
Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

This manuscript reports some interesting fMRI results for a behavioral paradigm and computational 

model that was already published by the same authors. In essence, the paper shows a neural 

dissociation between directed and random exploration, which rely on frontopolar versus dorsolateral 

prefrontal cortex, respectively. While these findings dovetail with similar results reported by Badre and 

colleagues, a novel and interesting result reported here is that adding the neural data from the regions 

to a choice model improves the prediction of behavior. 

Here is a list of issues the authors should address in a revision: 

(1) It is unclear from the description in the manuscript whether the behavioral models and the 

regressors in the neural GLM really account for the change in the observer’s uncertainty from trial-to-

trial. In other words, are RU and TU (e.g., in equation 4) indeed posteriors that are updated trial-by-trial, 

or are they set to the level of uncertainty inherent in the design of the different blocks? And are the 

parametric modulators in the neural GLM identical with these model-derived quantities? This was not 

clear since different models used different notation. Please clarify this for every model when you 

describe it in the text. 

(2) The authors first identify regions of interest at uncorrected statistical thresholds, and then extract 

betas from these regions that they analyze with other statistical test. This circular “double-dipping” is 

problematic – of course the ROI analyses will confirm the significance of the analyses used to select the 

regions for extraction. The authors should either rely on SPM for their statistics (properly correcting for 

multiple comparisons) and only display the betas for visualization, or they should define their ROIs with 

fully independent criteria, extract betas, and then perform the statistical analyses only on these betas. If 

the authors lack sensitivity for whole-brain correction of the SPMs, then they could restrict their search 

(and correction) to a search mask comprising anatomical areas (not specific ROIS, but general areas) 

identified by prior studies. This mask should obviously have been selected a priori, but it would still be 

better for the field if the manuscript reported the results of such a non-circular strategy with proper 

correction for multiple comparisons. 

(3) It is a very interesting result that adding the neural data improves choice prediction. However, the 

authors only use likelihood ratio tests to demonstrate this improvement. Critics may argue that it is not 

surprising that model fits improve if one adds any additional regressor to the model (overfitting). To 

counter such criticism pre-emptively, the authors should add other model comparison indices that 

penalize for the increase in model complexity, and discuss whether adding the neural data really 

improves the model when accounting for increased complexity, or whether it only increases the data fit. 

(4) The authors only report regions that show a positive correlation with their uncertainty indices, 

arguing that negative correlatione would not be consistent with the rate code implicit in their model. I 



do not share this view, since their model does not really make any assumptions about neural coding of 

the computed quantities. Moreover, it is known from single-unit-recording studies of value-based choice 

that both positive and negative coding of choice-related representations are common (see e.g. Padoa-

Schioppa’s studies). The authors should therefore analyze and report the regions showing any 

correlation with their model-derived uncertainty representations. 

Reviewer #2 (Remarks to the Author): 

Review of manuscript NCOMMS-19-04648 

Dissociable neural correlates of uncertainty underlie different exploration strategies by Tomov et al. 

In this manuscript, the authors investigate the neural correlates of two different types of uncertainty, 

relative and total uncertainty of decision options, and their relation to choice in the context of an 

exploration/exploitation task. Understanding the neural processes associated with exploration-

exploitation decisions is an important goal in the study of the neuroscience of decision-making, and the 

present manuscript makes an important contribution to the field. Below are some comments and 

concerns I believe the authors should address. 

(1) The model of choices (eq. 4) is ‘reduced-form’ in that it relates choice to a linear combination of 

different types of uncertainty. Thus, the model is a statistical description of choices in terms of a simple 

combination of different types of uncertainty. However, the model doesn’t explain how decision-makers 

decide which strategy, directed and random exploration, to use in a given decision situation. I would like 

the authors to address the latter question and describe what optimal behavior would look like of an 

agent who employed both of those strategies. Without such an explanation, the analysis is merely a 

‘curve-fitting’ exercise and doesn’t provide much insight into the decision-making process. 

(2) The authors’ computational model postulates that explore-exploit decisions are affected by two 

different types of computational strategies. In the manuscript (l. 51), the authors state that the two 

strategies confer different computational advantages, which, I believe, the authors mean to be 

advantages distinct from ecological advantages. The authors should explain what these advantages are. 

They should also relate the computational properties of the strategies (e.g., type of computation, 

memory requirements) to candidate neural processes/circuits. 

(3) What is the covariance between the different IVs in the behavioural model (eq. 4)? 

(4) As the authors point out, the exploration-exploitation problem is intractable in the general case. The 

authors should at least comment on the tractability of the computations necessary to implement their 

proposed model. 



(5) In the fMRI analysis, the authors use a cluster extent threshold of 100 voxels (e.g., l. 144). I would like 

to see some justification of this choice. It appears somewhat arbitrary. Similarly, at various points in the 

fMRI analysis, the authors state that they Bonferroni corrected for 10 comparisons (e.g., l. 151) – the 

authors should mention how they choose 10. 

(6) On l. 255, the authors state that participants received a variable payment based on a randomly 

drawn trial, and that losses were converted into a reward of 1. Were participants aware that this would 

happen (i.e., that they couldn’t lose any money)? If this was the case, it appears that this would have 

fundamentally altered the incentive structure of the task. Participants were effectively holding a put 

option, and it appears that their optimal strategy would have been to maximise reward variance. I would 

appreciate if they authors could comment on this and how it may have affected their results. 

(7) Overall, I find the fMRI analysis rather cursory. The authors state in the Summary that their results 

are “consistent with a hybrid computational architecture in which different uncertainty computations 

are performed separately and then combined by downstream decision circuits to compute choice”. Yet, 

all the authors do in the manuscript is present a set of neural correlates of variables capturing different 

types of uncertainty. There is very little discussion relating their findings to the statement above, in 

particular, how their findings support the claim of a “hybrid computational architecture”, let alone what 

this architecture would look like (e.g., neural circuits involved, anatomical properties of implicated 

regions), or how the different computations might be “combined by downstream decision circuits to 

compute choice”. In fact, I didn’t see much evidence in the manuscript supporting the latter claim at all. 

For example, the authors could have provided some evidence of connectivity between the regions 

coding for different types of uncertainty and the regions computing choice (or DCM?), to provide tighter 

evidence that the computations of uncertainty did in fact affect choice and to what extent. 

Reviewer #3 (Remarks to the Author): 

Using fMRI, The paper analyses human brain activations in two armed-bandit tasks comprising two risky 

arms, two safe arms or one safe and one risky arm. The analysis is based on a Kalman filter used to 

model subjects’ behavior. The paper reports that relative uncertainty between arms is associated with 

rostrolateral prefrontal activations, while left dorsolateral prefrontal activations correlate with total 

uncertainty of the bandit. Overall, I don’t see what we learn new from this data set. Moreover, there are 

major drawbacks in the Methods, which do not meet current methodological standards in the field. 

Critical concerns: 

1/ The results are essentially a replication of those from Badre et al. (2012) recast in the framework of 

Kalman Filters. The only difference between the present and Badre et al.’s results is that the present 

study reports left DLPFC activations while Badre et al. reported right DLPFC activations correlating with 

total uncertainty of choice options. However, the paper provide no explanations about this discrepancy 



which questions the replicability and generalization of this finding. 

2/ the behavioral and neural data reported in the paper actually provide evidence against the proposed 

Kalman filter model used in analyzing behavioral and fMRI data. FigS2 shows that the model behavior 

significantly and strongly differs from subjects’ performances. Additionally, the variables V and V/TU, 

which captures significant parts of the behavioral variance beyond RU were associated with no brain 

activations. Moreover, the study comprises no model comparisons. Model comparisons is the current 

standard in model-based fMRI studies and is considered as necessary for drawing conclusions about the 

underlying cognitive and brain processes (see e.g. Palminteri et al., 2017, TICS). 

3/ The neural decoding analysis is based on comparing likelihood ratios using T-tests. However, this 

analysis is statistically biased as the neurally augmented model likelihood is by construction larger than 

the behavioral model.likelihood (as including more free parameters). This analysis should be based on 

the BICs, which may change the results as the reported p-value is close to the significance threshold 

(p=0.04). 



Reviewer #1 (Remarks to the Author): 

(1) It is unclear from the description in the manuscript whether the behavioral models and 
the regressors in the neural GLM really account for the change in the observer’s 
uncertainty from trial-to-trial. In other words, are RU and TU (e.g., in equation 4) indeed 
posteriors that are updated trial-by-trial, or are they set to the level of uncertainty inherent 
in the design of the different blocks? And are the parametric modulators in the neural GLM 
identical with these model-derived quantities? This was not clear since different models 
used different notation. Please clarify this for every model when you describe it in the text.

We now state explicitly that those are trial-by-trial posteriors derived from the model, and we include trial 
(t) subscripts everywhere to make that clear. We also clarify that the parametric modulators were the 
same posterior quantities. We also ensured that the notation is consistent. 

(2) The authors first identify regions of interest at uncorrected statistical thresholds, and 
then extract betas from these regions that they analyze with other statistical test. This 
circular “double-dipping” is problematic – of course the ROI analyses will confirm the 
significance of the analyses used to select the regions for extraction. The authors should 
either rely on SPM for their statistics (properly correcting for multiple comparisons) and 
only display the betas for visualization, or they should define their ROIs with fully 
independent criteria, extract betas, and then perform the statistical analyses only on these 
betas. If the authors lack sensitivity for whole-brain correction of the SPMs, then they 
could restrict their search (and correction) to a search mask comprising anatomical areas 
(not specific ROIS, but general areas) identified by prior studies. This mask should 
obviously have been selected a priori, but it would still be better for the field if the 
manuscript reported the results of such a non-circular strategy with proper correction for 
multiple comparisons.

We now report corrected results and use the a priori ROIs from Badre et al. (2012) in our confirmatory 
analyses.  

(3) It is a very interesting result that adding the neural data improves choice prediction. 
However, the authors only use likelihood ratio tests to demonstrate this improvement. 
Critics may argue that it is not surprising that model fits improve if one adds any 
additional regressor to the model (overfitting). To counter such criticism pre-emptively, 
the authors should add other model comparison indices that penalize for the increase in 
model complexity, and discuss whether adding the neural data really improves the model 
when accounting for increased complexity, or whether it only increases the data fit. 

We now base our comparisons on BIC’s, which more stringently penalize model complexity. Also, we 
should note that the likelihood ratio test does penalize model complexity (albeit less stringently than 
BIC), so it is not the case that adding additional regressors will necessarily improve the likelihood ratio. 



(4) The authors only report regions that show a positive correlation with their uncertainty 
indices, arguing that negative correlatione would not be consistent with the rate code 
implicit in their model. I do not share this view, since their model does not really make any 
assumptions about neural coding of the computed quantities. Moreover, it is known from 
single-unit-recording studies of value-based choice that both positive and negative coding 
of choice-related representations are common (see e.g. Padoa-Schioppa’s studies). The 
authors should therefore analyze and report the regions showing any correlation with their 
model-derived uncertainty representations.  

We now report and analyze negative as well as positive correlations. 

Reviewer #2 (Remarks to the Author): 

(1) The model of choices (eq. 4) is ‘reduced-form’ in that it relates choice to a linear 
combination of different types of uncertainty. Thus, the model is a statistical description 
of choices in terms of a simple combination of different types of uncertainty. However, the 
model doesn’t explain how decision-makers decide which strategy, directed and random 
exploration, to use in a given decision situation. I would like the authors to address the 
latter question and describe what optimal behavior would look like of an agent who 
employed both of those strategies. Without such an explanation, the analysis is merely a 
‘curve-fitting’ exercise and doesn’t provide much insight into the decision-making 
process.  

The model is not reduced form, because there isn’t a more complex model that it is reducing. If one 
takes only the V + RU terms (excluding the V/TU term), then the model precisely specifies the choice 
probability under the UCB exploration policy. If one takes on the V/TU term, then the model precisely 
specifies the choice probability under the Thompson sampling policy. The only somewhat arbitrary 
aspect here is when we combine UCB and Thompson sampling models via addition. However, we have 
shown previously that this hybrid model is able to capture the choice probability functions quite 
accurately (see for example Gershman & Tzovaras, 2018). So it doesn’t seem necessary to further 
explore the space of hybrid models in this paper. Our focus here is less on how they combine and more 
on how the underlying components are represented. 

With regard to the meta-choice of which strategy to use, we have assumed that the same linear 
combination applies to every trial (hence there is no dynamic meta-strategy). This assumption may be 
wrong, and exploring alternative assumptions would be a very interesting question for future work, but 
outside the scope of this paper. Nonetheless, to address the question of optimality, we performed 
simulations to demonstrate that the hybrid UCB/Thompson model is superior to UCB or Thompson 
sampling alone, which are in turn superior to softmax alone both in terms of performance and in terms of 
describing human behavior. 



We added the following to the paper (p. 10): 

Gershman (2018) showed that, despite its apparent simplicity, this is not a reduced form model but rather the exact 

analytical form of the most parsimonious hybrid of UCB and Thompson sampling that reduces to pure UCB when 

w3 = 0, to pure Thompson sampling when w2 = 0, and to pure softmax exploration when w2 = w3 = 0. Thus the 

hybrid model balances exploitation (governed by w1) with directed (w2) and random (w3) exploration simultaneously 



for each choice, without the need to dynamically select one strategy over the other (whether and how the brain might 

perform this meta-decision is beyond the scope of our present work). If subjects use both UCB and Thompson 

sampling, the model predicts that all three regressors will have a significant effect on choices (w1 > 0, w2 > 0, w3 > 0). 

Correspondingly, the maximum likelihood estimates of all three fixed effects coefficients were significantly greater 

than zero: w1 = 0.166 ± 0.016 (t(9716) = 10.34, p = p < 10−20; mean ± s.e.m., two-tailed t-test), w2 = 0.175 ± 0.021 

(t(9716) = 8.17, p = p < 10−15), and w3 = 0.005 ± 0.001 (t(9716) = 4.47, p = p < 10−5). Model comparisons 

revealed that the UCB/Thompson hybrid model fits subject choices better than UCB or Thompson sampling alone, 

which in turn fit choices better than softmax alone (Table S1).  Furthermore,  running these models generatively  

with the corresponding fitted parameters on the same bandits as the participants revealed significant differences in 

model performance (Figure S3, F(3, 1236) = 291.58, p < 10−20, one-way ANOVA). The UCB/Thompson hybrid 

outperformed UCB and Thompson sampling alone (UCB vs. hybrid, p < 10−8; Thompson vs. hybrid, p < 10−8, 

pairwise multiple comparison tests), which in turn outperformed softmax exploration (softmax vs. UCB, p < 10−5; 

softmax vs. Thompson, p < 10−8). Similar results replicated across a range of coefficients (Figure S4), signifying 

the distinct and complementary ecological advantages of UCB and Thompson sampling. Thus relying on both UCB 

(w2 > 0) and Thompson sampling (w3 > 0) should yield better overall performance. In line with this prediction, we 

found better performance among subjects whose choices are more sensitive to RUt (greater w2), consistent with greater 

reliance on UCB (Figure S5B, r(29) = 0.47, p = 0.008, Pearson correlation). Similarly, we found better performance 

among subjects whose choices are more sensitive to Vt /TUt (greater w3), consistent with greater reliance on Thompson 

sampling (Figure S5C, r(29) = 0.53, p = 0.002). Finaly, note that even though optimal exploration is intractable in 

general, the hybrid model computes choices in constant time by simply computing Eq. 4. Taken together, these results 

replicate and expand upon previous findings (Gershman, 2019), highlighting the superiority of the UCB/Thompson 

hybrid as a descriptive as well as normative model of uncertainty-guided exploration. Thus humans do and ought to 

employ both directed and random exploration, driven by relative and total uncertainty, respectively.



(2) The authors’ computational model postulates that explore-exploit 
decisions are affected by two different types of computational strategies. In 
the manuscript (l. 51), the authors state that the two strategies confer 
different computational advantages, which, I believe, the authors mean to 
be advantages distinct from ecological advantages. The authors should 
explain what these advantages are. They should also relate the 
computational properties of the strategies (e.g., type of computation, 
memory requirements) to candidate neural processes/circuits. 

We do in fact mean ecological advantages, which we hope the above paragraph 
illustrates. We also corrected “computational advantages” to “ecological advantages” in 
the text. 

(3) What is the covariance between the different IVs in the behavioural 
model (eq. 4)? 

The correlations are as follows (Pearson correlation computed for each subject; then t-
test performed with Fisher z-transformed r values): 

V vs. RU: r = -0.19 +- 0.03, t(30) = -6.78, pp < 10-6

V vs. TU: r = 0.06 +- 0.02, t(30) = 3.57, p = 0.0012 
RU vs. TU: r = -0.10 +- 0.03, t(30) = -3.24, p = 0.002 

The correlations are small but significant, which in principle could pose a problem for 
interpreting the coefficients w, since it is possible that they trade off with each other. We 
believe this is not the case, as illustrated by several of our results: 

1. Figure S6 clearly illustrates the parameter recoverability of our fitting procedure 
even in the presence of such correlations. 

2. Figure S5 shows that the subject-specific coefficients are related to performance, 
suggesting that meaningful coefficients were obtained despite the correlations. 

3. The behavioral model comparison (Table S1) and performance comparison 
(Figure S3) show that the hybrid model with the fitted coefficients is superior, 
which would not have been the case if the coefficients were not fit in a way that 
takes advantage of all three regressors and hence both random and directed 
exploration. 

4. The VIF analysis in the supplemental information (Figure S8) address this 
concern with regards to the fMRI analysis and shows that, despite the 
correlations, including all regressors in the same GLM (GLM 1) yields essentially 



the same BOLD activations as the single-parametric modulator GLMs (Figure 
S9). 

(4) As the authors point out, the exploration-exploitation problem is 
intractable in the general case. The authors should at least comment on the 
tractability of the computations necessary to implement their proposed 
model. 

The model computes choices in constant time, which we clarify in the above paragraph. 

(5) In the fMRI analysis, the authors use a cluster extent threshold of 100 
voxels (e.g., l. 144). I would like to see some justification of this choice. It 
appears somewhat arbitrary. Similarly, at various points in the fMRI 
analysis, the authors state that they Bonferroni corrected for 10 
comparisons (e.g., l. 151) – the authors should mention how they choose 
10. 

We agree with the reviewer that the cluster extent threshold was somewhat arbitrary. It 
was originally based our on strong prior hypothesis that right RLPFC would encode 
relative uncertainty, based on Badre et al. (2012)’s results. We have now removed the 
arbitrary extent threshold and report whole-brain results with cluster FWE correction as 
well as ROI results with a priori ROIs. 

We previously used Bonferroni correction for the 10 ROIs we identified in our whole-
brain contrast. However, since now we focus our confirmatory analyses on the a priori
ROIs only, we no longer correct for multiple ROIs. 

(6) On l. 255, the authors state that participants received a variable payment 
based on a randomly drawn trial, and that losses were converted into a 
reward of 1. Were participants aware that this would happen (i.e., that they 
couldn’t lose any money)? If this was the case, it appears that this would 
have fundamentally altered the incentive structure of the task. Participants 
were effectively holding a put option, and it appears that their optimal 
strategy would have been to maximise reward variance. I would appreciate 
if they authors could comment on this and how it may have affected their 
results. 

Participants were aware of this. While it is true that participants were effectively holding 
a call option, they nevertheless behaved as if they sought to maximize reward, as can 
be seen in Figure S1A. We added the following (p. 23): 



While eliminating the possibility of losses may appear to have altered the incentive structure of the task, 
participants nevertheless preferred the better option across all task conditions (Figure S1A), in accordance 
with previous replications of the experiment (Gershman, 2018; 2019).

(7) Overall, I find the fMRI analysis rather cursory. The authors state in the 
Summary that their results are “consistent with a hybrid computational 
architecture in which different uncertainty computations are performed 
separately and then combined by downstream decision circuits to compute 
choice”. Yet, all the authors do in the manuscript is present a set of neural 
correlates of variables capturing different types of uncertainty. There is 
very little discussion relating their findings to the statement above, in 
particular, how their findings support the claim of a “hybrid computational 
architecture”, let alone what this architecture would look like (e.g., neural 
circuits involved, anatomical properties of implicated regions), or how the 
different computations might be “combined by downstream decision 
circuits to compute choice”. In fact, I didn’t see much evidence in the 
manuscript supporting the latter claim at all. For example, the authors 
could have provided some evidence of connectivity between the regions 
coding for different types of uncertainty and the regions computing choice 
(or DCM?), to provide tighter evidence that the computations of uncertainty 
did in fact affect choice and to what extent. 

We now include an entirely new section in the results with a new GLM (GLM 2) 
showing neural correlates of the decision value (DV) in motor cortex, suggesting 
that it performs the downstream decision computation that combines V, RU, and 
TU. Note that since DV is by design correlated with V, RU, and V/TU, this also 
implies the region is functionally coupled with the RU and TU ROIs. 

Reviewer #3 (Remarks to the Author): 

Critical concerns: 
1/ The results are essentially a replication of those from Badre et al. (2012) 
recast in the framework of Kalman Filters. The only difference between the 
present and Badre et al.’s results is that the present study reports left 
DLPFC activations while Badre et al. reported right DLPFC activations 
correlating with total uncertainty of choice options. However, the paper 
provide no explanations about this discrepancy which questions the 
replicability and generalization of this finding. 

We appreciate the reviewer’s concerns, and while our work indeed replicates the results 
of Badre et al. (note that after correcting the bug in our pipeline, we now replicate the 
TU result in right DLPFC as well), it goes beyond it in several important ways: 

1. Our experimental design explicitly orthogonalizes RU and TU, thus providing a 
cleaner test of the hypothesis, 



2. Our UCB/Thompson hybrid model explains how TU is used by the brain, 
3. We show that neural activity predicts behavioral variance, and 
4. We investigate the downstream circuitry which combines RU and TU to compute 

choice. 
None of these questions were addressed in the original Badre et al. paper. 

We clarified this in the discussion (p. 18): 

2/ the behavioral and neural data reported in the paper actually provide 
evidence against the proposed Kalman filter model used in analyzing 
behavioral and fMRI data. FigS2 shows that the model behavior 
significantly and strongly differs from subjects’ performances. 
Additionally, the variables V and V/TU, which captures significant parts of 
the behavioral variance beyond RU were associated with no brain 
activations. Moreover, the study comprises no model comparisons. Model 
comparisons is the current standard in model-based fMRI studies and is 
considered as necessary for drawing conclusions about the underlying 
cognitive and brain processes (see e.g. Palminteri et al., 2017, TICS).  

We are not sure which aspects of the figure the reviewer is referring to as “significantly 
and strongly” differing from subject behavior. We believe our results show that the 
model captures the main qualitative patterns of human behavior relevant to our study, 
as explained in the results section (p. 9, 10, 11) and as evident in Figures S1, S2, and 
S5. It also quantitatively accounts for behavior better than alternative models (Table 
S1). Note that these behavioral results have been replicated with greater sample sizes 
on the same task (Gershman 2019; Gershman & Tzovaras, 2018).  

We discuss the variable V in the supplemental information (p. 39). We added the 
following regarding the absence of V/TU in the discussion: 



We also included model comparisons (Table 1, Table S1). If the reviewer is referring to 
neural model comparisons, we did not perform any as none of the alternative models 
provided an equally compelling account of behavior (Table S1).  

3/ The neural decoding analysis is based on comparing likelihood ratios 
using T-tests. However, this analysis is statistically biased as the neurally 
augmented model likelihood is by construction larger than the behavioral 
model.likelihood (as including more free parameters). This analysis should 
be based on the BICs, which may change the results as the reported p-
value is close to the significance threshold (p=0.04). 

We now use BICs for model comparison. Note that since we fixed a bug in our pipeline 
and re-analyzed the data, the differences in model fits are greater. Please also note that 
the likelihood ratio test does penalize model complexity (albeit less stringently than 
BIC), so it is not the case that adding additional regressors will necessarily improve the 
likelihood ratio.



Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

The authors have successfully addressed my previous concerns, and they have strengthened their 

manuscript by additional analyses revealing some downstream value integration in left motor cortex. 

While it is not entirely clear why they observe this integration there rather than in, say, ventromedial 

cortex, they discuss this issue in a manner that will satisfy most readers. It may still be good to point out 

in the discussion that for these right-handed subjects, left motor cortex is the final cortical area 

implementing the motor choice. This suggests that it may be interesting for future studies to investigate 

whether the accumulation area will shift if subjects give their response with another motor modality 

(eye movements, left hand, etc). Such a qualifying statement would render the result more consistent 

with the existing literature and would circumvent the impression that left motor cortex is a general 

value accumulator in many different contexts. 

I also have two other minor comments concerning results reporting: In the legend of Figure 3, the 

authors should explicitly state whether all displayed voxels are also corrected at cluster-level (as written 

in the text) or only at the voxel-level? In the legends of Figures 4a and 5 a, they should also report the 

statistical threshold procedures used for display (the statement about identical procedures in the legend 

of Panel 4b is ambiguous in that respect). 

Reviewer #2 (Remarks to the Author): 

The authors have addressed all of my comments to my satisfaction. 

Reviewer #3 (Remarks to the Author): 

I carefully read the revised paper along with the authors’ responses to my initial major concerns. Except 

their revision including proper model comparisons in response to my point regarding the lack of such 

analyses, the authors have provided no convincing (and even meaningful I must say) responses/revisions 

to my other major concerns, as detailed below. Moreover, the authors report a bug in their initial 

analyses, indicating that the bug correction altered the results without detailing the alterations, except 

precisely those suppressing the discrepancy between their results and those in Badre et al. (2012). This 

leads to a very uncomfortable situation, in which the reviewer cannot be really trustful in the presented 

results. 

Major concerns: 

Initial major point (1): 

The authors’ response confirms my initial judgment: the results are mainly a replication of those in 



Badre et al. (2012) and the analyses carried out in the present paper provide no new insights. In their 

response, the authors only state that their results go beyond Badre et al.’s results because: 

a/ “Our experimental design explicitly orthogonalizes RU and TU, thus providing a cleaner test of the 

hypothesis". 

This is inexact: Badre et al. (2012) also orthogonalized RU et TU. 

b/ "Our UCB/Thompson hybrid model explains how TU is used by the brain". 

This is also incorrect : the UCB/Thompson hybrid model predicts brain activations correlating with V/TU, 

but no such activations were found. 

c/ "We show that neural activity predicts behavioral variance" 

These analyses are welcomed but are purely confirmatory without providing new insights. (see also my 

comment below in point 3) 

d/ "We investigate the downstream circuitry which combines RU and TU to compute choice". 

As reported in the paper, the additional finding in the motor cortex added in the revised paper remain 

anecdotal: the related analysis does not include reaction times as a confound factor. Including RTs as a 

factor of no-interest is the current standard in fMRI to assess activations associated with the decision 

variable. Additionally and possibly relatedly, no previous studies report motor activations associated 

with the decision variable. Previous studies report such activations in the medial PFC, lateral PFC or in 

the parietal cortex . Moreover, the reported analysis arbitrary focused on positive correlations, whereas 

the meaningful correlation reported in previous studies is the negative correlation between brain 

activations and the decision variable. 

Initial major point (2): 

My original concern was that the reported results seem to rule out rather than to support the authors’ 

model. Regarding behavioral data, it is clear that in Fig. S2, there are significant differences between 

participants’ and model’s learning curves: from trial 1 to trial 2 in condition SS, subjects’ performances 

decreased, whereas the model performance increased, with a significant difference between the two 

curves. Moreover, in conditions RR, RS and SR, subjects reached a plateau at ~90% performance, 

whereas the model reached a clearly significant lower plateau at ~80% performance. The authors 

inappropriately and unconvincingly responded that they only “believe” the model “qualitatively” 

accounts for the data!!! Regarding fMRI data, the authors acknowledge that they found no activations 

associated with V and V/TU, which are actuallys two critical predictions from the proposed model. For V, 

they reported additional analyses, which are however fully inconclusive as not controlling for co-

linearity effects across regressors. As a reader, I still conclude from the revised paper that 

problematically, the reported data set appears to rule out rather than support the proposed model. 

Initial major point (3) 

As requested, the author conducted the proper model comparisons in the revised paper based on BICs, 

but missed to report the related statistical tests. They need to report paired T-tests or to use an 

exceedance probability approach to compare BICs between models. 



Reviewer #1 (Remarks to the Author): 

The authors have successfully addressed my previous concerns, and they have 
strengthened their manuscript by additional analyses revealing some downstream value 
integration in left motor cortex. While it is not entirely clear why they observe this 
integration there rather than in, say, ventromedial cortex, they discuss this issue in a 
manner that will satisfy most readers. It may still be good to point out in the discussion 
that for these right-handed subjects, left motor cortex is the final cortical area 
implementing the motor choice. This suggests that it may be interesting for future 
studies to investigate whether the accumulation area will shift if subjects give their 
response with another motor modality (eye movements, left hand, etc). Such a 
qualifying statement would render the result more consistent with the existing literature 
and would circumvent the impression that left motor cortex is a general value 
accumulator in many different contexts. 

I also have two other minor comments concerning results reporting: In the legend of 
Figure 3, the authors should explicitly state whether all displayed voxels are also 
corrected at cluster-level (as written in the text) or only at the voxel-level? In the legends 
of Figures 4a and 5 a, they should also report the statistical threshold procedures used 
for display (the statement about identical procedures in the legend of Panel 4b is 
ambiguous in that respect).  

We have incorporated the requested changes in the manuscript. 

Reviewer #2 (Remarks to the Author): 

The authors have addressed all of my comments to my satisfaction. 

Reviewer #3 (Remarks to the Author): 

I carefully read the revised paper along with the authors’ responses to my initial 
major concerns. Except their revision including proper model comparisons in 
response to my point regarding the lack of such analyses, the authors have 
provided no convincing (and even meaningful I must say) responses/revisions to 
my other major concerns, as detailed below. Moreover, the authors report a bug 
in their initial analyses, indicating that the bug correction altered the results 
without detailing the alterations, except precisely those suppressing the 
discrepancy between their results and those in Badre et al. (2012). This leads to 
a very uncomfortable situation, in which the reviewer cannot be really trustful in 
the presented results.  



The bug was in our univariate decoder code. Specifically, we were decoding a mix of V/TU and 
TU (due to the common suffix in the regressor names) instead of TU. Using this incorrectly 
decoded TU, we were unable to improve choice predictions using the BOLD signal in right 
DLPFC, the ROI reported by Badre et al. Instead, we obtained a significant result using the BOLD 
signal in left DLPFC within the ROIs discovered by our whole-brain TU contrast (this was using 
the likelihood ratio test, a less stringent criterion than the one used in the revision). After fixing 
the bug, we found the opposite pattern: decoding TU from left DLPFC does not improve choice 
predictions, but decoding it from right DLPFC does (also note that this time we were using  
BIC's). Note that this bug only affects our confirmatory analysis, in particular the one for TU 
only. It does not affect the GLM results, nor the confirmatory analysis for RU. 

Major concerns: 
Initial major point (1): 
The authors’ response confirms my initial judgment: the results are mainly a 
replication of those in Badre et al. (2012) and the analyses carried out in the 
present paper provide no new insights. In their response, the authors only state 
that their results go beyond Badre et al.’s results because: 
a/ “Our experimental design explicitly orthogonalizes RU and TU, thus providing 
a cleaner test of the hypothesis".  
This is inexact: Badre et al. (2012) also orthogonalized RU et TU.

We should have clarified that we mean that TU and RU are orthogonalized in the task design 
(and not merely in the fMRI GLM, which we assume the reviewer is referring to). We added the 
following to the discussion section: 

“While our study replicates the results reported by Badre et al., it goes beyond their work in 
several important ways. First, our task design explicitly manipulates uncertainty – the main 
quantity of interest – across the different task conditions, whereas the task design in Badre et 
al. is focused on manipulating expected value. Second, relative and total uncertainty are 
manipulated independently in our task design: relative uncertainty differs across RS and SR 
trials, while total uncertainty remains fixed, on average; the converse holds for SS and RR trials. 
Orthogonalizing relative and total uncertainty in this way allows us to directly assess their 
differential contribution to choices (figure S2). Third, the exploration strategies employed by 
our model are rooted in normative principles developed in the machine learning literature 
(Thompson, Aurora), with theoretical performance guarantees which were confirmed by our 
simulations (Figure S3 and S4). In particular, the separate contributions of relative and total 
uncertainty to choices are derived directly from UCB and Thompson sampling, implementing 
directed and random exploration, respectively. Fourth, this allows us to link relative and total 
uncertainty and their neural correlates directly to subject behavior and interpret the results in 
light of the corresponding exploration strategies.” 



b/ "Our UCB/Thompson hybrid model explains how TU is used by the brain". 
This is also incorrect : the UCB/Thompson hybrid model predicts brain 
activations correlating with V/TU, but no such activations were found. 

We should have clarified that what we mean is that the model provides a principled 
explanation of the role of TU in guiding choices, without committing to a particular mechanism. 
While it is puzzling that we found no results for V/TU, this is likely due to the particular 
mathematical form of the choice probability that we used in our analysis, which need not 
necessarily correspond to the underlying neural mechanism. For example, a sequential 
sampling scheme (e.g. a DDM) that samples from the UCB-adjusted posteriors would not 
predict explicit encoding of V/TU since it is not involved in the computations, yet it would still 
predict encoding of TU as part of storing and updating the posteriors, and importantly, it will 
make choice predictions that are consistent with our hybrid model (which, in contrast, does 
involve V/TU). For a detailed derivation, please refer to Gershman (2018). 

We have the following paragraph in the discussion section: 

“One mechanism by which this could occur is suggested by sequential sampling models, which 
posit that the decision value DV drives a noisy accumulator to a decision bound, at which point 
a decision is made (Busemeyer 1993). This is consistent with Gershman (2019)'s analysis of 
reaction time patterns on the same task as ours. It is also consistent with studies reporting 
neural signatures of evidence accumulation during perceptual as well as value-based judgments 
in human motor cortex (Gratton 1988, Graziano 2011, Hare 2011, Gluth 2012, Polania 2014). It 
is worth noting that for our right-handed subjects, left motor cortex is the final cortical area 
implementing the motor choice. One potential avenue for future studies would be to 
investigate whether the decision value area will shift if subjects respond using a different 
modality, such as their left hand, or using eye movements. This would be consistent with 
previous studies that have identified effector-specific value coding in human cortex (Gershman 
2009).” 

And we added the following text to the next paragraph: 

"A sampling mechanism could thus explain both the negative sign of the |DV| effect in motor 
cortex, as well as the absence of V/TU in the BOLD signal.” 

c/ "We show that neural activity predicts behavioral variance" 
These analyses are welcomed but are purely confirmatory without providing new 
insights. (see also my comment below in point 3) 



We believe that the confirmatory analyses provide an important link between the neural 
correlates of the uncertainty quantities and the corresponding exploration strategies, 
consistent with their theoretically predicted role in guiding behavior. 

d/ "We investigate the downstream circuitry which combines RU and TU to 
compute choice". 
As reported in the paper, the additional finding in the motor cortex added in the 
revised paper remain anecdotal: the related analysis does not include reaction 
times as a confound factor. Including RTs as a factor of no-interest is the current 
standard in fMRI to assess activations associated with the decision variable..  

We included the following analysis in the Supplemental Information section: 

“One potential confound of our decision value result (GLM 2) in motor cortex is reaction 
time (RT). When including RT's as a parametric modulator in addition to DV (GLM 2A), 
we found no effect of DV in motor cortex (no voxels survived cluster FWE correction). 
Note, however, that the sequential sampling framework predicts a strong relationship 
between DV and RT's: when DV is close to zero, the two options are similar to each 
other and hence it takes longer for the evidence accumulator to reach a decision bound. 
This prediction was manifested in our data (coefficient = -0.006, F(1,9717) = 23.8, p = 
0.000001, mixed effects linear regression: RT ~ 1 + DV + (1 + DV | SubjectID)), 
indicating that the negative result could be due to RT's capturing some of the shared 
variance in the BOLD signal. 

To account for this possibility, we performed random effects Bayesian model 
comparison (Rigoux 2014) between the GLM with DV alone (GLM 2), the GLM with both 
DV and RT (GLM 2A), and a GLM with RT alone (GLM 2B) in the left motor cortex ROI 
identified by GLM 2 (Figure 5A). Specifically, following our previous work (Tomov 2018), 
we approximated the log model evidence as -0.5 * BIC, where the BIC was computed 
based on the residual variance of the GLM fits within a 10 mm sphere around the peak 
voxel in left motor cortex from GLM 2 (MNI [-38 -8 62]). This analysis strongly favored 
GLM 2A (PXP = 0.96) over GLM 2 (PXP = 0) and GLM 2B (PXP = 0.04). This indicates 
that the BOLD signal in left primary motor cortex is best explained by combination of DV 
and RT, rather than RT or DV alone, pointing to decision value coding in left primary 
motor cortex above and beyond RT's.” 

Additionally and possibly relatedly, no previous studies report motor activations 
associated with the decision variable. Previous studies report such activations in 
the medial PFC, lateral PFC or in the parietal cortex



We added the following to our discussion: 

“However, most of these studies consider the values of the available options (Q) or the 
difference between them (V), without taking into account the uncertainty of those quantities. 
This suggests that the values encoded in those regions are divorced from any uncertainty-
related information, which would render them insufficient to drive uncertainty-guided 
exploratory behavior on their own. Uncertainty would have to be computed elsewhere and 
then integrated with these value signals by downstream decision circuits closer to motor 
output” 

Moreover, the reported analysis arbitrary focused on positive correlations, 
whereas the meaningful correlation reported in previous studies is the negative 
correlation between brain activations and the decision variable. 

In the revision, we already report both positive and negative contrasts (Fig 5, S7, S9; Tab S3, S4, 
S5). Note that the DV effect in motor cortex is in fact negative, consistent with the previous 
studies, which we highlight in the discussion. 

Initial major point (2):  
My original concern was that the reported results seem to rule out rather than to 
support the authors’ model. Regarding behavioral data, it is clear that in Fig. S2, 
there are significant differences between participants’ and model’s learning 
curves: from trial 1 to trial 2 in condition SS, subjects’ performances decreased, 
whereas the model performance increased, with a significant difference between 
the two curves.  

The difference from trial 1 to trial 2 is not significant for the subjects or the model: 
SS trial 1 vs. trial 2, human: t(30) = 0.802, p = 0.4290  
SS trial 1 vs. trial 2, model: t(30) = -1.517, p = 0.1398 

Moreover, in conditions RR, RS and SR, subjects reached a plateau at ~90% 
performance, whereas the model reached a clearly significant lower plateau at 
~80% performance. The authors inappropriately and unconvincingly responded 
that they only “believe” the model “qualitatively” accounts for the data!!!  

Our model does reach a lower asymptotic performance compared to the participants. This 
could be due to model parameters that were not fit to choices, e.g. a discrepancy between our 
prior variances and the subjects’, causing them to decrease their uncertainty faster and start 
exploiting sooner. Since our primary interest is in exploratory behavior rather than 
asymptotic performance, we focus on the key parameters of the model that arbitrate 
between the different exploration strategies (the w’s). We would like to highlight that the goal 



of the model is not to perfectly capture every aspect of behavior (something which is 
beyond the scope of any model) but to explain the structure of exploration algorithms 
that the brain is using. We capture this structure quantitatively (Tab S1), not just qualitatively, 
consistent with previous work in our lab (Gershman 2018, Gershman & Tzovaras 2018, 
Gershman 2019), which shows that these modeling results are robust.  

Regarding fMRI data, the authors acknowledge that they found no activations 
associated with V and V/TU, which are actuallys two critical predictions from the 
proposed model.  

We discuss the absence of V/TU in the discussion section: 

“Another puzzling aspect of our results that merits further investigation is the lack of any 
signal corresponding to V/TU. This suggests that the division is performed by circuits 
downstream from right DLPFC, such as motor cortex. Alternatively, it could be that, true 
to Thompson sampling, the brain is generating samples from the UCB-adjusted 
posterior value distributions and comparing them to make decisions. In that case, what 
we are seeing in motor cortex could be the average of those samples, consistent with 
the analytical form of the UCB/Thompson hybrid, which is derived precisely by 
averaging over all possible samples (Gershman 2018). A sampling mechanism could 
thus explain both the negative sign of the DV effect in motor cortex, as well as the 
absence of V/TU in the BOLD signal. Further studies could disambiguate between these 
alternatives and investigate the precise mechanism of random exploration and how it is 
implemented by neural circuits.” 

For V, they reported additional analyses, which are however fully inconclusive 
as not controlling for co-linearity effects across regressors. As a reader, I still 
conclude from the revised paper that problematically, the reported data set 
appears to rule out rather than support the proposed model.  

Since our primary interest was uncertainty-driven exploration, we focused our task design on 
maximizing power for the uncertainty-related quantities in our model (V, RU, V/TU). Our VIF 
analysis (Fig S8) shows that indeed, V is correlated with the other regressors, which reduces 
power for V when controlling for the other regressors since they capture some of the shared 
variance. Hence the fact that we did not find any regions for V when controlling for the other 
regressors highlights a weakness of our experimental design, but does not necessarily rule out 
our model. Including V alone (as is done in many other studies which do not consider the role of 
uncertainty in decision-making and are not plagued by this problem, simply because they lack 
these confounding regressors) is the only way to circumvent this issue and the fact that this 
produces a result consistent with the prior literature is reassuring. 

We added the following to the Supplemental Information section: 



“ROI analysis using an anatomically defined vmPFC region (as a conjunction of Superior frontal 
gyrus, medial orbital; Superior frontal gyrus, medial; and Gyrus rectus from the AAL2 atlas) 
showed a significant positive effect of V in left vmPFC (t(30) = 2.14, p = 0.04, t-test of ROI-
averaged betas across subjects).” 

Initial major point (3) 
As requested, the author conducted the proper model comparisons in the revised 
paper based on BICs, but missed to report the related statistical tests. They need 
to report paired T-tests or to use an exceedance probability approach to compare 
BICs between models.  

We fitted a fixed effects version of the model separately for each subject and computed the 
protected exceedance probabilities (PXPs), which show that our model is superior to the 
alternatives (PXP = 1). Note that for a mixed effects analysis (which we use in the rest of our 
paper) we cannot compute single-subject BICs because they are coupled, and for the same 
reason we cannot compute PXPs. The Bayesian interpretation of the group-level BIC is that it is 
proportional to an approximation of the negative log marginal likelihood, which directly 
quantifies the model evidence (refer to Kass & Raftery, 1995). We added the following to our 
results section: 

"Bayesian model comparison strongly favored the hybrid model over alternative models 
(protected exceedance probability = 1, Rigoux et al. 2014)” 

And the following to our method section: 

“For Bayesian model comparison, we fit w separately for each subject using fixed effects 
maximum likelihood estimation in order to obtain a separate BIC for each subject. We 
approximated the log model evidence for each subject as -0.5*BIC and used it to compute the 
protected exceedances probability for each model, which is the probability that the model is 
most prevalent in the population (Rigoux et al., 2014).” 



Reviewers' comments: 

Reviewer #3 (Remarks to the Author): 

I appreciate the authors’ efforts to respond to my previous reviews and the details they provide 

regarding the initial bug in their analyses. The present study uses a behavioral protocol dissociating total 

and relative uncertainty, while in Badre et al. (2012) these variables are orthogonalized in the regression 

analyses. The present study reports activations replicating those previously reported in Badre et al. 

(2012). The authors then claim in the paper that their study provides new insights as the results are 

derived from a normative adaptive model predicting activations associated with V/TU and reveal motor 

activations associated with the decision variable. However, the revised paper along with the additional 

analyses regarding motor activations still provides clear evidence against the authors 'claims: 

A- A first major problem is that in contradiction with the prediction, they found no activations 

associated with V/TU. The authors then explain in the discussion that this variable might not be explicitly 

encoded in neural networks implementing sequential sampling models. If the authors believe so and if 

they want their paper to go beyond Badre et al. (2012) and beyond a “wishful thinking”, as they claim, 

they have to carry out the analyses comprising sequential sampling regressors rather than V/TU 

B- A second major, even more critical problem is that the additional analyses reported in the revised 

supplementary information show the evidence that in contradiction with authors’ claims, motor 

activations are actually unrelated to the Decision Variable (DV) but associated with Reaction Times (RT). 

When controlling for the confounding factor RT, as I requested in my previous review and as 

systematically performed in previous studies investigating neural correlates of DVs, the authors found 

that in the regression analysis, motor activations were unassociated with variable DV. The conclusion 

should be that consistent with the literature, motor activations reflect motor responses instead of 

decision variable DV. However, to overcome this problem, the authors carried out a notoriously, 

statistically biased analysis. The analysis falls into the double-dipping fallacy (Kriegeskorte et al., Nature 

Neuroscience, 2009) as performed on data selected within the cluster associated with DV according to 

the regression analysis that removes the confounding factor RT. Consequently, no statistically significant 

conclusion can be drawn from the authors’ Bayesian model comparison analysis. Overall, the analyses 

reported in the supplementary information appears to rule out the claims the authors made about 

motor activations and shows that motor activations are simply related to motor responses, as expected 

from previous studies. Thus, the authors need to remove from their manuscript including the abstract, 

all the statements related to motor activations, in particular those in the Discussion stating that the 

motor cortex may integrate values (possibly encoded in the vmPFC) and other decision-related variables 

(note also that problematically, there are no connections between the vmPFC and the motor cortex). 

Additionally, the main manuscript should explicitly mention that when controlling for RTs, motor 

activations become unrelated to DV. 

In conclusion, I think the revised paper presents a valid replication of Badre et al. (2012) using a 



behavioral protocol with some advantages and disadvantages, but provides no new insights supported 

by the data. 



Reviewer #3 (Remarks to the Author): 

I appreciate the authors’ efforts to respond to my previous reviews and the 
details they provide regarding the initial bug in their analyses. The present study 
uses a behavioral protocol dissociating total and relative uncertainty, while in 
Badre et al. (2012) these variables are orthogonalized in the regression 
analyses. The present study reports activations replicating those previously 
reported in Badre et al. (2012). The authors then claim in the paper that their 
study provides new insights as the results are derived from a normative adaptive 
model predicting activations associated with V/TU and reveal motor activations 
associated with the decision variable. However, the revised paper along with the 
additional analyses regarding motor activations still provides clear evidence 
against the authors 'claims: 

A- A first major problem is that in contradiction with the prediction, they found no 
activations associated with V/TU. The authors then explain in the discussion that 
this variable might not be explicitly encoded in neural networks implementing 
sequential sampling models. If the authors believe so and if they want their paper 
to go beyond Badre et al. (2012) and beyond a “wishful thinking”, as they claim, 
they have to carry out the analyses comprising sequential sampling regressors 
rather than V/TU 

To support our interpretation in terms of sampling, we performed an analysis showing 
that the residual variance in the decision value signal is correlated with (squared) total 
uncertainty, as predicted by a sampling mechanism. We added the following to the 
results section:

“Variability in the decision value signal scales with total uncertainty 

The lack of any main effect for V/TU in GLM 1 could be explained by a mechanistic 
account according to which, instead of directly implementing our closed-form probit 
model (Eq. 4), the brain is drawing and comparing samples from the posterior value 
distributions. This corresponds exactly to Thompson sampling and would produce the 
exact same behavior as the analytical model. However, it makes different neural 
predictions, namely that: 1) there would be no explicit coding of V/TU, and 2) the 
variance of the decision value would scale with (squared) total uncertainty. The latter is 
true because the variance of the Thompson sample for arm k on trial t is sigmat

2(k), and 
hence the variance of the sample difference is sigmat

2(1) + sigmat
2(2) = TU2. Thus while 

we cannot infer the drawn samples on any particular trial, we can check whether the 
unexplained variance around the mean decision value signal in left M1 is correlated with 
TU2. 



To test this hypothesis, we correlated the residual variance of the GLM 2 fits in the 
decision value ROI (Figure 5A; left M1, peak MNI [-38 -8 62]) with TU2. We found a 
positive correlation (t(30) = 2.06, p = 0.05, two-tailed t-test across subjects of the within-
subject Fisher z-transformed Pearson correlation coefficients), consistent with the idea 
that total uncertainty affects choices via a sampling mechanism that is implemented in 
motor cortex.” 

And the following to the results section: 

“Residual Variance Analysis 

To show that the variance of the decision value signal scales with total uncertainty, we 
extracted the residuals of the GLM 2 fits from the DV ROI (Figure 5; left M1, peak MNI [-
38 -8 62]), averaged within a 10-mm sphere around the peak voxel. As with the 
decoding analysis, we accounted for the hemodynamic lag by taking the residuals 5 s 
after trial onset to correspond to the residual activations on the given trial. We then 
performed a Pearson correlation between the square of the residuals (the residual 
variance) and TU2 across trials for each subject. Finally, to aggregate across subjects, 
we Fisher z-transformed the resulting correlation coefficients and performed a two-tailed 
one sample t-test against zero.” 

We also added the following to the abstract: 

“The variance of this decision value signal scaled with total uncertainty, consistent with 
a sampling mechanism for random exploration.” 

And the following to the discussion: 

“Such a sampling mechanism also predicts that the variance of the decision value signal 
should scale with (squared) total uncertainty, which is precisely what we found. Overall, 
our data suggest that random exploration might be implemented by a sampling 
mechanism which directly enters the drawn samples into the decision value 
computation in motor cortex.” 

B- A second major, even more critical problem is that the additional analyses 
reported in the revised supplementary information show the evidence that in 
contradiction with authors’ claims, motor activations are actually unrelated to the 
Decision Variable (DV) but associated with Reaction Times (RT). When 
controlling for the confounding factor RT, as I requested in my previous review 
and as systematically performed in previous studies investigating neural 
correlates of DVs, the authors found that in the regression analysis, motor 



activations were unassociated with variable DV. The conclusion should be that 
consistent with the literature, motor activations reflect motor responses instead of 
decision variable DV. However, to overcome this problem, the authors carried out 
a notoriously, statistically biased analysis. The analysis falls into the double-
dipping fallacy (Kriegeskorte et al., Nature Neuroscience, 2009) as performed on 
data selected within the cluster associated with 
DV according to the regression analysis that removes the confounding factor RT. 
Consequently, no statistically significant conclusion can be drawn from the 
authors’ Bayesian model comparison analysis

We circumvented the circularity issue using cross-validation. Now the data we use for 
ROI selection model comparison are completely independent. We added the following 
to the supplement: 

“Specifically, following our previous work (Tomov et al., 2019), we approximated the log 
model evidence as -0.5 * BIC, where the BIC was computed based on the residual 
variance of the GLM fits within a 10 mm sphere around the peak voxel in left M1 from 
GLM 2. To prevent circularity (Kriegeskorte et al., 2009), we performed this using leave-
one-subject-out cross-validation: for each subject, we computed the BIC in the peak 
ROI from the group-level DV contrast computed using all other subjects. Since SPM fits 
each subject separately, this means that we used independent data for ROI selection 
and model comparison, resulting in an unbiased analysis. To ensure the validity of our 
inference, we confirmed that the resulting ROIs were highly overlapping (Figure S10), 
with all but one subject having the same left M1 ROI as the contrast using all subjects 
(Figure 5A, MNI [-38 -8 62]). This analysis strongly favored GLM 2A (PXP = 0.96) over 
GLM 2 (PXP = 0) and GLM 2B (PXP = 0.04)” 

Overall, the analyses reported in the supplementary information appears to rule 
out the claims the authors made about motor activations and shows that motor 
activations are simply related to motor responses, as expected from previous 
studies. Thus, the authors need to remove from their manuscript including the 
abstract, all the statements related to motor activations,  

We hope that our new analyses make the case that motor cortex indeed computes a 
decision value via a sampling mechanism, so we decided to keep the statements in the 
abstract and discussion. 

in particular those in the Discussion stating that the motor cortex may integrate 
values (possibly encoded in the vmPFC) and other decision-related variables 
(note also that problematically, there are no connections between the vmPFC 
and the motor cortex). 

 We removed the suggestion that motor cortex is integrating values from vmPFC. 



Additionally, the main manuscript should explicitly mention that when controlling 
for RTs, motor activations become unrelated to DV. 

We added the following to the results: 

“Another possible confound is reaction time (RT). When controlling for RT, motor cortex 
activations become unrelated to DV (GLM 2A in Supplemental Information). This could 
be explained by a sequential sampling implementation of our model (see Discussion), 
according to which RT would depend strongly on DV. Consistent with this interpretation, 
model comparison revealed that left M1 activity is best explained by a combination of 
DV and RT, rather than DV or RT alone (see Supplemental Information).” 

Additionally, we would like to point out that we find the practice of controlling for RT's by 
including a RT regressor to be not that common, precisely because of the strong 
relationship between DV and RT (e.g. De Martino, 2013, NatNeurosci). 

In conclusion, I think the revised paper presents a valid replication of Badre et al. 
(2012) using a behavioral protocol with some advantages and disadvantages, but 
provides no new insights supported by the data 

We hope our additional analyses address the concerns of the reviewer. Regarding the 
novelty of our results, we respectfully beg to differ. Even without considering the 
sampling result and motor cortex result, we believe that our results go beyond the Badre 
et al. study, which 1) did not orthogonalize RU and TU in the task design, 2) was 
underpowered by modern standards (only 15 subjects), 3) did not provide a 
computational rationale for why TU would be computed by the brain at all, and 4) did not 
show that variance in the TU encoding could predict variance in behavior. Our results 
bring the previous result of Badre et al. under a broad normative framework for 
uncertainty-guided exploration and show how this framework maps onto different brain 
regions. 



**REVIEWERS' COMMENTS: 

Reviewer #3 (Remarks to the Author): 

The authors properly responded to my comments. I think their last revisions and the inclusion of 

sampling analyses improved a lot the paper and make the results meaningful and beyond previous work 

from Badre et al.. In my opinion, the paper is now suitable for publication 

As a final advice to the authors: while they said they cannot infer the drawn samples on any particular 

trial, advanced particle filtering methods actually exist to make such analyses, which in particular allow 

to marginalising out over sampling distributions and to properly compute model posterior probabilities. 

But this approach certainly goes beyond the scope of the present study. 



Reviewer #3 (Remarks to the Author): 

The authors properly responded to my comments. I think their last revisions and the 
inclusion of sampling analyses improved a lot the paper and make the results 
meaningful and beyond previous work from Badre et al.. In my opinion, the paper is now 
suitable for publication 
As a final advice to the authors: while they said they cannot infer the drawn samples on 
any particular trial, advanced particle filtering methods actually exist to make such 
analyses, which in particular allow to marginalising out over sampling distributions and 
to properly compute model posterior probabilities. But this approach certainly goes 
beyond the scope of the present study.

We thank the reviewer for the suggestion and we agree that it is beyond the scope of the 
present work. 


