Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-alginate Hydrogel

Xue Zhang¹, Maria Morits¹, Christopher Jonkergouw¹, Ari Ora², Juan José Valle-Delgado¹, Muhammad Farooq¹, Rubina Ajdary¹, Siqi Huan¹, Markus Linder¹, Orlando Rojas¹, Mika Henrikki Sipponen^{1,3}, Monika Österberg¹*.

AUTHOR ADDRESS

¹Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland

²Department of Applied Physics, School of Science, Aalto University, FIN-02150 Espoo, Finland

³Current address: Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm

Figure S1. Dimensional change ratio in height (\blacksquare black) and cross section (\bullet red) of printed scaffolds were measured in different conditions (a) Scaffolds were stored at ambient conditions for 2 hours without crosslinking. (b) Scaffolds were cross-linked, dimensions were measured immediately after crosslinking and after 2 hours of storage at ambient conditions. The dimensional changes were calculated with 2 scaffolds. The corresponding photos of the printed scaffolds after (c) 0 h and 2 h standing at ambient conditions (d) 0 h – immediately after crosslinking at ambient conditions. The scale bars in all the photos are 0.5 cm. All the scaffolds were printed into cylinder shape with a diameter of 1.5 cm and height of 2 cm.

Figure S2. Swelling ratio behavior of freeze-dried scaffolds of different formulations calculated by dividing the weight of rewetted scaffolds with the weight of dry scaffolds.

Figure S3. Compressive Young's modulus of printed solid constructs of 100% infill of different formulations after storage in DPBS+ for 48 h. Mean values from six samples were calculated and plotted for each formulation.