

science.sciencemag.org/cgi/content/full/science.aaw4741/DC1

Supplementary Material for

Hidden fluid mechanics: Learning velocity and pressure fields from

flow visualizations

Maziar Raissi, Alireza Yazdani, George Em Karniadakis*

*Corresponding author. Email: george_karniadakis@brown.edu

Published 30 January 2020 as Science First Release

DOI: 10.1126/science.aaw4741

This PDF file includes:

Materials and Methods

Supplementary Text

Figs. S1 to S21

Tables S1 to S4

References

Other Supplementary Material for this manuscript includes the following:

 (available at science.sciencemag.org/content/science.aaw4741/DC1)

Movies S1 and S2

Materials and Methods

Starting with the transport equation, we can rewrite it in the following non-dimensional form

ct + ucx + vcy + wcz = Pe�1(cxx + cyy + czz), (S1)

which governs the evolution of the normalized concentration c(t, x, y, z) of a passive scalar

transported by an incompressible Newtonian fluid whose dynamics are described by the Navier-

Stokes and continuity equations (also non-dimensional) given below

ut + uux + vuy + wuz = �px + Re�1(uxx + uyy + uzz),
vt + uvx + vvy + wvz = �py + Re�1(vxx + vyy + vzz),
wt + uwx + vwy + wwz = �pz + Re�1(wxx + wyy + wzz),
ux + vy + wz = 0.

(S2)

Here, Re and Pe are the Reynolds and Péclet numbers, defined, respectively as UL/⌫ and UL/,

where L,U are the characteristic length and velocity, and ⌫, are the kinematic viscosity and

mass diffusion coefficient, respectively. One question that would naturally arise is whether the

information on the passive scalar in the training domain and near its boundaries is sufficient to

result in a unique velocity field. The answer is that normally there are no guarantees for unique

solutions unless proper boundary conditions are explicitly imposed on the domain boundaries.

However, as shown later for the benchmark problems studied in the current work, an informed

selection of the training boundaries in the regions where there are sufficient gradients in the con-

centration of the passive scalar could possibly eliminate the requirement of imposing velocity

and pressure boundary conditions.

By extending our earlier work on physics-informed deep learning (5) and deep hidden

physics models (20), we approximate the function

(t, x, y, z) 7�! (c, u, v, w, p)

by a physics-uninformed deep neural network and construct the following Navier-Stokes in-

2

formed neural networks (see Fig. S1) corresponding to Eqs. S1 and S2 i.e.,

e1 := ct + ucx + vcy + wcz � Pe�1(cxx + cyy + czz),
e2 := ut + uux + vuy + wuz + px � Re�1(uxx + uyy + uzz),
e3 := vt + uvx + vvy + wvz + py � Re�1(vxx + vyy + vzz),
e4 := wt + uwx + vwy + wwz + pz � Re�1(wxx + wyy + wzz),
e5 := ux + vy + wz.

(S3)

We compute the required derivatives to construct the residual networks e1, e2, e3, e4, and e5

by applying the chain rule for differentiating compositions of functions using automatic dif-

ferentiation (21). A schematic representation of the resulting Navier-Stokes informed neural

networks is given in Fig. S1. It is worth emphasizing that automatic differentiation1 is dif-

ferent from, and in several respects superior to, numerical or symbolic differentiation – two

commonly encountered techniques of computing derivatives. In its most basic description (21),

automatic differentiation relies on the fact that all numerical computations are ultimately com-

positions of a finite set of elementary operations for which derivatives are known. Combining

the derivatives of the constituent operations through the chain rule gives the derivative of the

overall composition. This allows accurate evaluation of derivatives at machine precision with

ideal asymptotic efficiency and only a small constant factor of overhead. In particular, to com-

pute the required derivatives we rely on Tensorflow (22), which is a popular and relatively well

documented open-source software library for automatic differentiation and deep learning com-

putations. In TensorFlow, before a model is run, its computational graph is defined statically
1We emphasized “automatic differentiation” several times in the paper. Here, we briefly explain what “auto-

matic differentiation” is, and particularly, explain how one would calculate the derivative du/dx, where x is an
input to the neural network and u is one of its outputs. Since the network is constructed as a sequence of simple
and analytically differentiable functions (linear combinations and activation functions), it is possible to apply the
chain rule backward (starting at u and going back through each layer of the network until x is reached) or forward
(starting at x and going forward through each layer of the network until u is reached) to find a numerical value for
the partial derivative of u with respect to x. The key technical subtlety here is to “memoize” some of the operations
while going forward and backward through each layer of the network. Memoization is a common optimization
technique in computing used primarily to speed up computer programs by storing the results of expensive function
calls and returning the cached result when the same inputs occur again. While automatic differentiation is now
readily available in most scientific computing platforms (e.g., TensorFlow, PyTorch, Matlab, etc.), it is still a very
good exercise to code one up from scratch (see e.g., https://github.com/maziarraissi/backprop)
to gain more intuition.

3

https://github.com/maziarraissi/backprop

rather than dynamically as for instance in PyTorch (23). This is an important feature as it al-

lows us to create and compile the computational graph for the Navier-Stokes informed neural

networks (Eq. S3) only once and keep it fixed throughout the training procedure. This leads to

significant reduction in the computational cost of the proposed framework.

The shared parameters of the physics-uninformed neural networks for c, u, v, w, p and

the physics-informed ones e1, e2, e3, e4, e5 can be learned by minimizing the mean squared

error loss function defined in Eq. 1. The first term in the equation corresponds to the training

data {tn, xn
, y

n
, z

n
, c

n}Nn=1 on the concentration c(t, x, y, z) of the passive scalar, while the

last term penalizes the structure imposed by Eqs. S1 and S2 at a finite set of residual points

{tm, xm
, y

m
, z

m}Mm=1 whose number and locations can be different from the actual training

data.

To generate high-resolution datasets for different benchmark problems investigated in the

current work, we have employed the spectral/hp-element solver Nektar/Nektar++ in which the

Navier-Stokes Eqs. S2 along with the transport Eq. S1 are approximated using high-order semi-

orthogonal Jacobi polynomial expansions (7). The numerical time integration is performed

using a third-order stiffly stable scheme until the system reaches its stationary state. In what

follows, a small portion of the resulting dataset corresponding to this stationary solution will be

used for model training, while the remaining data will be used to validate our predictions. Our

algorithm is agnostic to the choice of initial and boundary conditions as well as the geometry.

However, we provide detailed information for every benchmark problem for the sake of com-

pleteness and reproducibility of the numerically generated data2. In particular, concentration

data are produced by forward numerical simulations for the benchmark problems investigated
2Nektar++ is the spectral/hp element and open-source solver that can be downloaded from https://www.

nektar.info/downloads. The source code for Nektar along with the grids and input files for generating
the data are available at https://github.com/alirezayazdani1/HFM. Furthermore, the input data and
the codes for ML training and inference used in this manuscript are publicly available on GitHub at https:
//github.com/maziarraissi/HFM.

4

https://www.nektar.info/downloads
https://www.nektar.info/downloads
https://github.com/alirezayazdani1/HFM
https://github.com/maziarraissi/HFM
https://github.com/maziarraissi/HFM

in this work using the open-source spectral/hp element solvers (Nektar/Nektar++), where the de-

grees of freedom (DoF), timestep size, number of CPU processors, and the number of timesteps

to reach the final solution are reported in Table S1. Note that a higher DoF i.e., the total num-

ber of spectral modes in Table S1, is required to resolve the flow dynamics accurately, which

leads to longer simulation times. Moreover, the timestep size is typically much smaller than the

temporal resolution of the concentration data that we use to train the HFM. Normally, forward

simulations are performed from a zero-initial condition until the final solution is reached after

a number of timesteps. This is not the case for the HFM and inference as any time window can

be used for data acquisition and predictions.

To obtain the results reported in this manuscript, we represent each of the output functions c,

u, v, w, and p by a 10-layer deep neural network with 50 neurons per hidden layer (see Fig. S1).

To argue for making the networks deeper rather than wider, one could draw analogies from the

circuit theory where there are, in fact, mathematical proofs showing that for some functions very

shallow circuits require exponentially more circuit elements to compute than the deep circuits

do (24). Moreover, the computational complexity of a neural network grows linearly with the

depth of the network. As for the activation functions, we use the swish (25) activation function

given explicitly by

swish(x) := x sigmoid(x) = x/(1� exp(�x)).

Currently, the most successful and widely-used activation function for deep learning is the Rec-

tified Linear Unit (ReLU) given by max(0, x). However, when it comes to physics-informed

neural networks (see Eq. S3), we cannot use this particular activation function because it leads

to wiggles in the computed first order derivatives with respect to the input variables (e.g., t,

x, y, z) and causes the second-order derivatives with respect to the inputs to vanish altogether

(see Fig. S2). Therefore, we use the swish activation function as a smoothed version of ReLU.

5

In TensorFlow, the current implementations of activation functions such as tanh and sin are

slightly faster than the swish activation we are adopting here 3. In general, the choice of a neu-

ral network’s architecture (e.g., number of layers/neurons and form of activation functions) is

crucial and in many cases still remains an art that relies on one’s ability to balance the trade-off

between expressivity and trainability of the neural network (26). Our empirical findings so far

indicate that deeper and wider networks are usually more expressive (i.e., they can capture a

larger class of functions) but are often more costly to train (i.e., a feed-forward evaluation of

the neural network takes more time and the optimizer requires more iterations to converge).

However, these observations should be interpreted as conjectures rather than as firm results4.

In this work, we have tried to choose the neural networks’ architectures in a consistent fashion

throughout the manuscript. However, there might exist other architectures that could possibly

improve some of the results reported in the current work. Hyper-parameter tuning techniques,

and more broadly meta-learning can be used to automatically tune the network and even search

for more efficient architectures in future studies. Furthermore, to accelerate the training process,

we employ weight normalization (27): a reparameterization of the weight vectors in a neural

network that decouples the length of the weight vectors from their direction. Such a reparam-

eterization is inspired by batch normalization (28) but does not introduce any dependencies

between the examples in a minibatch. Batch normalization is another widely used and success-

ful technique in deep learning, which we are unable to use here as it interferes with the physics

of the problem making the equations batch dependent. For this reason, we use weight normal-

ization as an alternative to batch normalization to accelerate the training of physics-informed

neural networks.
3It is worth mentioning that our algorithm is robust to the choice of the activation function. Please refer to the

preprint version of this manuscript on arXiv (https://arxiv.org/abs/1808.04327), where we used the
sin activation function.

4We encourage the interested reader to check out the codes corresponding to this paper on GitHub at
https://github.com/maziarraissi/HFM and experiment with different choices of the neural networks’
architectures.

6

https://arxiv.org/abs/1808.04327
https://github.com/maziarraissi/HFM

As for the training procedure (see e.g., Fig. S7), the results reported in the current manuscript

are consistently obtained after 106 iterations of training for both two and three dimensional prob-

lems using the Adam optimizer (29) with default hyper-parameters and a learning rate of 10�3.

However, our algorithm as reported in the following can converge to solutions with acceptable

accuracy in 105 iterations of training for both two and three dimensional problems. The mini-

batch of data, as well as the residual points used to penalize the equations, processed per each

iteration of the Adam optimizer has a size of 10, 000. Every 10 iterations of the optimizer takes

around 1.5 and 2.5 seconds, respectively, for two and three dimensional problems on a single

NVIDIA Titan V GPU. It is desirable to report the training periods in terms of a metric that is

independent of the hardware; the commonly accepted metric in the deep learning literature is

“epochs”. An epoch corresponds to one pass through the entire dataset. However, we are using

an unconventional deep learning platform in the sense that we work with two different datasets

rather than one, namely the observation data on the concentration and the residual points used to

penalize the equations. It is not clear which one of the two we should use to report the duration

of training in terms of epochs. Consequently, in the current manuscript, we adopt the number

of iterations as a metric that is independent of the hardware. Moreover, the number of data

points for the concentration of the passive scalar for each benchmark problem is stated explic-

itly below. In this work, we have consistently used a fixed training procedure for all benchmark

problems. There might exist other training procedures that could potentially improve the results

reported in the current manuscript. For instance, although not pursued here, our experience so

far suggests that during training physics-informed deep neural networks, it is often useful to

reduce the learning rate as training progresses.

To measure the accuracy of the predictions of our algorithm, we report the relative L2 error

7

between the regressed function f and the reference function g defined as

E(f, g) :=

1

N

NX

i=1

[f(xi)� g(xi)]
2

!
/

0

@ 1

N

NX

i=1

"
g(xi)�

1

N

NX

i=1

g(xi)

#21

A , (S4)

where {xi : i = 1, . . . , N} are points scattered in the domain of interest. The above definition

has the favorable properties that it is invariant under shift and scaling of both the regressed and

the reference functions; i.e., E(f + ↵, g + ↵) = E(f, g) and E(�f, �g) = E(f, g), for any

constants ↵ and � 6= 0.

In order to verify the robustness of our algorithm to measurement noise, we adopt the com-

monly accepted approach of “adding artificial white noise” (see e.g., (30)) and distort the innate

variations (i.e., the variance) of the input data on the concentration of the passive scalar. Specif-

ically, we add white noise with magnitude equal to a given percentage of the standard deviation

of the concentration data. Noting that shifting and scaling the concentration will not change the

transport Eq. S1 for c, the algorithm is essentially learning from the variations in the input data.

Therefore, it makes sense to add the white noise at level a to the concentration data according

to c + a Std[c] ✏, where ✏ is an independent Gaussian noise with zero mean and unit variance

i.e., Var[✏] = 1. The following simple argument will then show that we are, in fact, distorting

the innate variations of the concentration profile c by (1 + a
2);

Var[c+ a Std[c] ✏] = Var[c] + a
2 Var[c] Var[✏] = Var[c](1 + a

2), (S5)

regardless of the magnitude (i.e., mean value) of c since E[c+ a Std[c] ✏] = E[c].

8

Supplementary Text

External 2D flow past a circular cylinder

As the first example, we consider the prototypical problem of a two dimensional flow past a

circular cylinder, known to exhibit rich dynamic behavior and transitions for different regimes of

the Reynolds number Re = UD/⌫. Assuming a non-dimensional free stream velocity U = 1,

cylinder diameter D = 1, and kinematic viscosity ⌫ = 0.01, the system exhibits a periodic

steady-state behavior characterized by an asymmetrical vortex shedding pattern in the wake

of the cylinder, known as the von Kármán vortex street (4). Importantly, the passive scalar

is injected at the inlet within the interval [-2.5, 2.5] using a step function (see Fig. S3). The

choice of this boundary condition only depends on the region of interest in which velocity

and pressure fields are inferred using the concentration field. Furthermore, a constant value

of diffusivity for the passive scalar is assumed to be given by  = 0.01 resulting in Pe =

UD/ = 100. To generate synthetic data using numerical solvers, we use zero-slip and zero-

concentration boundary conditions on the cylinder wall. Whereas the Péclet number is chosen

to be equal to the Reynolds number, there is no restriction on its value as shown for the internal

flow benchmark problem below. Physically, for the flow of gases such as air with smoke as a

passive scalar Pe ⇡ Re. This is not, however, the case for liquid flows with dye as the passive

scalar since diffusivities of dyes are typically smaller than most fluids, which leads to higher

Péclet numbers.

A representative snapshot of the input data on the concentration field is shown in Fig. S3.

In terms of training data, the input to the algorithm is a point cloud of data on the concentration

of the passive scalar {tn, xn
, y

n
, z

n
, c

n}Nn=1, scattered in space and time (see e.g., Fig. 2B).

As illustrated in this example, the shape and extent of the boundaries of the training domains

that we choose for our analysis could be arbitrary and may vary by problem. Here, no input

information other than the concentration field for the passive scalar c is passed to the algorithm.

9

We present the relative L2 errors for the flow problem with arbitrary domain in Fig. S4, where

the errors for each field are computed within the prediction time window of t = 132.08�148.08.

Furthermore, we performed an extensive systematic study with respect to the spatio-temporal

resolution of the training data and we report the results in Fig. S5. The proposed algorithm

tends to be very robust with respect to the spatio-temporal resolution of the point cloud of

data. This result is very encouraging when it comes to future applications of the algorithm to

realistic visualization data that may suffer from noise and/or low resolutions. For this particular

benchmark problem, the errors tend to increase at around 13 snapshots for the resolution in

time, which is a very coarse resolution considering that the whole time window is about 2.5

vortex shedding cycles.

To investigate the effect of noise on the model inference, we corrupt the concentration data

with additive Gaussian noise according to Eq. S5. Fig. S6 presents the results on the relative

L2 error between the model output and the reference fields for the arbitrary training domain as

a function of the level of the noise denoted by parameter a (see Eq. S5). We observe excellent

robustness in the algorithm to strong noise levels as high as 160%, which cause at most three-

fold increase in the relative L2 errors. We believe that enforcing the equations at arbitrarily

many residual points has a strong regularization effect that makes the algorithm robust.

Furthermore, as depicted in Fig. S7, the sum of mean squared errors given in Eq. 1 seems to

be very effective in avoiding the trivial local optima such as the zero and constant solutions to

the Navier-Stokes equations. This loss function essentially acts as an upper bound for individual

losses of equations and data, and eventually leads to optimized values for the individual losses,

given enough training time and given that neural networks are universal function approximators

(see e.g., (31)). However, developing better loss functions or proper weighting of the individual

losses to accelerate the training process seems to be necessary in future research. Here, ideas

from the emerging fields of transfer learning and multitask learning could be explored (32).

10

Next, we choose the region of interest to contain the cylinder (see the rectangular domain

in Fig. S3) so that the fluid forces acting on the cylinder can be inferred. As shown in figure

S8, the algorithm is capable of accurately reconstructing the velocity and the pressure fields

without having access to sufficient observations of these fields themselves. Note that we use

a very small training domain that cannot be used in classical computational fluid dynamics

to obtain accurate solutions of the Navier-Stokes equations. Further, other than the velocity

on the left boundary, no other boundary conditions are given to the algorithm. We need to

impose a Dirichlet boundary condition for the velocity at the left boundary simply because the

observations of the concentration are not providing sufficient information (i.e., gradients) in

front of the cylinder. More notably, there is no need to impose the no-slip boundary condition

on the cylinder wall. The presence of the normal concentration gradient naturally allows our

algorithm to infer the zero velocity condition on the walls. In regards to the predicted pressure

field, we note that due to the nature of the Navier-Stokes equations for incompressible flows,

the pressure field is only identifiable up to an additive constant since only the gradients of the

pressure are present in the Navier-Stokes equations.

The regressed pressure and velocity fields can be used to obtain the lift and drag forces

exerted on the cylinder by the fluid as shown in Fig. S9. Additionally, one could provide the

algorithm with information such as data on the velocities or pressure (e.g., no-slip velocity

boundary conditions on the cylinder wall). Consequently, in Fig. S9, we explored the effect of

including the no-slip boundary condition, which led to more accurate estimates for the lift and

drag forces. The fluid forces on the cylinder are functions of the pressure and velocity gradients.

Having trained the neural networks, we can use

FL =

I ⇥
�pny + 2Re�1

vyny + Re�1 (uy + vx)nx

⇤
ds,

FD =

I ⇥
�pnx + 2Re�1

uxnx + Re�1 (uy + vx)ny

⇤
ds,

11

to obtain the lift and drag forces, respectively. Here, n = (nx, ny) is the outward normal on

the cylinder wall and ds is the differential area on the surface of the cylinder. We use the

trapezoidal rule to estimate these integrals. Note that the lift and drag coefficients are defined

by CL = FL/0.5⇢U2 and CD = FD/0.5⇢U2, respectively, which are plotted in Fig. S9, where

⇢ = 1 and U = 1. Interestingly, the predicted lift and drag coefficients are in good agreement

with the reference, both in terms of the frequency of oscillations and the amplitude. Some

discrepancy, however, can be observed for the few initial and final time instants, which can be

attributed to the lack of data. This can be further clarified by the relative L2 errors shown in

Fig. S10. Lack of training data on c for t < 132.08 and t > 148.08 leads to weaker neural

network predictions near the beginning and end points of the training time window. Thus, one

should take this into consideration when inference is required within a certain time interval.

Note that to compute lift and drag forces, the gradient of the velocity has to be computed on the

wall, which can be done analytically using the parametrized surrogate velocity field (i.e., the

neural networks). Although no numerical differentiation is needed to compute the gradients, the

integration of forces on the surface of the cylinder is approximated by a numerical quadrature.

In Fig. S10, we also study the effect of including the no-slip boundary condition on the cylinder

wall, which leads to more accurate regressions of the fluid velocity and pressure fields but a less

accurate regression of the concentration field.

In addition to the velocity and pressure fields, it is possible to discover other unknown pa-

rameters of the flow field such as the Reynolds and Péclet numbers. Although these parameters

were prescribed in the 2D flow past the cylinder example, we have tested a case in which both

parameters are free to be learned by the algorithm. The results are given in Table S2, which

shows very good agreement with the exact values. From the practical standpoint, the passive

scalar diffusivity and the fluid viscosity (hence, their ratio the Prandtl number Pr ⌘ ⌫/) may

be known in advance. Therefore, discovering the Reynolds number would be sufficient whereas

12

the Péclet number can be computed by Pe = Re Pr.

We note here that the synthetic training data for the passive scalar are generated using DNS

with the assumption of zero-Dirichlet c = 0 boundary condition on the cylinder wall. A more

realistic boundary condition, however, for c would be zero-Neumann @c/@n = 0 on the solid

wall. At low Péclet number and uniform concentration profile at the inlet, the zero-Neumann

condition will not produce sufficient mixing in the vicinity of the cylinder and hence HFM may

not work accurately or could even break down for this case. However, in most realistic settings

of experimental fluid mechanics, streaks of passive scalar (e.g., smoke or dye) are injected to

the flow free stream at specific points, which are visualized downstream once they reach the

bluff body (see e.g., Fig. 72 in (33) for an example of streaklines around an airfoil). We have

investigated the performance of HFM for both types of boundary conditions with streaks of

passive scalar injected into the flow stream at the inlet. We are particularly interested in the

HFM predictions for the lift and drag coefficients given a sequence of snapshots of the streak-

lines around the circular cylinder (see Fig. S11A,B)5. The results are shown in Fig. S11C,D

for the lift and drag coefficients, where the Reynolds and Péclet numbers are 200 and 2,000,

respectively. As shown in Fig. S11C,D, the algorithm is capable of predicting the lift and drag

with good accuracy given both zero-Dirichlet and zero-Neumann boundary conditions on the

wall. The zero-Dirichlet boundary condition leads to slightly better predictions as detailed in

Table S4. This could be attributed to different resolution requirement for the training data. An

important observation for these more realistic flow visualizations is that HFM is still agnostic to

the geometry and boundary conditions. However, in case the geometry of the wall is explicitly

known, one can easily prescribe the no-slip velocity boundary condition at the wall, which leads

to slight improvement in the predictions of lift and drag as seen in Fig. S11.

5The training datasets for these two examples are generated using OpenFoam and are publicly available at
https://github.com/maziarraissi/HFM.

13

https://github.com/maziarraissi/HFM

External 3D flow past a circular cylinder

The previous benchmark example was a two-dimensional (2D) flow, where we could safely

neglect the z-coordinate and w-component of the velocity from the input and output variables,

respectively. For the flow past a cylinder, if we simply increase the Reynolds number beyond a

threshold value of ⇡ 185 (34), the spanwise velocity w becomes non-zero due to the effect of the

so-called “vortex stretching” (35). To test the capability of the proposed algorithm in inferring

three-dimensional (3D) flow fields, we design another prototype problem in a 3D domain of flow

past a finite-size circular cylinder confined between two parallel plates as shown in Fig. S12,

where similar to the previous example, we set Re = Pe = 100. Due to three-dimensional

geometry and despite the fact that this is a subcritical Reynolds number for the onset of three-

dimensionality, the resulted flow is strongly three-dimensional. Downstream of the cylinder,

the flow exits to an open region, which causes strong 3D effects in the wake of the cylinder.

Hence, we set the training domain in the wake of cylinder.

A representative snapshot of the input data on the concentration field in the wake of the

cylinder is plotted in the top left panel of Fig. S13. The iso-surfaces for all of the fields are

also plotted for comparison between the reference data and the predictions of our algorithm.

The algorithm is capable of accurately reconstructing the velocity and pressure fields without

having access to any observations of these fields. In particular, no information on the velocity

is given on the boundaries of the domain of interest during the training. Qualitative comparison

between the predictions of our algorithm and the reference data shows good agreement for 3D

flows as well, however, the relative L2 errors for velocity and pressure fields are slightly higher

than the values for the 2D flow predictions as shown in Fig. S14. Similar to 2D results, the

neural network training lacks sufficient data outside of the training time window, leading to

larger errors in the predictions near the beginning and end points of the training time interval.

14

Stenotic 2D channel flow over an obstacle

We now turn our attention to an important class of flows in confined geometries also known

as “internal flows”. While measuring average flow velocity and pressure in ducts, pipes and

even blood vessels is now a common practice, quantifying the spatial fields, specifically the

shear stresses on the boundaries, is still an open problem. We consider internal flow in a 2D

channel with a stenosis for which we aim to infer the wall shear stresses (see Fig. S15). To

make the flow unsteady, we impose a sinusoidal velocity profile at the inlet of the channel.

The passive scalar values on the boundaries are set to zero, where the boundaries are assumed

to be impenetrable. The presence of the obstacle breaks the symmetry in the flow for which

analytical solutions do not exist. Thus, to estimate the velocity field, direct measurements or

forward numerical simulations are required.

The predictions of the algorithm for the velocity and pressure fields are shown in Fig. S16

and are in very good agreement with the reference data. Note that no information for velocity

is given on the boundaries of the channel or the obstacle. While this is an idealized problem,

it represents some of the complexities encountered in cardiovascular fluid mechanics, where

one or multiple coronary arteries are partially blocked by atherosclerotic plaques formed by the

lipid accumulation (36). Direct measurements of pressure in the vessel are invasive and bear

high risk, whereas computational fluid modeling of blood in the coronaries requires precise

reconstruction of the geometry as well as knowledge of all the terminal boundary conditions.

Furthermore, we present the relative L2 errors in Fig. S17; similar to the previous benchmark

problems, slight discrepancies can be observed close to the beginning and end points of the

training time window (t ⇠ 110.1, 130.1) due to the lack of training data, where the relative L2

errors in the velocity fields show a significant peak.

Using the predicted velocity fields, we are able to compute shear stresses everywhere in the

training domain. Of particular interest are wall shear stresses, which can be computed using the

15

following equations in 2D:

Sx = 2Re�1
⇥
uxnx +

1
2(vx + uy)ny

⇤
,

Sy = 2Re�1
⇥
1
2(uy + vx)nx + vyny

⇤
.

(S6)

Here, n = (nx, ny) is the unit outward normal on the boundary of the domain. Note that to

compute the wall shear stress traction vector S = (Sx, Sy), the gradient of the velocity is re-

quired, which can be computed using automatic differentiation. Wall shear stresses are impor-

tant quantities of interest in many biological processes e.g., in the pathogenesis and progression

of vascular diseases that cause aortic aneurysms. We have estimated the temporal wall shear

stress magnitudes, WSS =
p

S2
x + S2

y , acting on the lower wall using the predictions of neural

networks for the 2D channel flow over the obstacle, and plotted them against the results from

the spectral/hp element solver in Fig. S18; the results show excellent agreement between the

predictions and numerical estimations. Note that the numerical estimations suffer from a slight

aliasing effect (noisy oscillations in the x direction) for which dealiasing is required to retrieve

a smooth distribution of wall shear stresses. Interestingly, the neural networks prediction is

smooth as the velocity gradients of a parameterized velocity field are taken analytically. The

proposed inverse approach to infer the velocity and pressure fields with the use of a passive

scalar, and hence the wall shear stress, offers a promising alternative to conventional methods.

Here, the passive scalar could be the bolus dye that is typically injected to the blood stream for

the purpose of blood flow monitoring and medical imaging.

Lastly, similar to the external flow problem past the cylinder, the algorithm is able to infer the

Reynolds and Péclet numbers as free parameters. The inferred values of these two parameters

are given in Table S3, which shows an excellent agreement with the reference values. Note that

unlike the flow past the cylinder, the Re and Pe numbers are not the same.

16

3D Intracranial aneurysm

To further illustrate the implications of the Navier-Stokes informed neural networks in ad-

dressing real-world problems, we consider 3D physiologic blood flow in a realistic intracranial

aneurysm (ICA) shown in Figs. S19 and 3A. Reference concentration fields are generated nu-

merically using realistic boundary conditions representing a physiologic flow waveform at the

inlet along with a uniform concentration for the passive scalar. The strength of the proposed

algorithm is its ability to stay agnostic with respect to the geometry and boundary conditions.

Consequently, we first crop the aneurysm sac out from the rest of geometry, and then use only

the scalar data within the ICA sac (right panel of Figs. S19 and 3B) for training where no infor-

mation is used for the boundary conditions. The reference and predicted concentration, velocity

and pressure fields within the ICA sac at a sample time instant are then interpolated on two sep-

arate planes perpendicular to y- and z-axis, which are shown in Fig. 3D. We observe acceptable

agreement between the reference and predicted fields given the complexity of the flow field.

Furthermore, the relative L2 errors plotted in Fig. S20 show a significant drop in the prediction

errors away from the beginning and end points of the training time window, which justifies an

accurate analysis of model predictions in the time interval 94.09  t  109.09. Furthermore,

we have estimated the wall shear stress components on the surface of the aneurysm sac for this

complicated geometry. The computations can be performed fairly easily so long as the outward

wall normals are known and given to the algorithm. The reference and predicted wall shear

stresses (given by the components of the traction vector) as well as the pressure field acting on

the aneurysm wall are shown in Fig. S21. The wall traction vector is defined by S = ⌧ · n|wall,

where ⌧ is the shear stress tensor field and n is the unit outward normal to the wall. The for-

mulas to compute the wall traction vector in 3D are a straightforward generalization of Eq. S6

in 2D.

17

Remarks

The emphasis of this study was to demonstrate, through several prototypical and realistic

examples, the ability of the current algorithm to infer the hidden states of the system from par-

tial knowledge of some relevant quantities by leveraging the known underlying dynamics of the

system. We have verified that with the use of governing physical laws, our algorithm is able

to make accurate predictions for complex 2D/3D flows. One possible limitation of the current

study is the use of synthetically generated data on the passive scalar, which are relatively noise-

less and clean compared to the realistic measurements. To address this issue, we have carried

out extensive systematic studies with respect to the spatio-temporal resolution of the training

data as well as noise levels. Whereas 3D reconstruction of a passive scalar from a stack of 2D

projections is possible, it is not a common practice in the clinical and industrial settings due to

the technological complexities as well as computational and processing costs. Thus, extracting

information from 2D images directly by taking into account the angle of projections seems to

be a more realistic approach. Furthermore, different imaging modalities (e.g., magnetic reso-

nance vs. computed tomography angiography of bolus dye in coronary arteries) have different

spatial/temporal resolutions. In the first benchmark problem, we verified the robustness of the

HFM for low temporal resolution e.g., five snapshots per shedding cycle. However, if the num-

ber of snapshots is inadequate, a viable strategy is to use a time-discrete HFM by employing

a high-order time-stepping scheme such as implicit Runge-Kutta with 100 stages (c.f. (5)) for

integrating the governing equations in time using the snapshots as initial and terminal condi-

tions. These are certainly important factors that have to be taken into account moving forward

using the proposed algorithm for real-world fluid mechanics applications, and will be addressed

carefully in future implementations.

Assuming the geometry to be known, to arrive at similar results as the ones presented in

the current work, one needs to solve significantly more expensive optimization problems us-

18

ing conventional PDE solvers (e.g., finite elements, finite volumes and etc.). The corresponding

optimization problems normally involve some form of “parametrized” initial and boundary con-

ditions, appropriate loss functions, and multiple runs of the forward simulations. In this setting,

one could easily end up with very high-dimensional optimization problems that require either

backpropagating through the computational solvers or “Bayesian” optimization techniques for

the surrogate models (e.g., Gaussian processes). If the geometry is further assumed to be un-

known (as is the case in this work), then its parametrization requires grid regeneration, which

makes the approach almost impractical.

Lastly, in this work we have been operating under the assumption of Newtonian and incom-

pressible fluid flow governed by the Navier-Stokes equations. However, the proposed algorithm

can also be used when the underlying physics is non-Newtonian, compressible, or partially

known. This in fact is one of the advantages of the algorithm in which other unknown pa-

rameters such as the Reynolds and Péclet numbers can be inferred in addition to the velocity

and pressure fields. When the fluid is non-Newtonian (e.g., blood flow in small vessels), one

can encode the momentum equations, where the “constitutive” law for the fluid’s stress-strain

relationship is unknown, into a physics-informed deep learning algorithm. Having data on the

velocity (or even the passive scalar), it may be possible to learn the constitutive law as well.

Moreover, it may be also possible to apply HFM to high-speed aerodynamics inferring the

velocity and pressure fields from Schlieren-type images representing density gradient along a

certain direction.

19

Fig. S1. Navier-Stokes informed neural networks. A fully connected (physics-uninformed)
feed-forward neural network, with 10 hidden layers and 50 neurons per hidden layer per output
variable (i.e., 5 ⇥ 50 = 250 neurons per hidden layer), takes the input variables t, x, y, z and
outputs c, u, v, w, and p. As for the activation functions �, we use the swish activation function
(25). For illustration purposes only, the network depicted in this figure comprises of 2 hidden
layers and 6 neurons per hidden layers. We employ automatic differentiation to obtain the
required derivatives to compute the residual (physics-informed) networks e1, e2, e3, e4, and
e5. If a term does not appear in the blue boxes (e.g., uxy or utt), its coefficient is assumed
to be zero. It is worth emphasizing that unless the coefficient in front of a term is non-zero,
that term does not appear in the “compiled” computational graph and will not contribute to
the computational cost of a feed forward evaluation of the resulting network. The total loss
function is composed of the regression loss of the passive scalar c on the training data, and the
loss imposed by the differential equations e1 � e5. Here, I denotes the identity operator and the
differential operators @t, @x, @y, and @z are computed using automatic differentiation, and can
be thought of as “activation operators”. It is worth noting that the aforementioned differential
operators are non-trivial in the sense that they almost double the length of the network each time
they are applied due to the need for the chain rule operations necessary to arrive at the input
variables (i.e., t, x, y, and z). Given that the convection-diffusion equations involve second
order derivatives, the depth of the physics-informed neural networks e1, e2, e3, e4 is practically
40 = 2⇥ (2⇥ 10) whereas the depth of e5 is 20 = 2⇥ 10. Moreover, the gradients of the loss
function are backpropogated through the entire network to train the parameters using the Adam
optimizer.

20

Fig. S2. Regressing data generated from f(x) = sin (x) using the ReLU activation func-

tion. A neural network with ReLU activation can accurately approximate f(x) (left panel),
while it leads to a non-smooth regression for the first derivative of f (middle panel) and a van-
ishing second derivative of f (right panel).

21

Fig. S3. Problem setup for 2D flow past a circular cylinder. Simulation domain in which data
on the concentration field is generated. We have assumed a uniform free stream velocity profile
at the left boundary, a zero pressure outflow condition imposed at the right boundary located
30D (D = 1) downstream of the cylinder, and periodicity for the top and bottom boundaries
of the [�10, 30]⇥ [�10, 10] domain. The passive scalar is injected at the inlet from [-2.5, 2.5].
A completely arbitrary training domain in the shape of a flower is depicted in the wake of the
cylinder. No information on the velocity is given for this training domain. Another training
domain is also shown by a rectangle that includes the cylinder. Information on the velocity is
only given on the left boundary of the rectangular domain shown by the dashed line.

22

Fig. S4. Relative L2 errors for 2D flow past a circular cylinder with arbitrary training

domain. Relative L2 errors between the model output and reference fields computed over the
full time window. The results are shown for the most refined input data, where 31 million data
points scattered in space and time are used both to regress the concentration field and enforce
the governing conservation equations.

23

Fig. S5. Relative L2 errors for 2D flow past a circular cylinder with arbitrary training

domain. Results are shown for various spatio-temporal resolutions of the input concentration
data. A: Relative L2 error computed over the full time window t = 132.08�148.08. B: Relative
L2 error computed over partial time window t = 137.08 � 142.08. The spatial resolution is
considered between 250-15,000 data points, whereas the time resolution is between 3-201 time
frames.

24

Fig. S6. Relative L2 errors of model output using corrupted concentration data with ad-

ditive Gaussian noise. Relative L2 errors are plotted for concentration, velocity and pressure
fields as a function of the noise level. The problem under investigation is the 2D flow past a
circular cylinder with arbitrary training domain. The level of the noise is defined as the level of
distortion in the innate variations (i.e., standard deviation) of data given by Eq. S5.

25

Fig. S7. History of losses and relative L2 errors for 2D flow past a circular cylinder with

arbitrary training domain. A: History of the aggregate loss (loss of data plus the enforced
equations) as well as each individual loss on data c(t, x, y) and the enforced equations e1 �
e4 are plotted with respect to the number of iterations. The mean squared loss function is
defined in Eq. 1. B: History of the relative L2 error between the model output and the reference
concentration, velocity and pressure fields are plotted with respect to the number of iterations.
The relative L2 error is defined by Eq. S4. In this figure, to filter out the oscillations in the time
series for the loss values and the relative L2 errors, we employ a centered moving average by
sliding a window of length 500 iterations along the corresponding time series.

26

Fig. S8. 2D flow past a circular cylinder with rectangular training domain. A representative
snapshot of the input data on the concentration of the passive scalar is shown in the top left panel
of this figure, where on the right the same concentration field is regressed by our algorithm. The
algorithm is capable of accurately regressing the velocity u, v and the pressure p fields shown
in the third row. The reference velocity and pressure fields at the same point in time are plotted
for comparison in the second row. Note that the pressure is only identifiable up to an additive
constant since this is an incompressible flow and only the spatial derivatives of the pressure
appear in the momentum equations.

27

Fig. S9. Predicted lift and drag acting on a cylinder after 106
and 105

iterations of train-

ing. Prediction vs. reference lift coefficient CL and drag coefficient CD over the time window
of 2.5 vortex shedding cycles. The no-slip boundary condition on the cylinder wall is prescribed
during the training for comparison, and the results are shown in black dotted lines.

28

Fig. S10. Relative L2 errors for 2D flow past a circular cylinder with rectangular training

domain. Relative L2 errors between the model output and reference fields computed over
the full time window after A: 106 and B: 105 iterations of training. The results are shown
for the most refined input data, where 2.8 million data points scattered in space and time are
used both to regress the concentration field and enforce the governing conservation equations.
Furthermore, in each panel the errors are shown for two scenarios: no-slip boundary condition
on the cylinder wall is not imposed (solid blue line) vs. prescribed no-slip boundary condition
(dashed red line).

29

Fig. S11. Comparison of the effect of Dirichlet and Neumann boundary conditions on the

predicted lift and drag acting on a cylinder using streaklines as training data. This example
is inspired by smoke visualizations of flow around an airfoil at an angle of attack, see e.g., Fig.
72 in (33). Flow streaklines around a circular cylinder visualized by the passive scalar using
A: zero-Dirichlet; and B: zero-Neumann boundary condition. Here, Re = 200 and Pe = 2,000.
A sinusoidal function in the form of �2.5  y  2.5 : c(y) = [1 + cos(4⇡y)]/2 at the inlet
was used to produce these streaklines. These data are generated using OpenFoam. Prediction
vs. reference lift coefficient CL and drag coefficient CD over the time window of 2.5 vortex
shedding cycles, where the data are generated using C: zero-Dirichlet; and D: zero-Neumann
boundary condition. The no-slip boundary condition on the cylinder wall can also be prescribed
during the training with the results shown in black dotted lines.

30

Fig. S12. Problem setup for 3D flow past a circular cylinder. 3D sketch for the prototypical
problem of flow past a circular cylinder of diameter D = 1. Two parallel planes are located 10D
apart along the z�axis. Flow is bounded between the plates for 10D along x�axis. Periodic
boundary conditions are prescribed parallel to the xz plane at y = �10 and 10, and parallel to
the xy plane at z = 0 and 10 starting from the location where the walls end. All the physical
boundaries are shown in black, whereas the gray box located behind the cylinder shows the
domain of interest where model training is performed. Zero-Neumann boundary conditions are
imposed for velocities and concentration along with zero pressure at the outflow located 30D
downstream of the cylinder. A uniform U = 1 is imposed at the inlet located 8D upstream of
the cylinder. Passive scalar is injected at the inlet through a finite region [�2.5, 2.5] ⇥ [0, 10].
Zero-velocity and concentration boundary conditions are imposed on each physical boundary.
Note that only concentration data in the training (gray box) domain are given to the neural
networks.

31

Fig. S13. 3D flow past a circular cylinder. The iso-surfaces of reference data and the regressed
concentration of the passive scalar are shown in top row for a representative time instant within
the selected training domain. Using the information on the concentration only, the velocity
fields u, v, w are inferred (shown in the third row) and are compared with the reference data
in the second row. In addition, the reference and regressed pressure p fields are plotted in the
last row. Note the range of contour levels are set equal between the reference and regressed
iso-surfaces of concentration and velocity components for better comparison.

32

Fig. S14. Relative L2 errors for 3D flow past a circular cylinder. Relative L2 errors between
the model output and reference fields computed over the full time window. 37 million data
points scattered within the training box and in time are used for both regressing the concentra-
tion field and enforcing the corresponding partial differential equations.

33

Fig. S15. Problem setup for 2D channel flow over an obstacle. Contours of the concen-
tration field within a 2D channel at a representative time instant are shown in the right panel.
A sinusoidal velocity profile u(t) (v = 0) is imposed at the inlet (shown on the left), and a
uniform concentration c = 1 for the passive scalar is injected to the channel. At the outlet, a
zero-Neumann boundary condition for the velocity and concentration is considered, while the
pressure is set to zero. Furthermore, the velocity and concentration on the walls are set to zero.
The flow Re = ŪH/⌫ = 60 is calculated based on the mean inflow velocity Ū = 1 and channel
height H = 12, whereas we choose a smaller diffusion constant for the passive scalar leading
to higher Pe = ŪH/ = 180. The training domain (white rectangle) is considered to contain
the obstacle with the upper and lower boundaries being the physical wall boundaries.

34

Fig. S16. 2D channel flow over an obstacle. The outputs from the neural networks include
the regressed concentration field based on the predictions of HFM, and the regressed velocity
u, v and pressure p fields shown on the right column. Reference concentration, velocity and
pressure fields are plotted for comparison on the left column. Note that the pressure is off by
an additive constant since this is an incompressible flow and only the spatial derivatives of the
pressure appear in the momentum equations.

35

Fig. S17. Relative L2 errors for 2D channel flow over an obstacle. Relative L2 errors
between the model output and reference fields computed over the full time window. 10 million
data points scattered within the training domain and in time are used for both regressing the
concentration field and enforcing the corresponding partial differential equations.

36

Fig. S18. Wall shear stresses for 2D channel flow over an obstacle. Regressed wall shear
stress magnitude as a function of space and time acting on the lower side of the training domain
including the circular arc is shown in the right panel. The reference wall shear stress distribution
is shown in the left panel for comparison.

37

Fig. S19. Problem setup for 3D intracranial aneurysm. The middle panel shows the sim-
ulation domain and pressure field at a time instant, whereas on the right the training domain
containing only the ICA sac is shown. Two perpendicular planes have been used to interpolate
the exact data and the predicted ones for plotting 2D contours in Fig. 3. A physiologic flow
waveform Q(t) (shown in the inset figure) is prescribed at the inlet along with the uniform con-
centration for the passive scalar. At the outlet, zero-Neumann boundary conditions are imposed
for velocities and concentration, whereas a “Windkessel” type boundary condition is used for
the pressure to represent the truncated geometry downstream (37). The Reynolds and Péclet
numbers are estimated based on the mean velocity and lumen diameter at the inlet. Using the
kinematic viscosity of blood and assuming a diffusivity constant  for the passive scalar equal
to the viscosity, we obtain Re = Pe = 98.2.

38

Fig. S20. Relative L2 errors for 3D intracranial aneurysm. Relative L2 errors between the
model output and reference fields computed over the full time window. 29 million data points
scattered within the aneurysm sac and in time are used for both regressing the concentration
field and enforcing the corresponding partial differential equations.

39

Fig. S21. Wall shear stresses for the 3D intracranial aneurysm. Wall shear stresses are
shown as the components of the traction vector S = (Sx, Sy, Sz) for comparison between the
model output and the reference fields. Pressure fields p acting on the aneurysm wall are also
plotted. The dataset for this example is generated using OpenFoam and is publicly available at
https://github.com/maziarraissi/HFM.

40

https://github.com/maziarraissi/HFM

Table S1. Forward Simulations. Concentration data are produced by forward numerical simu-
lations for the benchmark problems investigated in this work using the open-source spectral/hp
element solvers (Nektar/Nektar++), where DoF is the degrees of freedom, �t is the timestep
size and N is the number of timesteps to reach the final solution.

Processors DoF �t N

Da Vinci’s drawing in Fig. 1 (Nektar++) 144 22,476 0.001 5,160,000
Cylinder 2D in Fig. 2 (Nektar) 384 1,023,400 0.0008 185,100

Cylinder 3D in Fig. S12 (Nektar) 1248 2,722,640 0.0008 185,100
Stenosis 2D in Fig. S15 (Nektar) 240 472,745 0.001 130,100
Aneurysm 3D in Fig. 3 (Nektar) 576 813,350 0.00075 148,120

41

Table S2. 2D flow past a circular cylinder. Inferred Reynolds and Péclet numbers considered
as free parameters of the model after 106 and 105 iterations of training.

106 iterations of training 105 iterations of training
Reference Inferred Rel. Error Inferred Rel. Error

Pe 100 93.41 6.59% 91.07 8.93%
Re 100 93.16 6.84% 88.54 11.46%

42

Table S3. 2D channel flow over an obstacle. Inferred Reynolds and Péclet numbers considered
as free parameters of the model after 106 and 105 iterations of training.

106 iterations of training 105 iterations of training
Reference Inferred Rel. Error Inferred Rel. Error

Pe 180 180.40 0.22% 184.00 2.22%
Re 60 58.26 2.90% 53.54 10.76%

43

Table S4. Relative L2 errors for 2D flow past a circular cylinder with streaklines as data.

Different wall boundary conditions are used for comparison. The errors are between the model
output and reference fields. They are computed within the training domain (rectangular domain
shown in Fig. S3) and the corresponding time window for c, u, v and p.

Relative L2 errors (%)
c u v p

c|wall = 0 with (without)
prescribed no-slip velocity condition 3.84 (3.89) 4.69 (4.79) 8.76 (8.45) 4.99 (5.13)

@c/@n|wall = 0 with (without)
prescribed no-slip velocity condition 4.59 (4.68) 7.22 (9.6) 9.61 (12.26) 6.58 (8.27)

44

Movie S1. Flow visualization of passive scalar transport in the aneurysm generated by direct

numerical simulation.

Movie S2. Comparison of the regressed flow dynamics vs. the reference flow fields; shown here

by the velocity streamlines that are colored by pressure.

45

References and Notes
1. J. Westerweel, D. Dabiri, M. Gharib, The effect of a discrete window offset on the accuracy of

cross-correlation analysis of digital PIV recordings. Exp. Fluids 23, 20–28 (1997).
doi:10.1007/s003480050082

2. F. Pereira, J. Lu, E. Castano-Graff, M. Gharib, Microscale 3D flow mapping with μDDPIV.
Exp. Fluids 42, 589–599 (2007). doi:10.1007/s00348-007-0267-5

3. M. Shattuck, R. Behringer, G. Johnson, J. Georgiadis, Convection and flow in porous media.
Part 1. Visualization by magnetic resonance imaging. J. Fluid Mech. 332, 215–245
(1997). doi:10.1017/S0022112096003990

4. G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, 2000).
5. M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep

learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. J. Comput. Phys. 378, 686–707 (2019).
doi:10.1016/j.jcp.2018.10.045

6. G. E. Karniadakis, S. Sherwin, Spectral/hp Element Methods for Computational Fluid
Dynamics (Oxford University Press, 2nd Edition, 2013).

7. H. Baek, G. E. Karniadakis, A convergence study of a new partitioned fluid–structure
interaction algorithm based on fictitious mass and damping. J. Comput. Phys. 231, 629–
652 (2012). doi:10.1016/j.jcp.2011.09.025

8. J. B. Barlow, W. H. Rae Jr., A. Pope, INCAS Bull. 7, 133 (2015).
9. M. Koochesfahani, P. Dimotakis, Laser-induced fluorescence measurements of mixed fluid

concentrationin a liquid plane shear layer. AIAA J. 23, 1700–1707 (1985).
doi:10.2514/3.9154

10. J. Crimaldi, Planar laser induced fluorescence in aqueous flows. Exp. Fluids 44, 851–863
(2008). doi:10.1007/s00348-008-0496-2

11. S. Voros, S. Rinehart, Z. Qian, P. Joshi, G. Vazquez, C. Fischer, P. Belur, E. Hulten, T. C.
Villines, Coronary atherosclerosis imaging by coronary CT angiography: Current status,
correlation with intravascular interrogation and meta-analysis. JACC Cardiovasc.
Imaging 4, 537–548 (2011). doi:10.1016/j.jcmg.2011.03.006 Medline

12. M. Wintermark, M. Reichhart, J.-P. Thiran, P. Maeder, M. Chalaron, P. Schnyder, J.
Bogousslavsky, R. Meuli, Prognostic accuracy of cerebral blood flow measurement by
perfusion computed tomography, at the time of emergency room admission, in acute
stroke patients. Ann. Neurol. 51, 417–432 (2002). doi:10.1002/ana.10136 Medline

13. A. R. Aron, T. E. Behrens, S. Smith, M. J. Frank, R. A. Poldrack, Triangulating a cognitive
control network using diffusion-weighted magnetic resonance imaging (MRI) and
functional MRI. J. Neurosci. 27, 3743–3752 (2007). doi:10.1523/JNEUROSCI.0519-
07.2007 Medline

14. A. M. Shaaban, A. J. Duerinckx, Wall shear stress and early atherosclerosis: A review. AJR
Am. J. Roentgenol. 174, 1657–1665 (2000). doi:10.2214/ajr.174.6.1741657 Medline

http://dx.doi.org/10.1007/s003480050082
http://dx.doi.org/10.1007/s003480050082
http://dx.doi.org/10.1007/s00348-007-0267-5
http://dx.doi.org/10.1007/s00348-007-0267-5
http://dx.doi.org/10.1017/S0022112096003990
http://dx.doi.org/10.1017/S0022112096003990
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.jcp.2011.09.025
http://dx.doi.org/10.1016/j.jcp.2011.09.025
http://dx.doi.org/10.2514/3.9154
http://dx.doi.org/10.2514/3.9154
http://dx.doi.org/10.1007/s00348-008-0496-2
http://dx.doi.org/10.1007/s00348-008-0496-2
http://dx.doi.org/10.1016/j.jcmg.2011.03.006
http://dx.doi.org/10.1016/j.jcmg.2011.03.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21565743&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21565743&dopt=Abstract
http://dx.doi.org/10.1002/ana.10136
http://dx.doi.org/10.1002/ana.10136
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11921048&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11921048&dopt=Abstract
http://dx.doi.org/10.1523/JNEUROSCI.0519-07.2007
http://dx.doi.org/10.1523/JNEUROSCI.0519-07.2007
http://dx.doi.org/10.1523/JNEUROSCI.0519-07.2007
http://dx.doi.org/10.1523/JNEUROSCI.0519-07.2007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17409238&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17409238&dopt=Abstract
http://dx.doi.org/10.2214/ajr.174.6.1741657
http://dx.doi.org/10.2214/ajr.174.6.1741657
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10845502&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10845502&dopt=Abstract

15. C. K. Zarins, D. P. Giddens, B. K. Bharadvaj, V. S. Sottiurai, R. F. Mabon, S. Glagov,
Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with
flow velocity profiles and wall shear stress. Circ. Res. 53, 502–514 (1983).
doi:10.1161/01.RES.53.4.502 Medline

16. L. Boussel, V. Rayz, A. Martin, G. Acevedo-Bolton, M. T. Lawton, R. Higashida, W. S.
Smith, W. L. Young, D. Saloner, Phase-contrast magnetic resonance imaging
measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall
shear stress: Comparison with computational fluid dynamics. Magn. Reson. Med. 61,
409–417 (2009). doi:10.1002/mrm.21861 Medline

17. Y. Nakayama, Introduction to Fluid Mechanics (Butterworth-Heinemann, 2018).
18. maziarraissi. (2019, December 7). maziarraissi/HFM: Hidden Fluid Mechanics (Version

v1.0). Zenodo. http://doi.org/10.5281/zenodo.3566161
19. Yazdani. (2019, December 9). alirezayazdani1/HFM: HFM - Synthetic Data Generators

(Version v1.0). Zenodo. http://doi.org/10.5281/zenodo.3567215
20. M. Raissi, J. Mach. Learn. Res. 19, 1 (2018).
21. A. G. Baydin, B. A. Pearlmutter, A. A. Radul, J. M. Siskind, J. Mach. Learn. Res. 18, 1

(2018).
22. M. Abadi et al., 12th {USENIX} Symposium on Operating Systems Design and

Implementation ({OSDI} 16) (2016), pp. 265-283.
23. A. Paszke, et al., Automatic differentiation in PyTorch. NIPS 2017 Workshop Autodiff

Submission (2017).
24. J. Håstad, On the Correlation of Parity and Small-Depth Circuits. SIAM J. Comput. 43, 1699–

1708 (2014). doi:10.1137/120897432
25. P. Ramachandran, B. Zoph, Q. V. Le, arXiv:1710.05941 (2017).
26. M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, J. S. Dickstein, Proceedings of the 34th

International Conference on Machine Learning-Volume 70 (JMLR. Org, 2017), pp.
2847- 2854.

27. T. Salimans, D. P. Kingma, Adv. Neural Inf. Process. Syst. 2016, 901–909 (2016).
28. S. Ioffe, C. Szegedy, International Conference on Machine Learning (2015), pp. 448-456.
29. D. P. Kingma, J. Ba, Proceedings of the 3rd International Conference on Learning

Representations (ICLR) (2015).
30. S. H. Rudy, S. L. Brunton, J. L. Proctor, J. N. Kutz, Data-driven discovery of partial

differential equations. Sci. Adv. 3, e1602614 (2017). doi:10.1126/sciadv.1602614
Medline

31. G. Cybenko, Approximation by superpositions of a sigmoidal function. Math. Contr. Signals
Syst. 2, 303–314 (1989). doi:10.1007/BF02551274

32. S. J. Pan, Q. Yang, A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 22,
1345–1359 (2009). doi:10.1109/TKDE.2009.191

33. M. Van Dyke, An Album of Fluid Motion (The Parabolic Press, 1982).

http://dx.doi.org/10.1161/01.RES.53.4.502
http://dx.doi.org/10.1161/01.RES.53.4.502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=6627609&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=6627609&dopt=Abstract
http://dx.doi.org/10.1002/mrm.21861
http://dx.doi.org/10.1002/mrm.21861
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19161132&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19161132&dopt=Abstract
http://dx.doi.org/10.1137/120897432
http://dx.doi.org/10.1137/120897432
http://dx.doi.org/10.1126/sciadv.1602614
http://dx.doi.org/10.1126/sciadv.1602614
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28508044&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28508044&dopt=Abstract
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1109/TKDE.2009.191

34. X. Ma, G. E. Karniadakis, A low-dimensional model for simulating three-dimensional
cylinder flow. J. Fluid Mech. 458, 181–190 (2002). doi:10.1017/S0022112002007991

35. G. E. Karniadakis, G. S. Triantafyllou, Three-dimensional dynamics and transition to
turbulence in the wake of bluff objects. J. Fluid Mech. 238, 1–30 (1992).
doi:10.1017/S0022112092001617

36. G. K. Hansson, Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med.
352, 1685–1695 (2005). doi:10.1056/NEJMra043430 Medline

37. L. Grinberg, G. E. Karniadakis, Outflow boundary conditions for arterial networks with
multiple outlets. Ann. Biomed. Eng. 36, 1496–1514 (2008). doi:10.1007/s10439-008-
9527-7 Medline

http://dx.doi.org/10.1017/S0022112002007991
http://dx.doi.org/10.1017/S0022112002007991
http://dx.doi.org/10.1017/S0022112092001617
http://dx.doi.org/10.1017/S0022112092001617
http://dx.doi.org/10.1056/NEJMra043430
http://dx.doi.org/10.1056/NEJMra043430
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15843671&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15843671&dopt=Abstract
http://dx.doi.org/10.1007/s10439-008-9527-7
http://dx.doi.org/10.1007/s10439-008-9527-7
http://dx.doi.org/10.1007/s10439-008-9527-7
http://dx.doi.org/10.1007/s10439-008-9527-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18612828&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18612828&dopt=Abstract

	aaw4741-Raissi-SM-cover.page
	aaw4741_SupplementalMaterial_v3
	aaw4741-Raissi-SM-refs
	References and Notes
	References and Notes

