000 -3.6973990000 H -6.2662860000 2.1309630000 -2.755770000 H -5.1534580000 3.0521160000 -3.0553380000 H -5.4078950000 2.7438300000 -2.	H	4 2368030000	3 4169790000	-2.2064300000
H 2.7325480000 2.5036610000 -2.1929100000 C -1.8615110000 3.2289670000 -0.9672070000 C -3.0201650000 2.7489100000 -0.3412740000 C -4.1214810000 2.4092530000 -1.1204750000 H -5.0099250000 2.0300480000 -0.6297980000 C -4.1027340000 2.5281990000 -2.5058410000 C -2.9499440000 3.0235870000 -3.1076360000 H -2.9231870000 3.1430810000 -4.1850350000 C -1.8317300000 3.3875130000 -2.3631350000 C -3.0719620000 2.5910190000 1.1504750000 H -2.3677050000 1.8288210000 1.4840880000 H -2.8015280000 3.5141920000 1.6640620000 C -5.2827890000 2.1030240000 -3.3351190000 H -5.4078950000 2.7438300000 -4.2091620000 H -5.4078950000 2.1309630000 -2.7557700000 C -0.6205840000 3.9521160000 -3.0553380000 H -0.2212090000 3.2562190000	Н	2,7756330000	4.1120390000	-1.4898300000
C -1.8615110000 3.2289670000 -0.9672070000 C -3.0201650000 2.7489100000 -0.3412740000 C -4.1214810000 2.4092530000 -1.1204750000 H -5.0099250000 2.0300480000 -0.6297980000 C -4.1027340000 2.5281990000 -2.5058410000 C -2.9499440000 3.0235870000 -3.1076360000 H -2.9231870000 3.1430810000 -4.1850350000 C -1.8317300000 3.3875130000 -2.3631350000 C -3.0719620000 2.5910190000 1.1504750000 H -2.3677050000 1.8288210000 1.4840880000 H -2.8015280000 2.2872200000 1.4752570000 H -2.8015280000 3.5141920000 1.6640620000 C -5.1534580000 1.0790340000 -3.6973990000 H -5.4078950000 2.7438300000 -4.2091620000 H -6.2062860000 2.1309630000 -2.7557700000 H -6.2062860000 3.9521160000 -3.0553380000 H -0.2856190000 3.2562190000	н	2 7325480000	2 5036610000	-2 1929100000
C -3.0201650000 2.748910000 -0.3412740000 C -4.1214810000 2.4092530000 -1.1204750000 H -5.0099250000 2.0300480000 -0.6297980000 C -4.1027340000 2.5281990000 -2.5058410000 C -2.9499440000 3.0235870000 -3.1076360000 H -2.9231870000 3.1430810000 -4.1850350000 C -1.8317300000 3.3875130000 -2.3631350000 C -3.0719620000 2.5910190000 1.4840880000 H -2.3677050000 1.8288210000 1.4840880000 H -4.0628680000 2.2872200000 1.4752570000 H -2.8015280000 3.5141920000 1.6640620000 C -5.2827890000 2.1030240000 -3.3351190000 H -5.4078950000 2.7438300000 -4.2091620000 H -5.4078950000 2.1309630000 -2.7557700000 H -6.2062860000 3.9521160000 -3.0553380000 H -0.6205840000 3.9521160000 <t< td=""><td>C C</td><td>-1 8615110000</td><td>3 2289670000</td><td>-0.9672070000</td></t<>	C C	-1 8615110000	3 2289670000	-0.9672070000
C -4.1214810000 2.4092530000 -1.1204750000 H -5.0099250000 2.0300480000 -0.6297980000 C -4.1027340000 2.5281990000 -2.5058410000 C -2.9499440000 3.0235870000 -3.1076360000 H -2.9231870000 3.1430810000 -4.1850350000 C -1.8317300000 3.3875130000 -2.3631350000 C -3.0719620000 2.5910190000 1.1504750000 H -2.3677050000 1.8288210000 1.4840880000 H -2.8015280000 3.5141920000 1.6640620000 C -5.1534580000 2.1030240000 -3.3351190000 H -5.4078950000 2.743830000 -2.755770000 H -6.2062860000 2.1309630000 -2.755770000 H -6.2062860000 3.9521160000 -3.053380000 H 0.2212090000 3.2562190000 -3.0183890000 H -0.2856190000 4.8757660000 -2.5814560000 H -0.8363750000 4.1578850000 -4.1032680000	C C	-3 0201650000	2 7489100000	-0 3412740000
C1.11-0100002.1405100001.11044950000H-5.00992500002.0300480000-0.6297980000C-4.10273400002.5281990000-2.5058410000C-2.94994400003.0235870000-3.1076360000H-2.92318700003.1430810000-4.1850350000C-1.83173000003.3875130000-2.3631350000C-3.07196200002.59101900001.1504750000H-2.36770500001.82882100001.4840880000H-4.06286800002.28722000001.4752570000H-2.80152800003.51419200001.6640620000C-5.15345800002.1030240000-3.6973990000H-5.15345800002.7438300000-4.2091620000H-6.20628600002.1309630000-2.7557700000H0.22120900003.2562190000-3.0183890000H-0.28561900004.8757660000-2.5814560000H-0.83637500004.1578850000-4.1032680000	C C	-4 1214810000	2 4092530000	-1 1204750000
Initial1.000000000000000000000000000000000000	н	-5 0099250000	2.0300480000	-0 6297980000
C-2.94994400003.0235870000-3.1076360000H-2.92318700003.1430810000-4.1850350000C-1.83173000003.3875130000-2.3631350000C-3.07196200002.59101900001.1504750000H-2.36770500001.82882100001.4840880000H-2.36770500001.82882100001.4752570000H-2.80152800003.51419200001.6640620000C-5.28278900002.1030240000-3.3351190000H-5.15345800001.0790340000-3.6973990000H-5.40789500002.7438300000-4.2091620000C-0.62058400003.9521160000-3.0553380000H0.22120900003.2562190000-3.0183890000H-0.28561900004.8757660000-2.5814560000H-0.28561900004.8757660000-2.5814560000	C C	-4 1027340000	2 5281990000	-2 5058410000
C2.04304400003.02306/00003.1070500000H-2.92318700003.1430810000-4.1850350000C-1.83173000003.3875130000-2.3631350000C-3.07196200002.59101900001.1504750000H-2.36770500001.82882100001.4840880000H-4.06286800002.28722000001.4752570000H-2.80152800003.51419200001.6640620000C-5.28278900002.1030240000-3.3351190000H-5.15345800001.0790340000-3.6973990000H-5.40789500002.7438300000-4.2091620000H-6.20628600002.1309630000-2.7557700000C-0.62058400003.9521160000-3.0553380000H0.22120900003.2562190000-3.0183890000H-0.28561900004.8757660000-2.5814560000H-0.83637500004.1578850000-4.1032680000	C C	-2 9499440000	3 0235870000	-3 1076360000
In2.52510700003.14500100004.1650530000C-1.83173000003.3875130000-2.3631350000C-3.07196200002.59101900001.1504750000H-2.36770500001.82882100001.4840880000H-4.06286800002.28722000001.4752570000H-2.80152800003.51419200001.6640620000C-5.28278900002.1030240000-3.3351190000H-5.15345800001.0790340000-3.6973990000H-5.40789500002.7438300000-2.7557700000H-6.20628600002.1309630000-2.7557700000C-0.62058400003.9521160000-3.0553380000H0.22120900003.2562190000-3.0183890000H-0.28561900004.8757660000-2.5814560000H-0.83637500004.1578850000-4.1032680000	н	-2 9231870000	3 1/30810000	-4 1850350000
C-3.07196200002.59101900001.1504750000H-2.36770500001.82882100001.4840880000H-4.06286800002.28722000001.4752570000H-2.80152800003.51419200001.6640620000C-5.28278900002.1030240000-3.3351190000H-5.15345800001.0790340000-3.6973990000H-5.40789500002.7438300000-4.2091620000H-6.20628600002.1309630000-2.7557700000C-0.62058400003.9521160000-3.0183890000H0.22120900003.2562190000-2.5814560000H-0.28561900004.8757660000-2.5814560000H-0.83637500004.1578850000-4.1032680000	C C	-1 8317300000	3 3875130000	-2 3631350000
C1.13047300001.1304730000H-2.36770500001.82882100001.4840880000H-4.06286800002.28722000001.4752570000H-2.80152800003.51419200001.6640620000C-5.28278900002.1030240000-3.3351190000H-5.15345800001.0790340000-3.6973990000H-5.40789500002.7438300000-4.2091620000H-6.20628600002.1309630000-2.7557700000C-0.62058400003.9521160000-3.0153380000H0.22120900003.2562190000-3.0183890000H-0.28561900004.8757660000-2.5814560000H-0.83637500004.1578850000-4.1032680000	C C	-3.0719620000	2 5910190000	1 1504750000
H-4.06286800002.28722000001.4752570000H-2.80152800003.51419200001.6640620000C-5.28278900002.1030240000-3.3351190000H-5.15345800001.0790340000-3.6973990000H-5.40789500002.7438300000-4.2091620000H-6.20628600002.1309630000-2.7557700000C-0.62058400003.9521160000-3.0553380000H0.22120900003.2562190000-3.0183890000H-0.28561900004.8757660000-2.5814560000H-0.83637500004.1578850000-4.1032680000	н	-2 3677050000	1 8288210000	1 4840880000
H-2.80152800003.51419200001.4732370000H-2.80152800003.5141920000-3.3351190000C-5.28278900002.1030240000-3.3351190000H-5.15345800001.0790340000-3.6973990000H-5.40789500002.7438300000-4.2091620000H-6.20628600002.1309630000-2.7557700000C-0.62058400003.9521160000-3.0553380000H0.22120900003.2562190000-3.0183890000H-0.28561900004.8757660000-2.5814560000H-0.83637500004.1578850000-4.1032680000	н	-4.0628680000	2 2872200000	1 4752570000
Initial1.00132000003.31413200001.004002000C-5.28278900002.1030240000-3.3351190000H-5.15345800001.0790340000-3.6973990000H-5.40789500002.7438300000-4.2091620000H-6.20628600002.1309630000-2.7557700000C-0.62058400003.9521160000-3.0553380000H0.22120900003.2562190000-3.0183890000H-0.28561900004.8757660000-2.5814560000H-0.83637500004.1578850000-4.1032680000	н	-2 8015280000	3 5141920000	1 6640620000
H-5.15345800002.1030240000-3.5351190000H-5.40789500001.0790340000-3.6973990000H-5.40789500002.7438300000-4.2091620000H-6.20628600002.1309630000-2.7557700000C-0.62058400003.9521160000-3.0553380000H0.22120900003.2562190000-3.0183890000H-0.28561900004.8757660000-2.5814560000H-0.83637500004.1578850000-4.1032680000	n C	-5 2827890000	2 1030240000	-3 3351190000
H-5.40789500002.7438300000-4.2091620000H-6.20628600002.1309630000-2.7557700000C-0.62058400003.9521160000-3.0553380000H0.22120900003.2562190000-3.0183890000H-0.28561900004.8757660000-2.5814560000H-0.83637500004.1578850000-4.1032680000	ч	-5.1534580000	1 0790340000	-3.6973990000
H-6.20628600002.1436360000-4.2051020000H-6.20628600002.1309630000-2.7557700000C-0.62058400003.9521160000-3.0553380000H0.22120900003.2562190000-3.0183890000H-0.28561900004.8757660000-2.5814560000H-0.83637500004.1578850000-4.1032680000	н	-5.1078950000	2 7/38300000	-4 2091620000
C -0.6205840000 3.9521160000 -3.0553380000 H 0.2212090000 3.2562190000 -3.0183890000 H -0.2856190000 4.8757660000 -2.5814560000 H -0.8363750000 4.1578850000 -4.1032680000	н	-6 2062860000	2.7-30300000	-2 755770000
H 0.2212090000 3.2562190000 -3.0183890000 H -0.2856190000 4.8757660000 -2.5814560000 H -0.8363750000 4.1578850000 -4.1032680000	с. С	-0.6205840000	3,9521160000	-3.0553380000
H-0.28561900004.8757660000-2.5814560000H-0.83637500004.1578850000-4.1032680000	- H	0.2212090000	3.2562190000	-3.0183890000
H -0.8363750000 4.1578850000 -4.1032680000	н	-0.2856190000	4.8757660000	-2.5814560000
	н	-0.8363750000	4.1578850000	-4.1032680000

Table S9. Cartesian coordinates (x,y,z) for the optimized geometry of L(Cl)GaSb*N* (2-*N*).

Sb	-1.0627660000	0.5241190000	0.5308410000
Ga	1.2942610000	0.2388360000	-0.6491650000
Cl	1.6382660000	0.2765910000	-2.8646450000
Si	-2.1991800000	-2.0430250000	-1.5119160000
Ν	2.7749840000	-0.9450670000	-0.0548530000
Ν	2.1761480000	1.9027610000	-0.0198130000
Ν	-2.4385080000	-0.7486960000	-0.3460670000
С	4.0133490000	-0.4671140000	-0.0005380000
С	4.3451820000	0.8907030000	-0.1277710000
н	5.4015980000	1.1077540000	-0.1552920000
C	3.5002330000	2.0008740000	-0.0598680000
C	5.1656980000	-1.4149720000	0.2128900000
H	6.0244380000	-0.8863200000	0.6191450000
н	5 4582020000	-1 8570470000	-0 7404710000
н	4 8967200000	-2 2324090000	0.8778090000
C C	4 1385520000	3 3645940000	-0.04/3180000
	4.1385520000	3.7855140000	-1.0515560000
11 Ll	4.0818210000	2 208270000	0.2446240000
	3.1832390000	3.3083700000	0.2440340000
	3.0137840000	4.0508520000	0.0175840000
	2.5133300000	-2.3350180000	0.1913830000
	2.0041240000	-2.7008440000	1.4520340000
C	1.7464170000	-4.0458840000	1.6981/30000
H	1.3579840000	-4.3473430000	2.6604350000
C	1.9719420000	-5.0075280000	0.7258020000
Н	1.7636910000	-6.0491070000	0.9340170000
C	2.4443770000	-4.6279640000	-0.5170970000
Н	2.5942520000	-5.3794690000	-1.2807610000
C	2.7171100000	-3.2934880000	-0.8157520000
C	1.7617980000	-1.6628590000	2.5322180000
Н	1.5159600000	-0.7276970000	2.0293310000
C	3.0290150000	-1.4140150000	3.3601990000
Н	3.8479420000	-1.0498140000	2.7407970000
Н	3.3561920000	-2.3350480000	3.8474980000
Н	2.8403860000	-0.6693610000	4.1356190000
С	0.5756730000	-2.0038070000	3.4339840000
н	0.3406390000	-1.1568700000	4.0778390000
н	0.7849720000	-2.8576390000	4.0809800000
н	-0.3115760000	-2.2313200000	2.8438970000
С	3.1717310000	-2.9376070000	-2.2195080000
н	3.4032450000	-1.8746730000	-2.2476720000
C	2 0401810000	-3.1777500000	-3,2279890000
H	1 1505890000	-2 6108120000	-2 9659180000
н	1 7751250000	-4 2365310000	-3 2700630000
н	2 3508290000	-2 8626740000	-4 2254170000
с С	4 4258090000	-2 71/5190000	-2 6/0610000
	4.4238030000	2 252250000	2.0400130000
	4.7850850000	4 780700000	2 745226000
	4.2169220000	-4.7807990000	-2.7452500000
п С	J.2552500000	-3.0036340000	-1.91/2930000
		2.33022/0000	0.4031010000
	1.0945590000	3.1404890000	1./818/10000
	0.2374690000	4.1585420000	2.1906430000
Н	0.0241190000	4.2851/30000	3.2429540000
C	-0.363000000	5.0037550000	1.2704010000
Н	-1.0362990000	5.7813480000	1.6074070000

С	-0.1052710000	4.8439810000	-0.0799850000
Н	-0.5829110000	5.5005820000	-0.7952320000
С	0.7548910000	3.8481120000	-0.5396580000
С	1.7311190000	2.2215200000	2.8120190000
н	2.0444570000	1.3173110000	2.2917700000
С	0.7581320000	1.8054330000	3.9185000000
н	0.4760810000	2.6495020000	4.5495750000
н	1.2271090000	1.0628530000	4.5653550000
н	-0.1534100000	1.3721350000	3.5061340000
С	2.9904120000	2.8502380000	3.4243870000
H	3.7437570000	3.0650670000	2.6683310000
н	3.4350860000	2.1734940000	4.1568870000
Н	2.7450870000	3.7860630000	3.9313900000
C	1.0028800000	3 7063140000	-2.0278970000
с Н	1 7296220000	2 9109940000	-2 1758380000
C C	1 5892980000	4 9883100000	-2 6309750000
н	0.8826800000	5 8185940000	-2 5733020000
н н	1 8325820000	4 8212220000	-2.5755020000
п	2 400070000	4.8312230000	-3.0634020000
	2.4999790000	3.2924550000	-2.1122140000
	-0.2773070000	3.2921410000	-2.7626090000
н	-1.03/5/20000	4.0730580000	-2.6968/20000
н	-0.6955550000	2.3797520000	-2.3382580000
H	-0.0661230000	3.1035720000	-3.8159/40000
C	-3.8383570000	-2.9189530000	-1./630650000
Н	-4.60981/0000	-2.2382400000	-2.1249900000
Н	-4.2078070000	-3.3762200000	-0.8455340000
H	-3.7119540000	-3.7102630000	-2.5067260000
C	-1.6388220000	-1.3790310000	-3.1688400000
Н	-2.4321690000	-0.7920930000	-3.6351460000
Н	-1.4007010000	-2.2070180000	-3.8420910000
Н	-0.7524720000	-0.7499950000	-3.0977520000
С	-0.9528570000	-3.2567640000	-0.8269470000
Н	-0.0122080000	-2.7784250000	-0.5594100000
Н	-0.7243670000	-4.0387020000	-1.5536290000
Н	-1.3399650000	-3.7381260000	0.0730460000
С	-3.7690200000	-0.4459400000	0.0929100000
С	-4.2967630000	-1.0849660000	1.2338920000
С	-5.6021510000	-0.7945170000	1.6230600000
Н	-6.0166940000	-1.2826360000	2.4960180000
С	-6.3788430000	0.1107220000	0.9178030000
н	-7.3928820000	0.3208380000	1.2333430000
С	-5.8445340000	0.7528750000	-0.1874120000
н	-6.4481680000	1.4703630000	-0.7288300000
С	-4.5437920000	0.4958220000	-0.6145620000
С	-3.4697910000	-2.0451620000	2.0698240000
н	-2.5279650000	-2.2032710000	1.5472490000
С	-4.1404380000	-3.4123320000	2.2390900000
н	-5.0746060000	-3,3354850000	2,7986490000
н	-3.4824500000	-4.0907450000	2,7865290000
Н	-4.3680140000	-3.8667870000	1,2746330000
C	-3 1446710000	-1.4285910000	3 4369940000
с Н	-2 6058750000	-0 4870290000	3 3222240000
н	-2 5254670000	-2 105510000	<u>1</u> 028001000
н	-/ 05761/0000	-1 2257200000	4.0205510000
	7.0070140000	1.2237230000	4 .0000220000

С	-3.9958690000	1.2440650000	-1.8159590000
Н	-2.9864160000	0.8812960000	-1.9955880000
С	-4.8145510000	0.9716370000	-3.0825620000
Н	-5.8355970000	1.3464950000	-2.9871640000
Н	-4.8722600000	-0.0970270000	-3.2936160000
Н	-4.3576240000	1.4635160000	-3.9438850000
С	-3.8955760000	2.7485160000	-1.5361410000
Н	-4.8766400000	3.1794870000	-1.3259060000
Н	-3.4762720000	3.2685970000	-2.3994720000
н	-3.2505080000	2.9430290000	-0.6780100000

Table S10. Cartesian coordinates (x,y,z) for the optimized geometry of $[2-B]^-$.

Sb	-0.6784740000	0.3515380000	-0.8808920000
В	-2.2956150000	-0.5788530000	0.2929730000
С	3.5322020000	2.1610310000	1.1021650000
N	2.2314200000	2.0029290000	0.8837690000
Ga	1.4719690000	0.1536280000	0.4577060000
N	-3.6620420000	-0.1737980000	-0.0151520000
С	4.3617930000	0.1723530000	-0.1993500000
N	3.1979410000	-0.3420370000	-0.5526670000
С	4.5077420000	1.2542130000	0.6832520000
Н	5.5247000000	1.5027070000	0.9482380000
Cl	2.0179650000	-0.8905380000	2.4228640000
N	-2.4935310000	-1.6784360000	1.2248390000
С	5.6503230000	-0.3898060000	-0.7560860000
Н	5.5029810000	-0.8604780000	-1.7246060000
Н	6.0423370000	-1.1485070000	-0.0767050000
Н	6.3973960000	0.3967940000	-0.8465650000
С	1.4011200000	3.1611330000	0.9742790000
С	0.5520740000	3.3586290000	2.0775100000
С	-0.0982470000	4.5839170000	2.1986850000
Н	-0.7343280000	4.7628640000	3.0544500000
С	1.4601360000	4.1136780000	-0.0591650000
С	0.7801960000	5.3189250000	0.0990350000
Н	0.8254780000	6.0616210000	-0.6878410000
С	0.0325130000	5.5722100000	1.2357090000
Н	-0.4860020000	6.5161350000	1.3504600000
С	0.3327710000	2.2734760000	3.1140060000
Н	0.5087580000	1.3169990000	2.6273280000
С	2.1647210000	3.8297690000	-1.3748570000
Н	2.6231280000	2.8457290000	-1.3020600000
С	-1.1095610000	2.2413630000	3.6235410000
Н	-1.8113200000	2.1785270000	2.7921550000
Н	-1.3587800000	3.1212060000	4.2215180000
Н	-1.2559460000	1.3671770000	4.2557740000
С	1.3282910000	2.3669890000	4.2751240000
Н	1.1307460000	1.5802020000	5.0051960000
Н	1.2510250000	3.3350530000	4.7785950000
Н	2.3514980000	2.2360330000	3.9258080000
		~	

С	1.1335400000	3.777790000	-2.5098700000
Н	1.6185660000	3.5224900000	-3.4539770000
Н	0.6433780000	4.7457270000	-2.6374870000
Н	0.3648200000	3.0333300000	-2.2985700000
С	3.2742130000	4.8360260000	-1.6985450000
н	3.7568650000	4.5740190000	-2.6429320000
Н	4.0430330000	4.8537360000	-0.9254730000
Н	2.8754570000	5.8483170000	-1.7981790000
С	3.1210340000	-1.3974830000	-1.5128060000
С	3.4336620000	-2.7196940000	-1.1522680000
С	3.3011470000	-3.7199560000	-2.1150560000
н	3.5265610000	-4.7436440000	-1.8450540000
С	2.8657770000	-3.4333310000	-3.3955260000
н	2.7542100000	-4.2265600000	-4.1245150000
C	2,5537140000	-2.1258590000	-3.7360840000
н	2 2006910000	-1 9095650000	-4 7341340000
C C	2 6717610000	-1 0917530000	-2 8127860000
C C	3 8732860000	-3 1083970000	0.2474080000
	2 0040270000	2 2008460000	0.2474080000
	2,2762520000	-2.2008480000	0.0540770000
	2.3762530000	0.3405040000	-3.21/9490000
H C	1.9656640000	0.8432120000	-2.3435000000
	5.2061820000	-3.8684580000	0.2480690000
н	5.1047430000	-4.8481550000	-0.2244050000
H	5.5431140000	-4.0318270000	1.2/43580000
H	5.9874510000	-3.3260850000	-0.2863990000
C	2.7873220000	-3.9346380000	0.9390410000
Н	2.6174970000	-4.8779880000	0.4139930000
Н	1.8490770000	-3.3910710000	0.9764420000
Н	3.0730120000	-4.1595100000	1.9684540000
С	-4.5605510000	-1.0024490000	0.6558340000
Н	-5.6265410000	-0.8860410000	0.5554770000
С	3.6681290000	1.0719520000	-3.6102080000
Н	4.1512320000	0.5729430000	-4.4543550000
Н	4.3780840000	1.1047720000	-2.7846120000
Н	3.4503770000	2.1009010000	-3.9037430000
С	1.3315260000	0.4537940000	-4.3269020000
Н	1.7060330000	0.0760350000	-5.2818320000
Н	1.0595580000	1.4993510000	-4.4719360000
Н	0.4265190000	-0.0896100000	-4.0565730000
С	-3.8694100000	-1.8909430000	1.3936470000
Н	-4.2414760000	-2.6753570000	2.0287190000
С	-1.6009280000	-2.6838180000	1.6956680000
С	-5.6047630000	-2.0044100000	-2.9756490000
Н	-5.9895630000	-1.5919800000	-3.9116650000
Н	-6.3614480000	-1.8485090000	-2.2043030000
н	-5.4748810000	-3.0805980000	-3.1124320000
С	-3.1874880000	-1.6120310000	-3.6272060000
н	-3.0556030000	-2.6861560000	-3.7802900000
н	-2.2352120000	-1.1944810000	-3.2968720000
Н	-3.4479380000	-1.1629690000	-4.5891130000
C	-4.2754400000	-1.3545280000	-2.5779950000
- H	-3 9501610000	-1.8287830000	-1 6555420000
 C	-4 8778820000	2 5412550000	1 518760000
ч	-5 727207000	2.3713330000	1 1070260000
	5.7575570000	5.1305300000	1.1373300000

Н	-4.5525550000	2.9120840000	2.4942070000
Н	-5.2034000000	1.5088560000	1.6429620000
С	-3.2075930000	4.0747320000	0.4170340000
Н	-2.3776020000	4.1447910000	-0.2862420000
Н	-2.8357560000	4.3860720000	1.3930700000
Н	-3.9839830000	4.7850800000	0.1196270000
С	-3.7347830000	2.6451880000	0.5001810000
н	-2.9103410000	2.0242590000	0.8527240000
С	-4.4292980000	0.1301970000	-2.3035360000
С	-4.8734450000	0.9823670000	-3.3142590000
н	-5.1350670000	0.5704370000	-4.2812950000
С	-4.9606910000	2.3481310000	-3.1051820000
н	-5.3001330000	2.9991210000	-3.9020940000
С	-4.5912700000	2.8869840000	-1.8796370000
н	-4.6365250000	3.9577220000	-1.7373420000
С	-4.1476110000	2.0732100000	-0.8416460000
С	-4.0914600000	0.6867500000	-1.0610450000
С	-1.2398640000	-2.7174330000	3.0521540000
С	-0.1188860000	-4.8251580000	2.6601630000
н	0.4612190000	-5.6593460000	3.0357130000
С	-0.4969660000	-3.8022520000	3.5134660000
H	-0.2037840000	-3.8437050000	4.5537920000
С	-0.4565900000	-4.7622690000	1.3181660000
н	-0.1365590000	-5.5512040000	0.6499150000
С	-1.1890630000	-3.6938160000	0.8084480000
С	-1.6729950000	-1.6240100000	4.0120520000
н	-1.9229980000	-0.7529920000	3.4056070000
С	-1.5638260000	-3.6711360000	-0.6616750000
н	-1.9562960000	-2.6821310000	-0.8827710000
С	-2.6681200000	-4.6917690000	-0.9615110000
н	-2.9678200000	-4.6314810000	-2.0108600000
Н	-3.5492920000	-4.5031420000	-0.3456530000
Н	-2.3286000000	-5.7124170000	-0.7648230000
С	-0.3503370000	-3.8589000000	-1.5731550000
н	0.1340580000	-4.8271090000	-1.4264360000
н	0.3826480000	-3.0732270000	-1.3969910000
н	-0.6548370000	-3.7924950000	-2.6197180000
С	-0.5662270000	-1.2204070000	4.9905470000
н	-0.3259620000	-2.0319240000	5.6814770000
н	-0.8962860000	-0.3735070000	5.5964670000
Н	0.3426690000	-0.9410810000	4.4613300000
С	-2.9316540000	-2.0315490000	4.7925120000
н	-3.7653460000	-2.2507110000	4.1276380000
н	-3.2402950000	-1.2266760000	5.4648370000
н	-2.7345710000	-2.9210460000	5.3969820000
С	4.0336330000	3.4125650000	1.7881760000
н	5.0319890000	3.2436050000	2.1886810000
н	3.3665620000	3.7132830000	2.5936530000
н	4.0831560000	4.2488360000	1.0910880000

6. References

- [1] N. J. Hardman, B. E. Eichler, P. P. Power, *Chem. Commun.* **2000**, 1991–1992.
- [2] H. Saleske, Ph.D. Dissertation, University of Würzburg, 1983.
- Y. Segawa, M. Yamashita, K.Nozaki, *Science* 2006, *314*, 113–115; Y. Segawa, Y. Suzuki, M.
 Yamashita, K.Nozaki, *J. Am. Chem. Soc.* 2008, *130*, 16069–16079.
- [4] J. E. Borger, A. W. Ehlers, M. Lutz, J. C. Slootweg, K. Lammertsma, *Angew. Chem.* 2014, *126*, 13050–13053; *Angew. Chem. Int. Ed.* 2014, *53*, 12836–12839.
- [5] A. V. Protchenko, K. H. Birjkumar, D. Dange, A. D. Schwarz, D. Vidovic, C. Jones, N. Kaltsoyannis, P. Mountford, S. Aldridge, J. Am. Chem. Soc. 2012, 134, 6500–6503.
- [6] S. V. Rosokha, J. K. Kochi, J. Org. Chem. 2006, 71, 9357–9365.
- [7] D. F. Evans, J. Chem. Soc. 1959, 2003–2005.
- [8] G. J. P. Britovsek, V. C. Gibson, S. K. Spitzmesser, K. P. Tellmann, A. J. P. White, D. J. Williams, J. Chem. Soc., Dalton Trans. 2002, 1159–1171.
- [9] E. Reijerse, F. Lendzian, R. Isaacson, W. Lubitz, J. Magn. Reson. 2012, 214, 237–243.
- [10] S. Stoll, A. Schweiger, J. Magn. Reson. 2006, 178, 42-55.
- [11] S. Stoll, R. D. Britt, Phys. Chem. Chem. Phys. 2009, 11, 6614–6625.
- [12] J. Weil, J. Bolton In *Electron Paramagnetic Resonance: Elementary Theory and Practical Applications*, 2nd Ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2007.
- [13] C. A. Hutchison Jr., D. B. McKay, J. Chem. Phys. 1977, 66, 3311–3330.
- [14] G. E. Cutsail III, B. Stein, D. Subedi, J. Smith, M. Kirk, B. Hoffman, J. Am. Chem. Soc. 2014, 136, 12323–12336.
- [15] J. Anderson, G. E. Cutsail III, J. Rittle, B. Connor, W. Gunderson, L. Zhang, B. Hoffman, J. Peters, J. Am. Chem. Soc. 2015, 137, 7803–7809.
- [16] T. S. Zhuravleva, J. Struct. Chem. 1967, 7, 489–492.
- [17] J. Cano, E. Ruiz, S. Alvarez, M. Verdaguer, Comment. Inorg. Chem. 1998, 20, 27–56.
- [18] G. M. Sheldrick, Acta Crystallogr. **1990**, A46, 467–473.
- [19] G. M. Sheldrick, SHELXL-2014, Program for the Refinement of Crystal Structures University of Göttingen, Göttingen (Germany) 2014. (see also: G. M. Sheldrick, *Acta Crystallogr.* 2008, *A64*, 112–122)
- [20] shelXle, A Qt GUI for SHELXL, C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Cryst. 2011, 44, 1281–1284.
- [21] PLATON/SQUEEZE, P. van der Sluis, A. L. Spek, Acta Crystallogr. 1990, A46, 194–201.
- [22] F. Weigend, R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, 7, 3297–305.
- [23] Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato,

A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz,
A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings,
B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng,
W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.
Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F.
Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith,
R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K.
Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

- [24] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
- [25] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.
- [26] NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold.
- [27] C. Maurizio, R. Nadia, S. Giovanni, B. Vincenzo, J. Comput. Chem. 2003, 24, 669–681.