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I. Weights of Two Circularly-Polarized-Like Modes in Perturbed 

Counterparts under Reciprocal Perturbations of Four-Fold 

Symmetric Cavities 

 

The wave equation governing the unperturbed modal electric field 𝐄(0)(𝐫) which 

represents 𝐄R(𝐫) and 𝐄L(𝐫) of the RCP- and LCP-like modes, respectively, in a 4-

fold rotationally symmetric cavity can be expressed as 

∇ × ∇ × 𝐄(0)(𝐫) − (
𝜔r

𝑐
)

2

𝜖r̿
(0)(𝐫, 𝜔r)𝐄(0)(𝐫) = 𝟎, 

(S1.1a) 

𝐑𝜋/2𝜖r̿(𝐑𝜋/2
−1 𝐫, 𝜔r)𝐑𝜋/2

−1 = 𝜖r̿(𝐫, 𝜔r), 

(S1.1b) 

𝐑𝜋/2 = (
0 −1 0
1 0 0
0 0 1

), 

(S1.1c) 

where 𝑐 is the speed of light in vacuum;  𝜖r̿
(0)(𝐫, 𝜔r) is the relative permittivity tensor 

corresponding to the cavity with gain and exhibits the 4-fold rotation symmetry in Eq. 

(S1.1b); 𝐑𝜋/2 is the matrix associated the rotation around the 𝑧 axis by 𝜋/2; and 𝜔r 

is the (real) resonant frequency of the two CP-like modes at the threshold. For fair 

comparisons, we demand that the integrals of square field magnitudes associated with 



the two CP-like modes in the 4-fold rotationally symmetric active region Ωa
(0)

  

(assumed to be composed of isotropic gain medium) to be identical, namely, 

∫ d𝐫 |𝐄R(𝐫)|2
 

Ωa
(0)

= ∫ d𝐫 |𝐄L(𝐫)|2
 

Ωa
(0)

. 

(S1.2) 

In the presence of a perturbation ∆𝜖r̿(𝐫, 𝜔) of relative permittivity tensor which is 

reciprocal [∆𝜖r̿
T(𝐫, 𝜔) = ∆𝜖r̿(𝐫, 𝜔)] but breaks the 4-fold rotation symmetry at a new 

resonance frequency 𝜔, the overall permittivity 𝜖r̿(𝐫, 𝜔) which describes fields 𝐄(𝐫) 

of perturbed modes [including the nondegenerate ones 𝐄1(𝐫)  and 𝐄2(𝐫)  originating 

from 𝐄R(𝐫)and 𝐄L(𝐫)] at new thresholds is 

𝜖r̿(𝐫, 𝜔) = 𝜖r̿
(0)(𝐫, 𝜔) + ∆𝜖r̿(𝐫, 𝜔) + ∆𝜖r,a𝑈(𝐫)𝐼,̿ 

(S1.3) 

where ∆𝜖r,a is an imaginary number representing the required adjustment of relative 

permittivity in the active region which makes the mode self-oscillate (real 𝜔) with a 

constant magnitude in the perturbed environment; 𝑈(𝐫) is an indicator function which 

is unity in the active region Ωa but zero elsewhere; and 𝐼 ̿ is the 3-by-3 identity tenor. 

For simplicity, we assume that ∆𝜖r̿(𝐫, 𝜔) is only present in a finite region around the 

cavity. Also note that the indicator function 𝑈(𝐫) of the active region Ωa need not be 



4-fold symmetric in the presence of perturbations, in contrast to the counterpart 𝑈(0)(𝐫) 

of the original active region Ωa
(0)

 which has the 4-fold rotation symmetry. In analogy 

to Eq. (S1.1a), the wave equation for 𝐄(𝐫) is written as 

∇ × ∇ × 𝐄(𝐫) − (
𝜔

𝑐
)

2

𝜖r̿(𝐫, 𝜔)𝐄(𝐫) = 𝟎. 

(S1.4) 

    We then rewrite Eq. (S1.4) in a perturbative manner. The frequency difference 

Δ𝜔 ≡ 𝜔 − 𝜔r and permittivity variation ∆𝜖r,a should vary linearly with ∆𝜖r̿(𝐫, 𝜔r). 

Therefore, to the order O[∆𝜖r̿(𝐫, 𝜔r)], we recast Eq. (S1.4) in the following form: 

∇ × ∇ × 𝐄(𝐫) − (
𝜔r

𝑐
)

2

𝜖r̿
(0)(𝐫, 𝜔r)𝐄(𝐫) ≈ [Δ𝐴̿(𝐫) +

Δ𝜔

𝜔r
𝐴̿(d)(𝐫) + ∆𝜖r,a𝐴̿(a)(𝐫)]  𝐄(𝐫), 

(S1.5a) 

Δ𝐴̿(𝐫) = (
𝜔r

𝑐
)

2

∆𝜖r̿(𝐫, 𝜔r),  𝐴̿(d)(𝐫) = 𝜔r
𝜕

𝜕𝜔′
[(

𝜔′

𝑐
)

2

𝜖r̿
(0)(𝐫, 𝜔′)]

𝜔′=𝜔r

, 

𝐴̿(a)(𝐫) = (
𝜔r

𝑐
)

2

𝑈(𝐫)𝐼,̿ 

(S1.5b) 

where Δ𝐴̿(𝐫), 𝐴̿(d)(𝐫), and 𝐴̿(a)(𝐫) are tensors featuring variations due to ∆𝜖r̿(𝐫, 𝜔r) 

(permittivity perturbation), Δ𝜔/𝜔r (fractional frequency shift due to perturbation or 

dispersion), and ∆𝜖r,a  (extrinsic permittivity variation in the active region so as to 



make Δ𝜔  real), respectively. In Eq. (S1.5a), it is Δ𝜔/𝜔r  and ∆𝜖r,a  that need to be 

determined in successive calculations. 

We may now expand the field 𝐄(𝐫) as follows: 

𝐄(𝐫) = 𝐶R𝐄R(𝐫) + 𝐶L𝐄L(𝐫) + Δ𝐄(𝐫), 

(S1.6) 

where 𝐶R and 𝐶L are the zeroth-order expansion coefficients of 𝐄R(𝐫) and 𝐄L(𝐫), 

respectively; and Δ𝐄(𝐫) is a perturbed field of the second order in ∆𝜖r̿(𝐫, 𝜔r), that is, 

Δ𝐄(𝐫) = O[∆𝜖r̿
2(𝐫, 𝜔r)]. Substituting Eq. (S1.6) into Eq. (S1.5a), we obtain the relation: 

[Δ𝐴̿(𝐫) +
Δ𝜔

𝜔r
𝐴̿(d)(𝐫) + ∆𝜖r,a𝐴̿(a)(𝐫)] [𝐶R𝐄R(𝐫) + 𝐶L𝐄L(𝐫)] = O[∆𝜖r̿

2(𝐫, 𝜔r)]. 

(S1.7) 

We then project Eq. (S1.7) into the subspace spanned by 𝐄R(𝐫) and 𝐄L(𝐫). For this 

purpose, an integration region Ω with the 4-fold rotation symmetry needs to be picked 

up to define the inner product. Here, we simply choose  Ω  as the minimal circular 

cylinder that completely covers the perturbation ∆𝜖r̿(𝐫, 𝜔). In this way, a 2-by-2 matrix 

equation for column vector 𝐂 = (𝐶R, 𝐶L)T (superscript “T” means transpose) can be 

constructed: 



[Δ𝐀 + ∆𝜖r,a𝐀(a)]𝐂 = −
Δ𝜔

𝜔r
𝐀(d)𝐂, 

(S1.8a) 

where Δ𝐀, 𝐀(a), and 𝐀(d) are 2-by-2 matrix representations of Δ𝐴̿(𝐫), 𝐴̿(d)(𝐫), and 

𝐴̿(a)(𝐫), respectively. Their matrix elements are defined as 

ΔA𝛼𝛽 = ∫ d𝐫
 

Ω

𝐄𝛼
T(𝐫)Δ𝐴̿(𝐫)𝐄𝛽(𝐫) = (

𝜔r

𝑐
)

2

∫ d𝐫
 

Ω

𝐄𝛼
T(𝐫)∆𝜖r̿(𝐫, 𝜔r)𝐄𝛽(𝐫), 

A𝛼𝛽
(a)

= ∫ d𝐫
 

Ω

𝐄𝛼
T(𝐫)𝐴̿(a)(𝐫)𝐄𝛽(𝐫) = (

𝜔r

𝑐
)

2

∫ d𝐫
 

Ω

𝐄𝛼
T(𝐫)𝑈(𝐫)𝐼𝐄̿𝛽(𝐫), 

A𝛼𝛽
(d)

= ∫ d𝐫
 

Ω
𝐄𝛼

T(𝐫)𝐴̿(d)(𝐫)𝐄𝛽(𝐫) =

𝜔r ∫ d𝐫
 

Ω
𝐄𝛼

T(𝐫)
𝜕

𝜕𝜔′
[(

𝜔′

𝑐
)

2

𝜖r̿
(0)

(𝐫, 𝜔′)]
𝜔′=𝜔r

𝐄𝛽(𝐫), 

(S1.8b) 

where indices 𝛼 and 𝛽 refer to R or L. Note that in Eq. (S1.8b), we do not use complex-

conjugated vectors of 𝐄R(𝐫)  and  𝐄L(𝐫)  to define the inner product since the 

tensors Δ𝐴̿(𝐫) and 𝐴̿(d)(𝐫) are in general non-Hermitian in the presence of loss and 

gain. 

    For a generic tensor 𝑇̿(𝐫) with the 4-fold rotation symmetry, it can be shown that 

in the corresponding 2-by-2 matrix representation  𝐓 , only the off-diagonal 

elements TRL and TLR could exist. The diagonal ones TRR and TLL have to vanish due 

to the 4-fold rotation symmetry. Furthermore, if 𝑇̿(𝐫) is symmetric [𝑇̿T(𝐫) = 𝑇̿(𝐫)], 



which is valid for reciprocal media, the matrix  𝐓  is also symmetric, namely,  TRL 

and TLR are identical. In views of these properties, the matrices Δ𝐀, 𝐀(a), and 𝐀(d) can 

be simplified as follows: 

Δ𝐀 = (
ΔARR ΔARL

ΔARL ΔALL
),  𝐀(a) = (

ARR
(a)

ARL
(a)

ARL
(a)

ALL
(a)

), 

𝐀(d) = (
0 ARL

(d)

ARL
(d)

0
) = ARL

(d)
𝝈1,  𝝈1 = (

0 1
1 0

), 

(S1.9) 

where 𝝈1 is the first Pauli matrix. With an expression of 𝐀(d) in Eq. (S1.9) which is 

proportional to 𝝈1, we can convert Eq. (S1.8a) into the form of eigenvalue problems by 

multiplying both sides with 𝝈1: 

1

ARL
(d)

(
ΔARL + ∆𝜖r,aARL

(a)
ΔALL + ∆𝜖r,aALL

(a)

ΔARR + ∆𝜖r,aARR
(a)

ΔARL + ∆𝜖r,aARL
(a)

) (
𝐶R

𝐶L
) = −

Δ𝜔

𝜔r
(

𝐶R

𝐶L
). 

(S1.10) 

In principle, we need to adjust  ∆𝜖r,a  to make  Δ𝜔  real. However, for a quick 

estimation, we may first drop  ∆𝜖r,a  and treat  Δ𝜔  as a complex quantity, whose 

imaginary part now characterizes how fast the mode decays or grows. Furthermore, if 

the permittivity variation ∆𝜖r̿(𝐫, 𝜔r)  perturbs the RCP- and LCP-like modes with 



similar magnitudes, namely, 

|∫ d𝐫
 

Ω

𝐄R
T(𝐫)∆𝜖r̿(𝐫, 𝜔r)𝐄R(𝐫)| ≈ |∫ d𝐫

 

Ω

𝐄L
T(𝐫)∆𝜖r̿(𝐫, 𝜔r)𝐄L(𝐫)|, 

 (S1.11) 

which is usually the case for uncontrolled (random) perturbations, the two complex 

matrix elements ΔARR and ΔALL would have close moduli despite difference phases. 

In this condition, we may rewrite ΔARR, ΔALL, ΔARL, and ARL
(d)

 in polar forms as 

ΔARR = |ΔARR|𝑒𝑖𝜙RR ,  ΔALL = |ΔARR|𝑒𝑖𝜙LL , 

ΔARL = |ΔARL|𝑒𝑖𝜙RL ,  ARL
(d)

= |ARL
(d)

|𝑒𝑖𝜙RL
(d)

, 

(S1.12) 

where  𝜙RR , 𝜙LL , 𝜙RL , and 𝜙RL
(d)

  are the corresponding phases. In this way, the 

eigenvalue problem in Eq. (S1.10) is simplified as 

𝑒−𝑖𝜙RL
(d)

|ARL
(d)

|
(

|ΔARL|𝑒𝑖𝜙RL |ΔARR|𝑒𝑖𝜙LL

|ΔARR|𝑒𝑖𝜙RR |ΔARL|𝑒𝑖𝜙RL
) (

𝐶R

𝐶L
) = −

Δ𝜔

𝜔r
(

𝐶R

𝐶L
), 

(S1.13a) 

and the two complex fractional frequency shifts Δ𝜔1/𝜔r and Δ𝜔2/𝜔r as well as their 

eigenvectors 𝐂1 and 𝐂2 are 



Δ𝜔1

𝜔r
= −

|ΔARL|

|ARL
(d)

|
𝑒𝑖(𝜙RL−𝜙RL

(d)
) +

|ΔARR|

|ARL
(d)

|
𝑒𝑖[1

2
(𝜙RR+𝜙LL)−𝜙RL

(d)
], 

𝐂1 =
1

√2
(

1

𝑒
𝑖
2

(𝜙LL−𝜙RR)
), 

(S1.13b) 

Δ𝜔2

𝜔r
= −

|ΔARL|

|ARL
(d)

|
𝑒𝑖(𝜙RL−𝜙RL

(d)
) −

|ΔARR|

|ARL
(d)

|
𝑒𝑖[1

2
(𝜙RR+𝜙LL)−𝜙RL

(d)
], 

𝐂2 =
1

√2
(

1

−𝑒
𝑖
2

(𝜙LL−𝜙RR)
). 

(S1.13c) 

We may define a perturbation-dependent phase shift Θ as 

Θ =
𝜙LL − 𝜙RR

2
. 

(S1.14) 

Substituting Eqs. (S1.13b), (S1.13c), and (S1.14) into Eq. (S1.6), we then obtain the 

perturbed modal profiles 𝐄1(𝐫) and 𝐄2(𝐫) in Eq. (3) of the main text: 

𝐄(1,2)(𝐫) ≈
1

√2
[𝐄R(𝐫) ± 𝑒𝑖Θ𝐄L(𝐫)]. 

(S1.15)  



II. Lasing from The Cavities with Different Periods 

 

To ensure that the lasing action indeed originates from a single gammadion metal-

cavity rather than collectively from the gammadion metasurface, we characterized 

lasing properties of the structures with different periods. Three planar arrays of chiral 

nanolasers with periods of 600, 700, and 800 nm were fabricated and optically pumped 

under the same measurement condition. The corresponding SEM images of device with 

periods of 600, 700 and 800 nm and their PL spectra at a fixed pump power density 

were shown in Fig. S2(a), (b), and (c). The lasing peaks of these GaN gammadion metal 

cavities with different periods all occurred approximately at 364 nm at room 

temperature. Consequently, the experimental results indicate that lasing wavelength is 

independent of the period. In other words, the lasing action was mainly the result of a 

single gammadion metallic nanocavity. 

  



 

Figure S1. Lasing spectra of gammadion metal-cavities with different periods of (a) 

600, (b) 700, and (c) 800 nm. The insets show the SEM images of corresponding GaN 

gammadion metal cavities. 

  



III. Mode Analysis in Gammadion Metal Cavity 

In addition to the degenerate CP-like modes, other cavity modes might be also 

present in the wavelength range around 364 nm. We need to justify that the target CP-

like modes or their linear combinations were responsible for the lasing signal and 

circular dichroism in experiment. For this purpose, we calculate complex resonant 

frequencies 𝜔r of the modes at different negative imaginary part 𝜅a of the refractive 

index of GaN (gammadion post). The real parts Re[𝜔r]  determine resonance 

wavelengths of the cavity modes. As 𝜅a  turns more negative, the imaginary parts 

Im[𝜔r] become smaller, corresponding to the longer photon lifetimes. The magnitudes 

|𝜅a|  at which the imaginary parts  Im[𝜔r]  vanish are proportional to the threshold 

modal gains. The larger |𝜅a| (more negative 𝜅a) indicate the higher thresholds. 

 

Figure S2. The ratios Im[𝜔r]/Re[𝜔r]  versus the resonance wavelength for various 

modes under different imaginary parts 𝜅a  of the refractive index of GaN in the 



gammadion post. The corresponding 𝜅a  at thresholds, from the short- to long-

wavelength side, are −8.2110−2, −7.9110−2, −8.0610−2, −8.0910−2, and −0.103, 

respectively. The ratios of potential CP-like lasing mode are marked with blue triangles.  

In Figure S2, we show the ratios Im[𝜔r]/Re[𝜔r] versus the resonance wavelength 

of 5 modes around the experimental lasing wavelength of 364 nm under different 𝜅a. 

Their imaginary parts of the refractive index of GaN at thresholds (Im[𝜔r] = 0), from 

the short- to long-wavelength sides, are  𝜅a =−8.2110−2, −7.9110−2, −8.0610−2, 

−8.0910−2, and −0.103, respectively. Experimentally, the material gain of GaN 

dropped rapidly at the short-wavelength side of 364 nm, leading to a narrow gain 

window. The modes presented in Figure 4 of the main context are the only CP-like ones 

in the window, and they reach the threshold at 𝜅a =−8.0910−2 around a wavelength 

of 362.8 nm. All other modes have real characters χ = ±1  and are not circularly- 

polarized in the far-field zone above the gammadion. The ones with resonance wave- 

lengths shorter than 362.8 nm could have the lower thresholds than those of CP-like 

modes, but they fall out of the gain window and only receive small gain. On the other 

hand, the mode at the long-wavelength side (365.9 nm) could possibly lie in the gain 

window, but its threshold (𝜅a = −0.103) is higher than that of CP-like modes, which is 

also unfavorable for lasing. Therefore, it is supported that the lasing signal in the 

experiment originated from the CP-like modes in gammadion metal cavities. 



 



IV. Estimation of Dissymmetry Factor 

 

We slightly lengthen an outer arm of the R-gammadion cavity by 3% to investigate 

the mixing of two CP-like modes. The horizontal field distributions of two perturbed 

modes (at the antinode) that are closely related to the two CP-like modes in an ideal 

gammadion metal cavity are depicted in Figure S3. The elongation of the arm may 

simply mix the two CP-like modes into a perturbed one, as indicated by the profile of 

𝑦-like mode in Figure S3(a). On the other hand, the effect of higher-order perturbations 

could also come into play so that modes with real characters (𝜒 = ±1) are mixed into 

perturbed ones. Such a phenomenon takes place in the case of 𝑥 -like mode whose 

horizontal field profile exhibits a hot spot in the outer arm at the bottom left, as shown 

in Figure S3(b).  

We have calculated the dissymmetry factors of the far fields of these two modes 

based on the Fourier analysis of near fields just above the Gammadions. The 𝑦- and 𝑥-

like modes exhibit dissymmetry factors of 0.92 and 0.8, respectively. Since the 𝑦-like 

mode is less affected by the coupling to modes with  𝜒 = ±1 , it should reflect the 

features of CP-like.  

 



 

Figure S3. The horizontal field profiles of the (a) 𝑦 - and (b) 𝑥 -like modes at the 

antinode corresponding to a perturbed R-gammadion metal cavity. The outer arm 

indicated by white dashed lines is prolonged by 3%. The 𝑥-like one is significantly 

mixed with other modes with 𝜒 = ±1 . modes more faithfully than the 𝑥 -like one 

would. Indeed, the dissymmetry factor of 0.92 associated with the former is close to the 

experimental counterpart 𝑔e = 1  observed from the lasing signal of R-gammadion 

cavities. 

 

  



V. Cavity Pumping with Different Optical Polarizations 

 

To further verify the polarization states of planar chiral nanolasers, right-handed 

gammadion metal cavities were optically pumped by the pulse laser with different 

polarization states including the linear, left-hand, and right-hand circular polarizations, 

as schematically illustrated in Fig. S4 (a). Figures S4(b) and (c) show the PL spectra 

and light-in and light-out (L-L) curve of the left-handed gammadion metal-cavity under 

different polarized pumping sources. From the L-L curve, the gammadion metal-cavity 

had the lower threshold power density of about 15.56 W/cm2 in the presence of left-

hand circularly polarized pumping. In contrast, we observed the higher threshold power 

density of about 18.39 W/cm2 under right-hand circularly polarized pumping. This 

phenomenon indicated that the threshold of gammadion metal-cavities depends on the 

type of structure under different polarization states of the pumping source. The left-

hand circularly polarized lasing output is favored by the right-handed gammadion 

metal-cavity and further boosted by the left-hand circularly-polarized pump, and 

similar trend also applies to the metal cavities and pump source with opposite 

handedness. 



 

Figure S4. (a) Schematic diagram of different polarized pumping sources incident onto 

the right-handed gammadion metal cavity. (b) PL spectra and (c) L-L curves in different 

polarization conditions of pumping. 

  



VI. Estimation of Modal Volume 

The FEM was applied to investigate the modal volume of CP-like modes in the 

gammadion metal cavities. The refractive indices of the undoped GaN and Al were 

obtained from the references by Palik as well as Peng and Piprek1,2. We setup three- 

dimensional models for the R- and L- gammadion metal cavities to compute electric 

fields of the modes. The gammadion was designed to have a linewidth, width, arm 

length, and height of 50, 305, 200, and 500 nm, respectively. The modal volume 𝑉 for 

a mode in the GaN gammadion metal cavity, after some generalization for taking the 

material dispersion into account, is written as 

𝑉 = 𝑉eff (
𝑛

𝜆
)

3

=
∫ d𝐫𝜖r,g(𝐫, 𝜔r)|𝐄(𝐫)|2

max[𝜖r,g(𝐫, 𝜔r)|𝐄(𝐫)|2]
(

𝑛

𝜆
)

3

, 

 (S.16) 

where 𝜖r,g(𝐫, 𝜔) = 𝜕Re[𝜔𝜖r(𝐫, 𝜔)] 𝜕𝜔⁄ is the relative group permittivity of the mode; 

𝜔r is the resonant frequency at threshold; and 𝐄(𝐫) is the corresponding electric field. 

This expression is numerically evaluated for a given mode to estimate the 

dimensionless effective volume 𝑉eff ≈ 2.56. 
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