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1 Derivation of formulas

Ykti represents the outcome for participant i in period t in cluster k,

Ykti = βt + θXkt +Ck +CPkt + ηki + εkti,

ηki ∼ N(0, σ2
η), εkti ∼ N(0, σ2

ε ), Ck ∼ N(0, σ2
C), CPkt ∼ N(0, σ2

CP ) (1)

where participant i = 1, . . . ,m, period t = 1, . . . , T , cluster k = 1, . . . ,K. Fixed effects for each period are

included (the βt). Participant-level errors εkti are assumed to be normally distributed, and the participant-

level random effect ηki allows for dependence between multiple measurements on the same participant.

Cluster-level random effects Ck and cluster-period level random effects CPkt allow for the correlations between

participants measured in the same cluster and the same period to differ from the correlations between

participants in the same cluster but different periods. Collapsing to cluster-period means, Ȳkt● = 1
m ∑

m
i=1 Ykti,

gives:

Ȳkt● = βt + θXkt +Ck +CPkt + ηk● + εkt●,

ηk● ∼ N(0, σ2
η/m), εkt● ∼ N(0, σ2

ε /m), Ck ∼ N(0, σ2
C), CPkt ∼ N(0, σ2

CP ). (2)

Considering the variances and covariances of cluster-period means shows how this model depends on the

open cohort sampling structure:

var (Ȳkt●) = σ2
C + σ2

CP +
σ2
η

m
+ σ

2
ε

m
, cov (Ȳkt●, Ȳks●) = σ2

C + σ2
η

nk(t, s)
m2

1



where nk(t, s) is the number of participants in cluster k that provide measurements in both periods t and s,

nk(t, s) = nk(s, t), nk(t, s) ≤m for all period pairs t, s, and nk(t, t) =m.

We step through the derivation of the formula for cov (Ȳkt●, Ȳks●), leading to Equation (3) of the main

paper (dropping the fixed effect terms immediately):

cov (Ȳkt●, Ȳks●) =
1

m2
cov

⎛
⎝
m
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i=1
Ck +CPkt + ηki + εkti,

m

∑
j=1

Ck +CPks + ηkj + εksj
⎞
⎠
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m2

⎧⎪⎪⎨⎪⎪⎩
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⎠
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.

Since cov(CPkt,CPks) = 0 and cov (εkti, εksj) = 0 for i = j or i ≠ j (by independence),

cov (Ȳkt●, Ȳks●) = var(Ck) +
1

m2
cov

⎛
⎝
m

∑
i=1
ηki,

m

∑
j=1

ηkj
⎞
⎠
= σ2

C +
1

m2
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ηkj
⎞
⎠
.

Note that the i and j indices on the ηkti and ηktj do not necessarily refer to distinct participants. If

a participant provides a measurement in both periods t and s, then there will be an i and j such that

cov(ηki, ηkj) = var(ηki). Since there are nk(t, s) such participants, we get cov (Ȳkt●, Ȳks●) = σ2
C + σ2

η
nk(t,s)
m2 .

The covariance between Ȳkt● and Ȳks● implicitly depends on nk(t, s) and thus on the churn rate χk(t, s) =

1− nk(t,s)
m

= 1− rk(t, s). If χk(t, s) is a random variable, this dependence should be made explicit, leading to:

cov (Ȳkt●, Ȳks●∣χk(t, s)) = σ2
C + σ2

η

1

m
(1 − χk(t, s)),

which is Equation (3) in the main paper.

We then obtain the result in Section 2.2 of the main paper. If we can assume that E[χk(t, s)] = χ, then

applying the Law of Total Covariance gives

cov (Ȳkt●, Ȳks●) = σ2
C + σ2

η

1

m
(1 − χ).

Finally, we demonstrate how the results in Section 2.3 of the main paper can be obtained, by obtaining

an expression for the variance of the treatment effect estimator. If Ȳ = (Ȳk1●, . . . , ȲkT●)
T

, then

var (Ȳ ) = V = (σ2
CP + σ2

ε

1

m
+ σ2

η

χ

m
) I + (σ2

C + σ2
η

1

m
(1 − χ))J

where I is the T × T identity matrix and J is the T × T matrix of ones. An expression for var(θ̂), where θ̂

is the generalised least squares estimator used in Hussey and Hughes [2007], can then be obtained. Working

through the following expression (from Kasza et al. [2019]):
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var(θ̂) =
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where Xk = (Xk1, . . . ,XkT )T is the vector of treatment assignments for cluster k. First note that σ2
CP +

σ2
ε

1
m
+σ2

η
χ
m
= σ2

m
(1+ (m− 1)ρ)(1− r) and σ2

C +σ2
η

1
m
(1−χ) = σ2

m
r(1+ (m− 1)ρ). Standard matrix algebra can

be used to show that

V −1 = 1
σ2

m
(1 + (m − 1)ρ)(1 − r)

(I + r

(1 + r(T − 1))) .

Working through the (somewhat tedious but relatively straightforward) algebra (and noting that when Xkt

is coded as 0/1, X2
kt =Xkt) then gives

var(θ̂) = σ
2

m

K(1 + (m − 1)ρ)(1 − r)(1 + r(T − 1))
KX●● −∑Tt=1(X●t)2 + [(X●●)2 +K(T − 1)X●● − (T − 1)∑Tt=1(X●t)2 −K∑Kk=1(Xk●)2] r

.

Comparing this expression to that obtained for an individually randomised trial with n participants in total

( 4σ2

n
) then gives the result in Equation (9) of the main paper.
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