Ligand-Enabled mono-Selective β-C(sp³)–H Acyloxylation of Free Carboxylic Acids Using a Practical Oxidant

Zhe Zhuang,¹ Alastair N. Herron,¹ Zhoulong Fan,¹ and Jin-Quan Yu^{1*}

¹The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.

Table of Contents

General Information	S 2
Experimental Section	
Preparation of Aliphatic Carboxylic Acids	S 3
Preparation of Mono- <i>N</i> -Protected β-Amino Acid Ligands	S 4
Table S1. Ligand Investigation for β -C(sp ³)–H Acetoxylation	S5
Table S2. Base Investigation for β -C(sp ³)–H Acetoxylation	S 6
Table S3. Oxidant Investigation for β -C(sp ³)–H Acetoxylation	S 6
Table S4. Base Loadings Investigation for β -C(sp ³)–H Acetoxylation	S 7
Table S5. Temperature Investigation for β -C(sp ³)–H Acetoxylation	S 7
Table S6. Base Investigation for Intramolecular β -C(sp ³)–H Acyloxylation	S 8
Table S7. Acid Anhydride Scope for Intramolecular β -C(sp ³)–H Acyloxylation	S 8
Table S8. Selected Unsuccessful Substrates	S 8
General Procedure for β -C(sp ³)–H Acetoxylation	S 9
Substrate Scope for β -C(sp ³)–H Acetoxylation	S 10
Scale-up Reaction for β -C(sp ³)–H Acetoxylation	S20
Experimental Procedure for Deprotection of Acetyl Group	S21
General Procedure for Intramolecular β-C(sp ³)–H Acyloxylation	S22
Substrate Scope for Intramolecular β -C(sp ³)–H Acyloxylation	S23
References	S25
¹ H and ¹³ C NMR Spectra	S27

General Information: HFIP was obtained from Oakwood. Pd(OAc)₂ was obtained from Strem. TBHP (70% in water or ca. 5.5 M in decane) was purchased from Sigma-Aldrich. Carboxylic acids were obtained from the commercial sources or synthesized following literature procedures. Other reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F254. Visualization was carried out with short-wave UV light or KMnO₄ and heat as developing agents. ¹H NMR spectra were recorded on Bruker DRX-600 instrument. Chemical shifts were quoted in parts per million (ppm) referenced to 0.0 ppm for TMS. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Coupling constants, J, were reported in Hertz unit (Hz). 13 C NMR spectra were recorded on Bruker DRX-600 and were fully decoupled by broad band proton decoupling. Chemical shifts were reported in ppm referenced to the center line of a triplet at 77.16 ppm of CDCl₃. Column chromatography was performed using E. Merck silica (60, particle size 0.043–0.063 mm), and pTLC was performed on Merck silica plates (60F-254). High-resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer using ESI-TOF (electrospray ionization-time of flight).

Preparation of Aliphatic Carboxylic Acids

Aliphatic carboxylic acids were obtained from the commercial sources or synthesized following literature procedures¹⁻³.

Preparation of Mono-*N*-Protected β-Amino Acid Ligands

Mono-*N*-protected amino acid ligands were obtained from the commercial sources or synthesized following literature procedures⁴⁻⁷.

Table S1. Ligand Investigation for β-C(sp³)–H Acetoxylation^{*a*,*b*}

^{*a*}Conditions: **1a** (0.1 mmol), Pd(OAc)₂ (10 mol%), **L** (20 mol%), Na₂CO₃ (1.0 eq), TBHP (70% in water) (2.0 eq), Ac₂O (2.0 eq), HFIP (1.0 mL), 60 °C, 12 h. ^{*b*}The yields were determined by ¹H NMR analysis of the crude product using CH₂Br₂ as the internal standard.

		Pd(OAc) ₂ L12 (20	(10 mol%)) mol%)		
	H 1a	base (1.0 eq), TBHP (70% in HFIP, 60	Ac ₂ O (2.0 eq) water) (2.0 eq) °C, 12 h	Me 2a	Ac
entry	base	yield (%)	entry	base	yield (%)
1	w/o	0	7	Na ₃ PO ₄	34
2	NaHCO ₃	13	8	NaOAc	22
3	Na ₂ CO ₃	61	9	Li ₂ CO ₃	0
4	NaH ₂ PO ₄	0	10	K ₂ CO ₃	52
5	Na ₂ HPO ₄	10	11	Cs_2CO_3	11
6	Na ₂ HPO ₄ .7H ₂ O	14			

Table S2. Base Investigation for β -C(sp³)–H Acetoxylation^{*a*,*b*}

^{*a*}Conditions: **1a** (0.1 mmol), Pd(OAc)₂ (10 mol%), **L12** (20 mol%), base (1.0 eq), TBHP (70% in water) (2.0 eq), Ac₂O (2.0 eq), HFIP (1.0 mL), 60 $^{\circ}$ C, 12 h. ^{*b*}The yields were determined by ¹H NMR analysis of the crude product using CH₂Br₂ as the internal standard.

Table S3.	Oxidant	Investigation	for β-C((sp ³)– H A	Acetoxyl	lation ^{a,b}

		Pd(OAc) ₂ ligand (L) a ₂ CO ₃ (1.0 eq	(10 mol% (20 mol%), Ac ₂ O (6) 6) 2.0 eq) Me OH	
	н 1а	oxidant HFIP, 60	(2.0 eq) ^o C, 12 h	0Ac 2a	
entry	oxidant	yield (%)	entry	oxidant	yield (%)
1	w/o	0	7	(BzO) ₂	0
2	H_2O_2	0	8	mCPBA	0
3	AcOO <i>t</i> -Bu	34	9	CMHP	0
4	BzOO <i>t</i> -Bu	0	10	TBHP (70% in water)	61
5	(<i>t</i> -BuO) ₂	0	11	TBHP (ca. 5.5 M in decar	ne) 72
6	Lauroyl peroxide	0			

^{*a*}Conditions: **1a** (0.1 mmol), Pd(OAc)₂ (10 mol%), **L12** (20 mol%), Na₂CO₃ (1.0 eq), oxidant (2.0 eq), Ac₂O (2.0 eq), HFIP (1.0 mL), 60 ^oC, 12 h. ^{*b*}The yields were determined by ¹H NMR analysis of the crude product using CH₂Br₂ as the internal standard.

		Pd(OAc) ₂ L12 (20	(10 mol%) • mol%)		
	H H 1a	Na ₂ CO ₃ (x eq) TBHP (70% in HFIP, 60	, Ac ₂ O (2.0 e water) (2.0 e °C, 12 h	q) Me [°] QA (q) 2a	OH Ac
entry	x eq base	yield (%)	entry	x eq base	yield (%)
1	0.5	23	4	2.0	44
1 2	0.5 1.0	23 61	4 5	2.0 2.5	44 8

Table S4. Base Loadings Investigation for β-C(sp³)–H Acetoxylation^{*a*,*b*}

^{*a*}Conditions: **1a** (0.1 mmol), Pd(OAc)₂ (10 mol%), **L12** (20 mol%), Na₂CO₃ (x eq), TBHP (70% in water) (2.0 eq), Ac₂O (2.0 eq), HFIP (1.0 mL), 60 °C, 12 h. ^{*b*}The yields were determined by ¹H NMR analysis of the crude product using CH₂Br₂ as the internal standard.

Table S5.	Temperature	Investigation for	B-C(sn ³)–H Acet	oxvlation ^{a,b}
I able 55.	1 cmpci atui c	investigation for	p=C(sp) II Meen	JAJIAHOH

		Pd(OAc) ₂ L12 (20	(10 mol%) • mol%)		
	™e CH H 1a	Na ₂ CO ₃ (1.0 eq TBHP (70% in HFIP,), Ac ₂ O (2.0 water) (2.0 e T, 12 h	q) 2a	OH DAc
entry	T (°C)	yield (%)	entry	T (°C)	yield (%)
1	50	55	4	80	22
2	60	61	5	90	21
3	70	30			

^{*a*}Conditions: **1a** (0.1 mmol), Pd(OAc)₂ (10 mol%), **L12** (20 mol%), Na₂CO₃ (1.0 eq), TBHP (70% in water) (2.0 eq), Ac₂O (2.0 eq), HFIP (1.0 mL), $T^{O}C$, 12 h. ^{*b*}The yields were determined by ¹H NMR analysis of the crude product using CH₂Br₂ as the internal standard.

L Å		Pd(OAc) ₂ L12 (20	(10 mol%)) mol%)	Ме ОН	
но	Ме Н ТЕ 4b	base (3HP (~5.5 M in HFIP, 60	1.0 eq) decane) (2.0 ec °C, 12 h	a) 5b	
entry	base	yield (%)	entry	base	yield (%)
1	w/o	0	7	NaOAc	45
2	NaHCO ₃	8	8	KHCO ₃	68
3	Na ₂ CO ₃	32	9	K ₂ CO ₃	67
4	NaH ₂ PO ₄	0	10	K ₂ HPO ₄	45
5	Na ₂ HPO ₄	16	11	K ₃ PO ₄	75
6	Na ₃ PO ₄	49	12	KOAc	34

Table S6. Base Investigation for Intramolecular β-C(sp³)–H Acyloxylation^{*a*,*b*}

^{*a*}Conditions: **4b** (0.1 mmol), Pd(OAc)₂ (10 mol%), **L12** (20 mol%), base (1.0 eq), TBHP (ca. 5.5 M in decane) (2.0 eq), HFIP (1.0 mL), 60 °C, 12 h. ^{*b*}The yields were determined by ¹H NMR analysis of the crude product using CH₂Br₂ as the internal standard.

Table S7. Acid Anhydride Scope for β-C(sp³)–H Acyloxylation^{*a,b*}

^{*a*}Conditions: **1a** (0.1 mmol), Pd(OAc)₂ (10 mol%), **L12** (20 mol%), Na₂CO₃ (1.0 eq), TBHP (ca. 5.5 M in decane) (2.0 eq), (RCO)₂O (2.0 eq), HFIP (1.0 mL), 60 $^{\circ}$ C, 12 h. ^{*b*}The yields were determined by ¹H NMR analysis of the crude product using CH₂Br₂ as the internal standard.

Table S8. Selected Unsuccessful Substrates

General Procedure for β-C(sp³)–H Acetoxylation

General Procedure: In the culture tube, Pd(OAc)₂ (10 mol%, 2.2 mg), ligand L12 (20 mol%, 3.4 mg), Na₂CO₃ (1.0 eq, 10.6 mg), and carboxylic acid **1** (0.1 mmol) in order were weighed in air and placed with a magnetic stir bar. Then HFIP (1.0 mL), Ac₂O (2.0 eq, 19 μ L), and TBHP (ca. 5.5 M in decane) (2.0 eq, 36 μ L) were added. The reaction mixture was stirred at rt for 3 minutes, and then heated to 60 °C for 12 hours (600 rpm). After being allowed to cool to room temperature, the mixture was treated with AcOH (0.05 mL) and concentrated *in vacuo*. The resulting mixture was dissolved in MeOH (1.0 mL), treated with TMSCHN₂ (2.0 eq), and concentrated *in vacuo* after 1 hour. The crude mixture was purified by pTLC or column chromatography to afford corresponding methyl esters **2**'.

Substrate Scope for β -C(sp³)–H Acetoxylation

Methyl 2-(acetoxymethyl)butanoate (2a')

Following **General Procedure** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 12.5 mg, 72%). ¹H NMR (600 MHz, CDCl₃) δ 4.25 – 4.17 (m, 2H), 3.71 (s, 3H), 2.69 – 2.60 (m, 1H), 2.04 (s, 3H), 1.73 – 1.63 (m, 1H), 1.63 – 1.56 (m, 1H), 0.94 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.11, 170.93, 64.43, 51.92, 46.38, 22.14, 20.98, 11.58; HRMS (ESI-TOF) Calcd for C₈H₁₄NaO₄ [M+Na]⁺: 197.0784; found: 197.0786.

Methyl 3-acetoxy-2-methylpropanoate (2b')

Following **General Procedure** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 11.5 mg, 72%, mono/di > 20/1). The NMR data matches the reported data⁸.

Methyl 2-(acetoxymethyl)pentanoate (2c')

Following **General Procedure** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 14.0 mg, 74%). ¹H NMR (600 MHz, CDCl₃) δ 4.26 – 4.12 (m, 2H), 3.70 (s, 3H), 2.72 (tt, *J* = 8.4, 5.6 Hz, 1H), 2.03 (s, 3H), 1.67 – 1.55 (m, 1H), 1.54 – 1.42 (m, 1H), 1.40 – 1.29 (m, 2H), 0.92 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.31, 170.91, 64.77, 51.93, 44.74, 31.03, 20.97, 20.41, 14.02; HRMS (ESI-TOF) Calcd for C₉H₁₆NaO₄ [M+Na]⁺: 211.0941; found: 211.0943.

Methyl 2-(acetoxymethyl)hexanoate (2d')

Following **General Procedure** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 13.0 mg, 64%). The NMR data matches the reported data⁹.

Methyl 2-(acetoxymethyl)heptanoate (2e')

Following **General Procedure** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 14.5 mg, 67%). ¹H NMR (600 MHz, CDCl₃) δ 4.31 – 4.12 (m, 2H), 3.71 (s, 3H), 2.77 – 2.64 (m, 1H), 2.04 (s, 3H), 1.67 – 1.58 (m, 1H), 1.53 – 1.45 (m, 1H), 1.36 – 1.21 (m, 6H), 0.88 (t, *J* = 6.7 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 174.34, 170.94, 64.78, 44.97, 31.73, 29.85, 28.90, 26.82, 22.54, 20.99, 14.11; HRMS (ESI-TOF) Calcd for C₁₁H₂₁O₄ [M+H]⁺: 217.1434; found: 217.1438.

Methyl 3-acetoxypropanoate (2f')

Following **General Procedure** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 7.5 mg, 51%). The NMR data matches the reported data¹⁰.

Methyl 3-acetoxy-2-cyclohexylpropanoate (2g')

Following **General Procedure** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 10.0 mg, 44%). ¹H NMR (600 MHz, CDCl₃) δ 4.32 (dd, *J* = 10.8, 4.6 Hz, 1H), 4.19 (dd, *J* = 10.8, 9.9 Hz, 1H), 3.70 (s, 3H), 2.55 (dtd, *J* = 9.9, 4.6, 2.3 Hz, 1H), 2.02 (s, 3H), 1.79 – 1.67 (m, 2H), 1.67 – 1.55 (m, 3H), 1.29 – 1.18 (m, 2H), 1.18 – 1.09 (m, 1H), 1.10 – 1.00 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 173.96, 170.95, 63.73, 51.72, 50.93, 38.02, 30.93, 30.82, 26.28, 26.25, 21.02; HRMS (ESI-TOF) Calcd for C₁₂H₂₁O₄ [M+H]⁺: 229.1434; found: 229.1440.

Methyl 3-acetoxy-2-(4-oxocyclohexyl)propanoate (2h')

Following **General Procedure** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 9.0 mg, 37%). ¹H NMR (600 MHz, CDCl₃) δ 4.37 (dd, *J* = 11.0, 4.9 Hz, 1H), 4.26 (dd, *J* = 11.0, 9.0 Hz, 1H), 3.73 (s, 3H), 2.69 (ddd, *J* = 9.0, 7.4, 4.9 Hz, 1H), 2.47 – 2.38 (m, 2H), 2.38 – 2.29 (m, 2H), 2.20 – 2.07 (m, 2H), 2.05 (s, 3H), 2.02 – 1.92 (m, 1H), 1.65 – 1.51 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 210.43, 173.14, 170.81, 63.36, 52.10, 49.32, 40.62, 40.60, 36.07, 30.29, 30.20, 20.98; HRMS (ESI-TOF) Calcd for C₁₂H₁₉O₅ [M+H]⁺: 243.1227; found: 243.1229.

Methyl 3-acetoxy-2-(cyclohexylmethyl)propanoate (2i')

Following **General Procedure** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 13.0 mg, 54%). The NMR data matches the reported data⁹.

Following **General Procedure** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 14.0 mg, 41%). ¹H NMR (600 MHz, CDCl₃) δ 4.20 (dd, *J* = 10.9, 5.2 Hz, 1H), 4.16 (dd, *J* = 10.9, 8.3 Hz, 1H), 4.07 (br s, 2H), 3.72 (s, 3H), 2.82 (tt, *J* = 8.7, 5.3 Hz, 1H), 2.66 (br s, 2H), 2.04 (s, 3H), 1.71 (d, *J* = 13.2 Hz, 1H), 1.68 – 1.54 (m, 3H), 1.45 (s, 9H), 1.40 – 1.32 (m, 1H), 1.18 – 0.99 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 174.19, 170.90, 154.97, 79.59, 65.01, 52.14, 52.12, 43.89 (br), 42.27, 35.59, 33.96, 28.61, 20.95; HRMS (ESI-TOF) Calcd for C₁₇H₃₀NO₆ [M+H]⁺: 344.2068; found: 344.2068.

Methyl 3-acetoxy-2-(cyclopentylmethyl)propanoate (2k')

Following **General Procedure** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 10.5 mg, 46%). ¹H NMR (600 MHz, CDCl₃) δ 4.22 (dd, *J* = 10.9, 5.0 Hz, 1H), 4.16 (dd, *J* = 10.9, 8.7 Hz, 1H), 3.71 (s, 3H), 2.80 – 2.72 (m, 1H), 2.04 (s, 3H), 1.86 – 1.73 (m, 3H), 1.73 – 1.66 (m, 1H), 1.66 – 1.56 (m, 2H), 1.56 – 1.50 (m, 2H), 1.50 – 1.41 (m, 1H), 1.15 – 1.01 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 174.56, 170.91, 65.08, 51.96, 44.48, 38.01, 35.23, 32.87, 32.70, 25.21, 25.19, 20.98; HRMS (ESI-TOF) Calcd for C₁₂H₂₁O₄ [M+H]⁺: 229.1434; found: 229.1439.

Methyl 3-acetoxy-2-cyclobutylpropanoate (2l')

Following **General Procedure** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 10.0 mg, 50%). ¹H NMR (600 MHz, CDCl₃) δ 4.16 (dd, *J* = 11.0, 4.6 Hz, 1H), 4.12 (dd, *J* = 11.0, 8.7 Hz, 1H), 3.69 (s, 3H), 2.70 (ddd, *J* = 10.1, 8.7, 4.6 Hz, 1H), 2.55 – 2.45 (m, 1H), 2.13 – 2.05 (m, 1H), 2.05 – 1.97 (m, 4H), 1.94 – 1.71 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 173.27, 170.96, 63.30, 51.84, 51.02, 35.07, 27.31, 26.91, 21.00, 18.53; HRMS (ESI-TOF) Calcd for C₁₀H₁₇O₄ [M+H]⁺: 201.1121; found: 201.1124.

Methyl 3-acetoxy-2-(cyclopropylmethyl)propanoate (2m')

Following **General Procedure** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 8.5 mg, 43%). ¹H NMR (600 MHz, CDCl₃) δ 4.26 – 4.13 (m, 2H), 3.71 (s, 3H), 2.74 – 2.66 (m, 1H), 2.04 (s, 3H), 1.67 – 1.60 (m, 1H), 1.54 – 1.48 (m, 1H), 1.36 – 1.26 (m, 5H); ¹³C NMR (150 MHz, CDCl₃) δ 174.33, 170.92, 64.78, 51.95, 44.95, 29.31, 28.65, 22.65, 20.98, 13.98; HRMS (ESI-TOF) Calcd for C₁₀H₁₇O₄ [M+H]⁺: 201.1121; found: 201.1127.

Methyl 3-acetoxy-2-benzylpropanoate (2n')

Following **General Procedure** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 9.5 mg, 40%). ¹H NMR (600 MHz, CDCl₃) δ 7.32 – 7.26 (m, 2H), 7.24 – 7.20 (m, 1H), 7.19 – 7.13 (m, 2H), 4.25 – 4.15 (m, 2H), 3.66 (s, 3H), 3.05 – 2.97 (m, 2H), 2.88 – 2.79 (m, 1H), 2.04 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 173.40, 170.82, 138.05, 128.98, 128.73, 126.86, 64.01, 52.06, 46.59, 34.89, 20.94; HRMS (ESI-TOF) Calcd for C₁₃H₁₇O₄ [M+H]⁺: 237.1121; found: 237.1122.

Methyl 2-(acetoxymethyl)-5-phenylpentanoate (20')

Following **General Procedure** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 13.5 mg, 51%). ¹H NMR (600 MHz, CDCl₃) δ 7.34 – 7.27 (m, 2H), 7.24 – 7.15 (m, 3H), 4.24 – 4.18 (m, 2H), 3.73 (s, 3H), 2.80 – 2.73 (m, 1H), 2.65 (t, *J* = 7.4 Hz, 3H), 2.05 (s, 3H), 1.77 – 1.62 (m, 4H); ¹³C NMR (150 MHz, CDCl₃) δ 174.11, 170.89, 141.83, 128.52, 128.51, 126.05, 64.66, 52.00, 44.80, 35.73, 28.91, 28.45, 20.96; HRMS (ESI-TOF) Calcd for C₁₅H₂₁O₄ [M+H]⁺: 265.1434; found: 265.1445.

Methyl 2-(acetoxymethyl)-7-phenylheptanoate (2p')

Following **General Procedure** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 12.0 mg, 41%). ¹H NMR (600 MHz, CDCl₃) δ 7.34 – 7.26 (m, 2H), 7.21 – 7.14 (m, 3H), 4.25 – 4.15 (m, 2H), 3.70 (s, 3H), 2.73 – 2.66 (m, 1H), 2.63 – 2.56 (m, 2H), 2.03 (s, 3H), 1.68 – 1.44 (m, 8H); ¹³C NMR (150 MHz, CDCl₃) δ 174.29, 170.94, 142.85, 128.53, 128.39, 125.76, 64.76, 51.97, 44.94, 36.04, 31.50, 29.15, 28.91, 27.09, 20.99; HRMS (ESI-TOF) Calcd for C₁₇H₂₅O₄ [M+H]⁺: 293.1747; found: 293.1750.

5-(Acetoxymethyl)-6-methoxy-6-oxohexyl benzoate (2q')

Following **General Procedure** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 21.0 mg, 66%). ¹H NMR (600 MHz, CDCl₃) δ 8.06 – 8.00 (m, 2H), 7.59 – 7.52 (m, 1H), 7.47 – 7.41 (m, 2H), 4.35 – 4.28 (m, 2H), 4.26 – 4.19 (m, 2H), 3.70 (s, 3H), 2.74 (ddt, *J* = 8.6, 7.8, 5.7 Hz, 1H), 2.03 (s, 3H), 1.87 – 1.67 (m, 3H), 1.67 – 1.55 (m, 1H), 1.55 – 1.45 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 173.97, 170.88, 166.73, 133.05, 130.47, 129.67, 128.50, 64.65, 64.60, 52.03, 44.85, 28.69, 28.54, 23.79, 20.95; HRMS (ESI-TOF) Calcd for C₁₇H₂₃O₆ [M+H]⁺: 323.1489; found: 323.1497.

Dimethyl 2-(acetoxymethyl)heptanedioate (2r')

Following **General Procedure** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 16.0 mg, 62%). ¹H NMR (600 MHz, CDCl₃) δ 4.25 – 4.15 (m, 2H), 3.71 (s, 3H), 3.67 (s, 3H), 2.76 – 2.67 (m, 1H), 2.31 (t, *J* = 7.5 Hz, 2H), 2.04 (s, 3H), 1.72 – 1.57 (m, 3H), 1.57 – 1.49 (m, 1H), 1.39 – 1.32 (m, 2H); ¹³C NMR (150

MHz, CDCl₃) δ 174.02, 173.99, 170.89, 64.59, 52.02, 51.67, 44.75, 33.87, 28.53, 26.66, 24.81, 20.95; HRMS (ESI-TOF) Calcd for C₁₂H₂₁O₆ [M+H]⁺: 261.1333; found: 261.1335.

Methyl 2-(acetoxymethyl)-7-chloroheptanoate (2s')

Following **General Procedure** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 13.0 mg, 52%). ¹H NMR (600 MHz, CDCl₃) δ 4.25 – 4.16 (m, 2H), 3.72 (s, 3H), 3.52 (t, *J* = 6.6 Hz, 2H), 2.76 – 2.66 (m, 1H), 2.04 (s, 3H), 1.82 – 1.73 (m, 2H), 1.70 – 1.61 (m, 2H), 1.58 – 1.50 (m, 2H), 1.50 – 1.41 (m, 2H), 1.39 – 1.31 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 174.09, 170.90, 64.65, 52.03, 45.01, 44.85, 32.42, 28.73, 26.81, 26.47, 20.98; HRMS (ESI-TOF) Calcd for C₁₁H₂₀ClO₄ [M+H]⁺: 251.1045; found: 251.1044.

Methyl 2-(acetoxymethyl)-2-methylbutanoate (2t')

Following **General Procedure** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 8.5 mg, 45%, mono/di > 20/1). ¹H NMR (600 MHz, CDCl₃) δ 4.20 (d, *J* = 10.9 Hz, 1H), 4.08 (d, *J* = 10.9 Hz, 1H), 3.70 (s, 3H), 2.05 (s, 3H), 1.68 (dq, *J* = 13.7, 7.5 Hz, 1H), 1.53 (dq, *J* = 13.7, 7.5 Hz, 1H), 1.19 (s, 3H), 0.86 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 175.65, 171.01, 68.90, 52.04, 46.67, 28.84, 20.97, 19.26, 8.72; HRMS (ESI-TOF) Calcd for C₉H₁₇O₄ [M+H]⁺: 189.1121; found: 189.1124.

Methyl 3-acetoxy-2-(cyclopropylmethyl)-2-methylpropanoate (2u')

Following **General Procedure** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 7.0 mg, 33%, mono/di > 20/1). ¹H NMR (600

MHz, CDCl₃) δ 4.29 (d, J = 10.8 Hz, 1H), 4.17 (d, J = 10.8 Hz, 1H), 3.73 (s, 3H), 2.07 (s, 3H), 1.57 – 1.48 (m, 2H), 1.30 (s, 3H), 0.70 – 0.62 (m, 1H), 0.54 – 0.41 (m, 2H), 0.12 – 0.04 (m, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 175.77, 171.02, 68.94, 52.03, 46.93, 40.95, 21.01, 20.08, 6.37, 4.59, 4.43.

Methyl 2-(acetoxymethyl)-2-methyl-5-phenylpentanoate (2v')

Following **General Procedure** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 12.0 mg, 43%, mono/di > 20/1). ¹H NMR (600 MHz, CDCl₃) δ 7.34 – 7.27 (m, 2H), 7.24 – 7.14 (m, 3H), 4.20 (d, *J* = 10.9 Hz, 1H), 4.09 (d, *J* = 10.9 Hz, 1H), 3.70 (s, 3H), 2.62 (t, *J* = 7.0 Hz, 2H), 2.04 (s, 3H), 1.77 – 1.65 (m, 1H), 1.65 – 1.60 (m, 1H), 1.61 – 1.51 (m, 2H), 1.21 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 175.60, 170.96, 141.92, 128.49, 126.03, 68.98, 52.10, 46.24, 36.20, 35.55, 26.10, 20.95, 19.80 1 carbon signal was not assigned due to overlaps).

Methyl 2-(acetoxymethyl)-6-fluoro-2-methylhexanoate (2w')

Following **General Procedure** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 12.0 mg, 51%, mono/di > 20/1). ¹H NMR (600 MHz, CDCl₃) δ 4.43 (dt, *J* = 47.3, 6.0 Hz, 2H), 4.19 (d, *J* = 10.9 Hz, 1H), 4.09 (d, *J* = 10.9 Hz, 1H), 3.70 (s, 3H), 2.05 (s, 3H), 1.73 – 1.62 (m, 3H), 1.55 – 1.48 (m, 1H), 1.45 – 1.36 (m, 1H), 1.36 – 1.28 (m, 1H), 1.21 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 175.51, 170.95, 83.81 (d, *J* = 164.6 Hz), 68.97, 52.17, 46.28, 35.59, 30.84 (d, *J* = 19.8 Hz), 20.96, 20.27 (d, *J* = 5.2 Hz), 19.76.

Methyl 2-(acetoxymethyl)-7,7,7-trifluoro-2-methylheptanoate (2x')

Following **General Procedure** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 11.5 mg, 40%, mono/di > 20/1). ¹H NMR (600 MHz, CDCl₃) δ 4.20 (d, *J* = 10.9 Hz, 1H), 4.11 (d, *J* = 10.9 Hz, 1H), 3.72 (s, 3H), 2.13 – 2.08 (m, 2H), 2.08 (s, 3H), 1.72 – 1.64 (m, 2H), 1.56 – 1.48 (m, 2H), 1.42 – 1.28 (m, 2H), 1.23 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 175.39, 170.92, 127.20 (q, *J* = 276.3 Hz), 68.87, 52.19, 46.18, 35.51, 33.63 (q, *J* = 28.6 Hz), 23.55, 22.38 (q, *J* = 3.2 Hz), 20.96, 19.84.

Methyl 3-acetoxy-2-methyl-2-((2-nitrophenoxy)methyl)propanoate (2y')

Following **General Procedure** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 17.0 mg, 55%, mono/di > 20/1). ¹H NMR (600 MHz, CDCl₃) δ 7.87 (dd, *J* = 8.3, 1.7 Hz, 1H), 7.54 (ddd, *J* = 8.3, 7.5, 1.7 Hz, 1H), 7.12 (dd, *J* = 8.5, 1.1 Hz, 1H), 7.06 (ddd, *J* = 8.5, 7.5, 1.1 Hz, 1H), 4.42 (d, *J* = 11.1 Hz, 1H), 4.34 (d, *J* = 11.1 Hz, 1H), 4.30 (d, *J* = 8.7 Hz, 1H), 4.20 (d, *J* = 8.7 Hz, 1H), 3.75 (s, 3H), 2.03 (s, 3H), 1.38 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 173.57, 170.50, 152.15, 134.37, 125.98, 120.98, 114.84, 70.73, 65.48, 52.60, 47.18, 20.89, 18.03 (1 carbon signal was not assigned due to overlaps); HRMS (ESI-TOF) Calcd for C₁₄H₁₈NO₇ [M+H]⁺: 312.1078; found: 312.1085.

Methyl 2-(acetoxymethyl)-2-ethylhexanoate (2z')

Following **General Procedure** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 12.0 mg, 52%). ¹H NMR (600 MHz, CDCl₃) δ 4.20 (d, *J* = 11.3 Hz, 1H), 4.19 (d, *J* = 11.3 Hz, 1H), 3.69 (s, 3H), 2.04 (s, 3H), 1.65 (qd, *J* = 7.5, 3.2 Hz, 2H), 1.61 – 1.54 (m, 2H), 1.29 (q, *J* = 7.5 Hz, 2H), 1.22 – 1.09 (m, 2H), 0.89 (t, *J* = 7.3 Hz, 3H), 0.81 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 175.45, 170.97, 64.87, 51.86, 49.80, 32.64, 26.19, 25.96, 23.22, 21.00, 14.06, 8.48; HRMS (ESI-TOF) Calcd for C₁₂H₂₃O₄ [M+H]⁺: 231.1591; found: 231.1589.

Methyl 2-(acetoxymethyl)-2-ethyl-4-methylpentanoate (2aa')

Following **General Procedure** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 12.5 mg, 54%). ¹H NMR (600 MHz, CDCl₃) δ 4.24 (d, *J* = 11.4 Hz, 1H), 4.19 (d, *J* = 11.4 Hz, 1H), 3.68 (s, 3H), 2.05 (s, 3H), 1.75 – 1.51 (m, 5H), 0.86 (d, *J* = 6.6 Hz, 3H), 0.84 (d, *J* = 6.6 Hz, 3H), 0.80 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 175.85, 170.99, 64.33, 51.73, 49.07, 42.59, 26.80, 24.35, 24.19, 23.49, 21.00, 8.39; HRMS (ESI-TOF) Calcd for C₁₂H₂₃O₄ [M+H]⁺: 231.1591; found: 231.1593.

Methyl 2-(acetoxymethyl)-2-ethyl-5-phenylpentanoate (2ab')

Following **General Procedure** on 0.1 mmol scale. Purification by pTLC afforded the title compound (colorless oil, 16.0 mg, 55%). ¹H NMR (600 MHz, CDCl₃) δ 7.31 – 7.24 (m, 2H), 7.20 – 7.12 (m, 3H), 4.22 – 4.13 (m, 2H), 3.67 (s, 3H), 2.59 (t, *J* = 7.7 Hz, 2H), 1.99 (s, 3H), 1.68 – 1.57 (m, 4H), 1.55 – 1.45 (m, 2H), 0.78 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 175.25, 170.91, 142.01, 128.50, 128.45, 125.98, 64.72, 51.90, 49.79, 36.19, 32.32, 26.06, 25.74, 20.94, 8.46; HRMS (ESI-TOF) Calcd for C₁₇H₂₄NaO₄ [M+Na]⁺: 315.1567; found: 315.1575.

Scale-up Reaction for β -C(sp³)–H Acetoxylation

In the sealed tube, Pd(OAc)₂ (10 mol%, 66.0 mg), ligand **L12** (20 mol%, 102.0 mg), and Na₂CO₃ (1.0 eq, 318.0 mg) in order were weighed in air and placed with a magnetic stir bar. Then HFIP (30.0 mL), carboxylic acid **1d** (3.0 mmol, 0.43 mL), Ac₂O (2.0 eq, 0.57 mL), and TBHP (70% in water) (2.0 eq, 0.83 mL) were added. The reaction mixture was stirred at rt for 3 minutes, and then heated to 60 °C for 24 hours (600 rpm). After being allowed to cool to room temperature, the mixture was treated with AcOH (1.0 mL) and concentrated *in vacuo*. The crude mixture was purified by column chromatography to afford corresponding β -acetoxylation free carboxylic acid **2d** (55%, 310 mg).

2-(Acetoxymethyl)hexanoic acid (2d)

¹H NMR (600 MHz, CDCl₃) δ 4.25 (dd, J = 11.0, 5.2 Hz, 1H), 4.21 (dd, J = 11.0, 8.3 Hz, 1H), 2.78 – 2.70 (m, 1H), 2.06 (s, 3H), 1.71 – 1.64 (m, 1H), 1.60 – 1.51 (m, 1H), 1.41 – 1.29 (m, 4H), 0.91 (t, J = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 178.50, 171.01, 64.46, 44.63, 29.21, 28.47, 22.64, 20.98, 13.95; HRMS (ESI-TOF) Calcd for C₉H₁₇O₄ [M+H]⁺: 189.1121; found: 189.1130.

Experimental Procedure for Deprotection of Acetyl Group

In the culture tube, **2d** (0.1 mmol, 18.8 mg) and K₂CO₃ (2.0 eq, 27.6 mg) were weighed in air and placed with a magnetic stir bar. Then MeOH (1.0 mL) was added. The reaction mixture was stirred at rt for 12 hours. The resulting mixture was diluted with EA, washed with saturated NH₄Cl solution, dried with MgSO₄, and concentrated *in vacuo* to afford pure β -hydroxy acid **3** (95%, 14.0 mg).

2-(Hydroxymethyl)hexanoic acid (3)

¹H NMR (600 MHz, CDCl₃) δ 6.31 (br s, 2H), 3.86 - 3.74 (m, 2H), 2.67 - 2.56 (m, 1H), 1.72 - 1.61 (m, 1H), 1.59 - 1.49 (m, 1H), 1.41 - 1.30 (m, 4H), 0.91 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 180.37, 63.14, 47.68, 29.42, 28.10, 22.70, 13.94; HRMS (ESI-TOF) Calcd for C₇H₁₅O₃ [M+H]⁺: 147.1016; found: 147.1018.

General Procedure for Intramolecular β-C(sp³)–H Acyloxylation

General Procedure: In the culture tube, $Pd(OAc)_2$ (10 mol%, 2.2 mg), ligand L12 (20 mol%, 3.4 mg), Na₂CO₃ (1.0 eq, 10.6 mg), and carboxylic acid **4** (0.1 mmol) in order were weighed in air and placed with a magnetic stir bar. Then HFIP (1.0 mL) and TBHP (ca. 5.5 M in decane) (2.0 eq, 36 µL) were added. The reaction mixture was stirred at rt for 3 minutes, and then heated to 60 °C for 12 hours (600 rpm). After being allowed to cool to room temperature, the mixture was treated with AcOH (0.05 mL) and concentrated *in vacuo*. The resulting mixture was dissolved in MeOH (1.0 mL), treated with TMSCHN₂ (2.0 eq), and concentrated *in vacuo* after 1 hour. The crude mixture was purified by column chromatography to afford corresponding methyl esters **5**'.

Substrate Scope for β-C(sp³)–H Intramolecular β-C(sp³)–H Acyloxylation

Methyl 3-methyl-5-oxotetrahydrofuran-3-carboxylate (5a')

Following **General Procedure** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 8.0 mg, 51%). ¹H NMR (600 MHz, CDCl₃) δ 4.55 (d, *J* = 9.3 Hz, 1H), 4.08 (d, *J* = 9.3 Hz, 1H), 3.77 (s, 3H), 3.06 (d, *J* = 17.6 Hz, 1H), 2.43 (d, *J* = 17.6 Hz, 1H), 1.47 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 175.06, 173.98, 75.43, 53.06, 46.41, 39.14, 22.75; HRMS (ESI-TOF) Calcd for C₇H₁₁O₄ [M+H]⁺: 159.0652; found: 159.0660.

Methyl 3-methyl-6-oxotetrahydro-2H-pyran-3-carboxylate (5b')

Following **General Procedure** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 12.5 mg, 73%). The NMR data matches the reported data¹¹.

Methyl 3-methyl-7-oxooxepane-3-carboxylate (5c')

Following **General Procedure** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 11.0 mg, 59%). ¹H NMR (600 MHz, CDCl₃) δ 4.41 (d, *J* = 12.8 Hz, 1H), 4.14 (d, *J* = 12.8 Hz, 1H), 3.74 (s, 3H), 2.71 – 2.60 (m, 2H), 2.24 – 2.16 (m, 1H), 1.97 – 1.87 (m, 1H), 1.87 – 1.79 (m, 1H), 1.65 – 1.59 (m, 1H), 1.23 (s, 3H);

¹³C NMR (150 MHz, CDCl₃) δ 175.04, 174.71, 72.63, 68.06, 52.48, 45.89, 37.67, 33.88, 19.45; HRMS (ESI-TOF) Calcd for C₉H₁₅O₄ [M+H]⁺: 187.0965; found: 187.0964.

Methyl 6-oxotetrahydro-2H-pyran-3-carboxylate (5d')

Following **General Procedure** on 0.1 mmol scale. Purification by column chromatography afforded the title compound (colorless oil, 8.5 mg, 54%). The NMR data matches the reported data¹².

Reference:

- H. Park, N. Chekshin, P.-X. Shen, J.-Q. Yu, Ligand-enabled, palladium-catalyzed β-C(sp³)–H arylation of weinreb amides. *ACS Catal.* 8, 9292–9297 (2018).
- P.-X. Shen, L. Hu, Q. Shao, K. Hong, J.-Q. Yu, Pd(II)-catalyzed enantioselective C(sp³)–H arylation of free carboxylic acids. *J. Am. Chem. Soc.* 140, 6545–6549 (2018).
- E. Fillion, A. M. Dumas, Synthesis of fused 4,5-disubstituted indole ring systems by intramolecular Friedel–Crafts acylation of 4-substituted indoles. *J. Org. Chem.* 73, 2920–2923 (2008).
- 4. K. Hong, H. Park, J.-Q. Yu, Methylene C(sp³)–H arylation of aliphatic ketones using a transient directing group. *ACS Catal.* **7**, 6938–6941 (2017).
- G. Naturale, M. Lamblin, C. Commandeur, F.-X. Felpin, J. Dessolin, Direct C–H alkylation of naphthoquinones with amino acids through a revisited Kochi–Anderson radical decarboxylation: trends in reactivity and applications. *Eur. J. Org. Chem.* 5774–5788 (2012).
- J. M. Dener, P. P. Fantauzzi, T. A. Kshirsagar, D. E. Kelly, A. B. Wolfe, Large-scale syntheses of FMOC-protected non-proteogenic amino acids: useful building blocks for combinatorial libraries. *Org. Process Res. Dev.* 54, 445–449 (2001).
- F. Fülöp, M. Palkó, J. Kámán, L. Lázár, R. Sillanpää, Synthesis of all four enantiomers of 1-aminoindane-2-carboxylic acid, a new cispentacin benzologue. *Tetrahedron: Asymmetry* 11, 4179–4187 (2000).
- K. L.Morley, V. P. Magloire, C. Guérard, R. J. Kazlauskas, Parallel synthesis of an ester library for substrate mapping of esterases and lipases. *Tetrahedron: Asymmetry* 15, 3005–3009 (2004).
- 9. G. Sartori, R. Maggi, Carboxylic acid esters: product subclass 16: 3-heteroatomsubstituted alkanoic acid esters. *Science of Synthesis* **20b**, 1375–1420 (2006).
- M. J. Fink, M. D. Mihovilovic, Non-hazardous Baeyer–Villiger oxidation of levulinic acid derivatives: alternative renewable access to 3-hydroxypropionates. *Chem. Commun.* 51, 2874–2877 (2015).

- T. Mitsudo, N. Suzuki, T. Kobayashi, T. Kondo, Ru₃(CO)₁₂/1,10-phenanthrolinecatalyzed hydroformylation of styrene and acrylic esters. *J. Mol. Catal. A* 137, 253–262 (1999).
- G. W. Fahnhorst, D. E. Stasiw, W. B. Tolman, T. R. Hoye, Isomerization of linear to hyperbranched polymers: two isomeric lactones converge via metastable isostructural polyesters to a highly branched analogue. ACS Macro Lett. 7, 1144–1148 (2018).

S30

S34

