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Supplementary figures 

 

Supplementary Figure 1. Histone and DNA modifications across TAD boundaries. 



2 
 

 

Supplementary Figure 2. Variant profiles across human and rice TAD boundaries. Genic – 
from the start to the end of gene.  
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Supplementary Figure 3. Pearson correlations between different genomic and epigenomic 
features across the rice genome. Non-log-transformed values. 
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Supplementary Figure 4. Spearman correlations between different genomic and epigenomic 
features across the rice genome. Non-log-transformed values. 
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Supplementary tables 

Supplementary Table 1. Comparison of the three existing TAD annotations. Note that we 
used D1 in interaction strength comparisons, as it represents isolated mesophyll signal, not an 
average across cell types. However, as a result D1 TADs will have an advantage in 
comparisons as only for D1 the same data was used for TAD calling and interaction analysis. 

Dataset 
alias 

Ref. Median 
size [bp] 

# of 
domains 

Genome 
coverage 
[%] 

Median 
interaction 
(D1 r1+r2) 

Mean 
interaction 
(D1 r1+r2) 

D1 Dong et 
al.1  

160,000 1,917 95 6.52 11.5 

D2 Liu et al.2 45,000 1,763 31.6 10.47 16.44 
D3 Dong et 

al.3 
450,000 526 68.6 3.37 7.03 

 

Supplementary Table 2. Armatus domain statistics using different values of parameter γ. 

γ Median size [bp] # of domains Genome coverage 
[%] 

0.3 40,000 4,075 74.9 
0.4 35,000 4,551 68.6 
0.5 30,000 4,829 60.6 

 

Supplementary Table 3. Summary of TAD calls using three different datasets. *Number of 
valid interactions is proportional to sequencing depth which was lowest for D1 and highest 
for D3 dataset. 

 # Valid 
interactions* 

Median 
TAD 
size 
[bp] 

# of 
domains 

Genome 
coverage 
[%] 

Median 
interaction 
strength in 
dataset (r1+r2) 

Mean interaction 
strength in 
dataset (r1+r2) 

     D1 D2 D3 D1 D2 D3 
D1  36,438,978 

38,816,900 
30,000 4,409 56.9 10.2 34.5 47.6 16.7 57.9 67.3 

D2  141,236,885 
149,407,091 

35,000 4,599 69.7 7.9 27.8 36.7 14.1 50.6 56.6 

D3  247,192,814 
192,878,099 

40,000 3,644 67 5 13.6 20.4 10.7 33.1 40.4 
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Supplementary note  

Comparison of existing TAD annotations 

To date TAD discovery has been performed using Arrowhead and DomainCaller algorithms. 
The TADs called using Arrowhead were identified using relatively stringent criteria 
(identifying only TADs with strong intra-TAD interaction signal) resulting in the ~32% of the 
rice genome covered by TADs. TADs called using DomainCaller covered much higher 
proportion of the genome, but the intra-TAD signal tends to be much weaker (Supplementary 
Table 1).  

TAD discovery in the three datasets using Armatus 

Arrowhead and DomainCaller methods are among the oldest developed and have been 
superseded by newer algorithms. We have therefore decided to repeat TAD discovery in all 
three datasets using Armatus, which was shown to discover TADs with high intra-TAD 
interaction frequencies4. The size and number of domains called by Armatus depends on a 
single parameter γ (Supplementary Table 2). To optimize γ we used the D2 dataset (replicate 
1) which had an intermediate number of valid interactions as evaluated by HiC-Pro 
(Supplementary Table 3). We tried three values (γ=0.3, 0.4, 0.5).  We pre-filtered the calls with 
minimum TAD size of 20kb (4x bin size). Filtering follows from the statement by the algorithm 
authors that domains consisting of just one or two fragments do not capture higher-order spatial 
relationships (e.g. triad closure) and interaction frequencies between adjacent fragments are 
likely large by chance4. We used the total number of domains identified, domain size and visual 
inspection to choose the optimal gamma value (Supplementary Table 2). The main difference 
between γ=0.3 and γ=0.4 was that some of the smaller domains were fused, which is both 
consistent with the effect of decreasing γ described by the authors and with postulated 
hierarchical structure of rice topological domains4. 

We then used Armatus (γ=0.4) for TAD discovery using contact maps produced by HiC-Pro 
for all three datasets. First, we checked for concordance in TAD calls between replicates. In 
general, concordance in TAD boundary calls between replicates has been shown to be quite 
low5. We have observed similar pattern in our data with Jaccard indexes of 0.24, 0.45 and 0.35 
for D1, D2 and D3 data respectively. Overall D2 had the highest concordance between 
replicates. We than merged the replicates and performed TAD calling again (Armatus, γ=0.4). 
We evaluated the resulting TAD calls by comparing TAD size, total genome coverage by TADs 
and the within-TAD contact frequency. The within-TAD contact frequency is expected to be 
affected by the number of sequencing reads. We therefore compared the intra-TAD interactions 
not only using the datasets used to call TADs but also the other two datasets (Supplementary 
Table 3). As expected, the median values were lower for datasets with lower number of valid 
read pairs. D2 achieved the best balance between TAD size and intra-TAD interaction 
frequencies. 

Taken together D2 had a sufficient number of reads to call TADs at 5kb resolution, best 
concordance between replicates and good balance between TAD size and strength of intra-
TAD interactions. TADs called from D2 were therefore used for further analysis. 
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