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SUPPLEMENTARY NOTE 1: TIGHT-BINDING MODEL

The lattice has four sites denoted by (A,B,C,D). With the distance between nearest-

neighbor lattice sites normalized to 1, the relative coordinates of sites A, B, C, D in each unit

cell are respectively (0, 0, 0, 0), (1, 0, 1, 0), (1, 0, 0, 0) and (0, 0, 1, 0), and the lattice vectors

are R1 = (1,−1, 0, 0), R2 = (1, 1, 0, 0), R3 = (0, 0, 1,−1), and R4 = (0, 0, 1, 1).

The full real-space tight-binding Hamiltonian is written in second-quantized notation as

[arXiv:1806.05263]:

H = Hx +Hy +Hz +Hw +H1 +H2,

Hx = J
∑
mnjl

(
c†mnjlamnjl + a†m+1,n+1,jlcmnjl − b†mnjldmnjl − d†m+1,n+1,jlbmnjl + h.c.

)
Hy = J

∑
mnjl

(
c†m−1,njlamnjl − b†m−1,njldmnjl + h.c

)
Hz = J

∑
mnjl

(
d†mnjlamnjl + a†mnj+1,l+1dmnjl + b†mnjlcmnjl + c†mnj+1,l+1bmnjl + h.c.

)
Hw = J

∑
mnjl

(
d†mnj−1,lamnjl + b†mnj−1,lcmnjl + h.c

)
H1 = m

∑
mnjl

(
a†mnjlamnjl + b†mnjlbmnjl − c†mnjlcmnjl − d†mnjldmnjl

)
H2 = J ′

∑
mnjl

(
a†m+1,n+1,j+1,l+1,amnjl + b†m+1,n+1,j+1,l+1,bmnjl

− c†m+1,n+1,j+1,l+1,cmnjl − d†m+1,n+1,j+1,l+1,dmnjl + h.c
)

+ J ′′
∑
mnjl

(
a†m+1,n+1,j−1,l−1,amnjl + b†m+1,n+1,j−1,l−1,bmnjl

− c†m+1,n+1,j−1,l−1,cmnjl − d†m+1,n+1,j−1,l−1,dmnjl + h.c
)
.

Here, the (m,n, j, l) subscripts index each unit cell in terms of elementary lattice vectors,

and the αmnjl (α†mnjl) operators annihilate (create) a particle on site α ∈ {a, b, c, d}.

By Fourier transforming the operators and choosing J = 1 and J ′ = −J ′′ = 2, we obtain

the k-space Hamiltonian

H(k) = (2 cos kx + cos ky)Γ1 + sin kyΓ2 + (2 cos kz + cos kw)Γ3

+ sin kwΓ4 +
[
m+ 4 cos(2kx+ 2kz)− 4 cos(2kx− 2kz)

]
Γ5, (1)
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Supplementary Figure 1. Bulk and surface dispersion relations. a–c Bulk dispersion of

the tight-binding model in the ky-kw plane, with kx = kz = 2π/3, for m = 5, 6, 7. d–e Surface

dispersion for a lattice with m = 0 and truncated to Nx = 30 unit cells (with open boundary

conditions) in the x direction, plotted in the kw-kz plane for ky = 0 (d), and in the kw-ky plane

for kz = 2π/3 (e).

where Γ are the Dirac matrices

Γ1 =


0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0

 ,Γ2 =


0 0 −i 0

0 0 0 −i

i 0 0 0

0 i 0 0

 ,Γ3 =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 ,Γ4 =


0 0 0 −i

0 0 i 0

0 −i 0 0

i 0 0 0

 ,Γ5 =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

.

For kx = kz = 2π/3, Fig. 1 shows the ky − kw dispersion near one of the four Dirac cones.

The gap closes at m = 6 with the Dirac point lying at ky = kw = 0.

When the lattice is truncated, surface states appear along the surface in the topologically

nontrivial phase (m ≤ 6), as shown in Fig. 1d–e. In this case, the truncation occurs along

the x direction, and the surface state cones are centered at ky = kw = 0, kz = ±2π/3.
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SUPPLEMENTARY NOTE 2: CIRCUIT DESIGN DETAILS

Here, we provide additional details on the mapping between the electric circuits and tight-

binding Hamiltonians. Let Ii be the external current injected into node i, Vj the voltage

(relative to ground) on node j, and Dij the conductance between nodes i and j for i 6= j.

Moreover, let the conductance between node i and ground be

D
(g)
ii = −Dii +D′ii. (2)

By Kirchhoff’s laws,

Ii = D
(g)
ii Vi +

∑
j

Dij(Vi − Vj) (3)

=
∑
j

[
−Dij +

(
−Dii +D′ii +

∑
k

Dik

)
δij

]
Vj (4)

=
∑
j

[
−Dij +

(
D′ii +

∑
k 6=i

Dik

)
δij

]
Vj. (5)

Note that in Eq. (3), the sum can be taken either over all j, or equivalently over j 6= i. We

now adjust D′ii so that, at a reference working frequency f0,

D′ii(f0) +
∑
j 6=i

Dij(f0) = iαE (6)

for each node i, with some constant α and target energy E. At f = f0, Eq. (5) then becomes

Ii(f0) = −iα
∑
j

[
Hij(f0)− E δij

]
Vj(f0), (7)

Dij(f) ≡ iαHij(f). (8)

We require Hij(f0) to match the target tight-binding Hamiltonian, which has parameters

J = 1, J ′ = −J ′′ = 2. For real α, positive (negative) real values of Hij correspond to

capacitances (inductances). As described in the main text, by choosing α and f0 we can

assign the following circuit elements to the lattice model’s hopping terms:

C0 ↔ J = 1 (positive NN hopping)

C ′ = 2C0 ↔ J ′ = 2 (positive long range hopping)

L0 ↔ −J = −1 (negative NN hopping)

L′ = L0/2 ↔ J ′′ = −2 (negative long range hopping)

(9)
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where

2πf0 = 1/
√
L0C0, α = 2πf0C0. (10)

For each node, we determine the grounding conductance required to satisfy Eq. (6).

Suppose node i is connected to other nodes by pi type-C0 capacitors, qi type-L0 inductors,

p′i type-C ′ capacitors, and q′i type-L′ inductors (these connections depend on which sublattice

the node lies on, and whether it lies in the bulk or on the surface). Then

∑
j 6=i

Dij(f) = 2πipifC0 +
qi

2πifL0

+ 2πip′ifC
′ +

q′i
2πifL′

= 2πif C0

(
pi + 2p′i − (qi + 2q′i)

f 2
0

f 2

)
.

(11)

Taking f = f0 and plugging into Eq. (6) gives

D′ii(f0) = iαE −
∑
j 6=i

Dij(f0)

= 2πif0C0

(
E − pi − 2p′i + qi + 2q′i

)
.

(12)

The on-site mass term is Hii(f0) = ±m, depending on whether the node is on the A,B or

C,D sublattices. Hence, the grounding conductance must satisfy

D
(g)
ii (f0) = −Dii(f0) +D′ii(f0)

= 2πif0C0

(
E ∓m− pi − 2p′i + qi + 2q′i

)
.

(13)

To achieve this in the experiment, we connect each node i to ground with 6 − pi type-C0

capacitors, 3− qi type-L0 inductors, 4− p′i type-C ′ capacitors, and 4− q′i type-L′ inductors.

Additionally, (i) we connect each node to ground by an extra inductor Lg, and (ii) if node

i belongs to sublattice C or D, we connect it to ground by an extra capacitor Cm = 2mC0.

As a result, the grounding conductance of node i at an arbitrary frequency f is

D
(g)
ii = 2πi(6− pi)fC0 +

(3− qi)
2πifL0

+ 2πi(4− p′i)fC ′ +
(4− q′i)
2πifL′

+
1

2πifLg

+ 2πi(m∓m)fC0

(14)

where ∓ refers to sublattice A,B or C,D respectively. At f = f0, this satisfies Eq. (13) if we

pick
L0

Lg

= 3 +m− E. (15)
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Hence,

D
(g)
ii (f) = 2πifC0

[
14 +m∓m− pi − 2p′i +

(
E − 14−m+ qi + 2q′i

)f 2
0

f 2

]
. (16)

Returning to Eq. (5), define the quantity in the parentheses—which gives rise to the E

term in Eq. (7)—as

iα Ei(f) = D′ii(f) +
∑
k 6=i

Dik(f) (17)

= D
(g)
ii (f) +Dii(f) +

∑
j 6=i

Dij(f)
f→f0−→ iαE. (18)

Eq. (7) then generalises to

Ii(f) = −iα
∑
j

[
Hij(f)− Ei(f) δij

]
Vj(f). (19)

Now observe that in Eq. (18), the first term D
(g)
ii (f) is defined by Eq. (16) for any f , and

the third term is likewise defined by Eq. (11) for any f . However, Dii(f) is defined only at

f = f0. This turns out not to be a problem for our system of equations, since this term is

exactly cancelled by the Hamiltonian term in Eq. (19), which possesses the same ambiguity.

We are therefore free to give Dii(f) any frequency dependence, consistent with its value at

f0 (i.e., Dii(f0) = iαHii(f0) = ±iαm). A convenient choice is

Dii(f) = iαE −D(g)
ii (f)−

∑
j 6=i

Dij(f)
f→f0−→ iαHii(f0) (20)

⇒ iα Ei(f) = iαE for all i, f. (21)

With this choice, Ei(f) becomes i-independent, and Eq. (19) simplifies to

Ii(f) = −iα
∑
j

[
Hij(f)− E δij

]
Vj(f). (22)

This can be interpreted as a family of response equations with an f -dependent Hamiltonian

and fixed energy E. For general f , the Hamiltonian’s hopping terms are determined by the

circuit elements summarised in Eq. (9), and its on-site mass term is determined by Eq. (20);

for f = f0, it reduces to the target Hamiltonian.

Suppose E is in a topological gap of the target Hamiltonian, so that topological surface

states exist at frequency f0. As we vary f away from f0, the Hamiltonian varies smoothly,
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deviating from the form of the target Hamiltonian (e.g., the positive and negative nearest

neighbor hoppings become unequal in magnitude). Throughout this variation, so long as

E lies in a gap, the topological properties are unchanged and the topological surface states

continue to exist. Thus, the f -dependent response of the circuit behaves like a bandstructure.

For small m, the circuit exhibits a finite-width topological bandgap in f -space. Tuning

m closes this bandgap, and causes the surface states to disappear.

SUPPLEMENTARY NOTE 3: FURTHER CIRCUIT SIMULATION RESULTS

Supplementary Figure 2 shows the simulated LDOS profile for E = 0,m = 0, 4, 8 and

E = 1,m = 0 (using 5Ω resistances), corresponding to the experimental results shown in

Fig. 2c–f of the main text. Disorder is not included in these simulations.

Supplementary Figure 3 shows how the simulated frequency-dependent LDOS measure

is affected by circuit resistance. The upper row shows the outcomes for realistic resistances

(matching Fig. 4 and Fig. 3 of the main text). The lower row shows the results with much

lower resistance (0.5Ω for all capacitors and inductors).

From these results, we see that the main effect of the circuit resistances is to smooth out

the frequency dependence of the LDOS measure. The signatures of the topological surface

states and bulk bandgap are present in either case.
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Supplementary Figure 2. Simulated LDOS distributions. The lattice parameters are E =

1,m = 0 and E = 0,m = 0, 4, 8; compare to Fig. 2c–f of the main text.
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Supplementary Figure 3. Simulated frequency-dependent LDOS measure at different

resistances. Upper row: manufacturer-provided resistances, corresponding to the first row of

Fig. 4b. Lower row: 0.5Ω in all capacitors and inductors.

SUPLEMENTARY NOTE 4: FREQUENCY RESPONSE FOR DIFFERENT MASS

PARAMETERS

Supplementary Figure 4 shows the frequency dependence of the LDOS measure Re[Zr],

averaged over on surface and bulk sites, for m = 0, 1, . . . , 8. In Fig. 3b–e and g–j of the

main text, only a few values of m were shown for brevity. The experimental results are

shown in Fig. 4a, and the corresponding simulation results are shown in Fig. 4b. The dis-

crepancies between experimental and simulation results can be explained by the disorder in

the experimental samples: according to the manufacturer data sheets, individual capacitors

and inductors have 10% tolerance in the stated capacitances and inductances; moreover, as

discussed in Supplementary Note 4, there are variations in the resistances of the individual

capacitors, inductors, and interconnects.
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Supplementary Figure 4. Experimental and simulated frequency responses of the cir-

cuits. a Measured frequency dependence of Re[Zr] averaged over surface and bulk sites, for

m = 0, 1, . . . , 8. The measurements are taken over sites in the 2D plane (y, w) = (1, 0), and f0 is

indicated by the vertical dotted lines. b The corresponding circuit simulation results, with solid

curves and dashes assuming no disorder in the circuit components, and red and blue areas indicat-

ing the range of impedances with 10% variation in individual capacitances and inductances, over

50 disorder realisations.
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