Table of Contents

General Information	2
Experimental Procedures	3
Preparation of DG2- to DG10-tethered cyclopentanol	3
Preparation of DG9-tethered alcohol substrates	7
C(sp ³)-H arylation of aliphatic alcohols	3
C(sp ³)-H arylation of DG9-tethered 1-propanol42	2
C-H arylation/annulation of dihydrocholesterol59	9
Synthesis of englitazone precursor via sequential β - and γ -C-H arylations6	1
¹ H and ¹³ C NMR Spectra	6

General Information

Solvents were obtained from Sigma-Aldrich, Alfa-Aesar and Acros and used directly without further purification. Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F254. Visualization was carried out with UV light (254 nm) and Vogel's permanganate. ¹H NMR spectra were recorded on Bruker AMX-400 (400) MHz) or Bruker DRX-600 (600 MHz) spectrometers. Data for ¹H NMR spectra are reported as follows: chemical shift, multiplicity (br = broad, s = singlet, bs = broadsinglet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants, and integration. Chemical shifts are reported in parts per million (ppm) referenced to the appropriate solvent signals, for example 7.26 ppm for chloroform-d. Coupling constants, J, are reported in Hertz (Hz). ¹³C NMR spectra were recorded on a Bruker DRX-600 spectrometer (151 MHz). Chemical shifts are reported in parts per million (ppm) referenced to the appropriate solvent signals, for example 77.00 ppm for chloroform-d. High-resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer using ESI-TOF (electrospray ionization-time of flight). Optical rotations were recorded on a Rudolph Research Analytical Autopol III Automatic Polarimeter.

Experimental Procedures

Preparation of DG2- to DG10-tethered cyclopentanol

Synthesis of intermediate 11:

To a 50-mL round-bottom flask were added cyclopentyl bromide (3.0 g, 20 mmol) and *N*-hydroxy phthalimide (4.0 g, 24 mmol), the mixture was dissolved with DMF (20 mL). To the resulting solution was added 1,8-Diazabicyclo(5.4.0)undec-7-ene (DBU, 4.5 mL, 30 mmol) slowly, after which the resulting mixture was stirred at 80 °C for 2 hours. After cooling to room temperature, the reaction solution was poured into a HCl ice-water (10 mL conc. HCl in 200 g ice, pH ~1) while vigorously stirring, during which a pale yellow solid precipitated. The solid was collected by filtration and washed with sat. aq. NaHCO₃ and then with water, dried under air to give product **11** (4.1 g, yield: 87%).

General procedure for installation of DG2 and DG3:

To a 50-mL round-bottom flask were added **11** (231 mg, 1.0 mmol), CH_2Cl_2 (20 mL) and MeOH (2.0 mL); then, hydrazine monohydrate (0.1 mL, 2.0 mmol) was added. The resulting mixture was stirred at room temperature for 1 h, during which a significant amount of solid precipitated. Anhydrous sodium sulfate (~5 g) was then added, the mixture was filtered through a Büchner funnel, and the filtrate was used directly for the next step.

In another 25 mL-round-bottom flask was placed pyridine-2-carboxylic acid (250 mg, 2.0 mmol) or quinolinine-8-carboxylic acid (350 mg, 2.0 mmol), dissolved with $CH_2Cl_2(10 \text{ mL})$, then DMF (2 drops) was added. To this solution was added oxalyl chloride (0.35 mL, 4.0 mmol) dropwise. After addition, the mixture was stirred for 2 hours. The solvent was evaporated under reduced pressure and the residue was dissolved with CH_2Cl_2 (5 mL). This solution was added to the solution prepared in the

first step, followed by triethyl amine (1.4 mL). The resulting mixture was stirred at room temperature for 2 hours. The solution was washed with water and the organic phase was dried with anhydrous sodium sulfate. The product was purified by flash column chromatography.

N-(cyclopentyloxy)picolinamide (DG2-CP)

The product is obtained as a white solid, 62% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.26 (s, 1H), 8.51 (s, 1H), 8.18 (d, *J* = 7.8 Hz, 1H), 7.86 (t, *J* = 8.4 Hz, 1H), 7.45 (d, *J* = 4.7 Hz, 1H), 4.67 (s, 1H), 1.96 (s, 2H), 1.89 – 1.68 (m, 4H), 1.59 (s, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 161.39, 148.83, 147.67, 136.98, 126.09, 121.91, 87.78, 30.77, 23.23; HRMS (ESI-TOF) m/z Calcd. for C₁₁H₁₅N₂O₂⁺ (M+H)⁺: 207.1128; found: 207.1131.

N-(cyclopentyloxy)quinoline-8-carboxamide (DG3-CP)

The product is obtained as a white solid, 54% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 9.00 – 8.88 (m, 1H), 8.88 – 8.78 (m, 1H), 8.36 – 8.21 (m, 1H), 8.05 – 7.90 (m, 1H), 7.75 – 7.60 (m, 1H), 7.51 (ddd, *J* = 16.3, 8.4, 4.0 Hz, 1H), 4.78 (ddt, *J* = 8.6, 5.7, 2.8 Hz, 1H), 2.19 – 1.99 (m, 2H), 1.98 – 1.73 (m, 4H), 1.62 (dtd, *J* = 17.1, 9.6, 8.8, 5.3 Hz, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 164.12, 149.44, 144.74, 137.88, 133.70, 131.99, 128.42, 126.59, 121.06, 87.49, 31.39, 23.84; HRMS (ESI-TOF) m/z Calcd. for C₁₅H₁₇N₂O₂⁺ (M+H)⁺: 257.1285; found: 257.1289.

General procedure for installation of DG4–DG8 and DG10:

To a 50 mL-round-bottom flask were added **11** (346 mg, 1.5 mmol), CH_2Cl_2 (20 mL) and MeOH (2.0 mL); then hydrazine monohydrate (0.1 mL, 2.0 mmol) was added. The resulting mixture was stirred at room temperature for 1 h, during which a significant amount of solid precipitated. Anhydrous sodium sulfate (~5 g) was then added, and the resulting mixture was filtered. To the filtrate were added HOAc (0.15 mL) and salicylaldehyde (1.0 mmol), and the mixture was stirred at room temperature for 1 h. The volatiles were evaporated under reduced pressure and the residue was purified by flash column chromatography to give the desired product.

(E)-2-fluoro-6-hydroxybenzaldehyde O-cyclopentyl oxime (DG4-CP)

The product is obtained as a colorless oil, 88% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.35 (s, 1H), 8.45 (s, 1H), 7.27 – 7.18 (m, 1H), 6.82 – 6.75 (m, 1H), 6.61 (ddd, *J* = 10.2, 8.2, 1.0 Hz, 1H), 4.81 (dt, *J* = 5.7, 2.9 Hz, 1H), 1.89 (m, 4H), 1.83 – 1.73 (m, 2H), 1.64 (m, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 161.94, 160.28, 158.66, 158.63, 144.77, 144.72, 131.42, 131.35, 112.41, 112.39, 106.14, 106.05, 105.80, 105.66, 86.38, 31.78, 23.70; HRMS (ESI-TOF) m/z Calcd. for C₁₂H₁₅FNO₂⁺ (M+H)⁺: 224.1081; found: 224.1087.

(E)-2-hydroxybenzaldehyde O-cyclopentyl oxime (DG5-CP)

The product is obtained as a colorless oil, 91% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.11 (s, 1H), 8.16 (s, 1H), 7.29 (ddd, J = 8.5, 7.3, 1.7 Hz, 1H), 7.17 (dd, J = 7.7, 1.7 Hz, 1H), 7.02 (dd, J = 8.2, 1.0 Hz, 1H), 6.92 (td, J = 7.5, 1.1 Hz, 1H), 4.81 (tt, J = 5.8, 2.9 Hz, 1H), 1.90 (m, 4H), 1.83 – 1.72 (m, 2H), 1.64 (m, 2H); ¹³C

NMR (151 MHz, Chloroform-*d*) δ 157.40, 151.05, 130.85, 130.48, 119.44, 116.64, 116.59, 86.05, 31.76, 23.71; HRMS (ESI-TOF) m/z Calcd. for C₁₂H₁₆NO₂⁺ (M+H)⁺: 206.1176; found: 206.1181.

(E)-2-chloro-6-hydroxybenzaldehyde O-cyclopentyl oxime (DG6-CP)

The product is obtained as a colorless oil, 84% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.71 (s, 1H), 8.70 (s, 1H), 7.17 (t, *J* = 8.1 Hz, 1H), 6.98 – 6.85 (m, 2H), 4.82 (dt, *J* = 5.8, 2.9 Hz, 1H), 2.01 – 1.83 (m, 4H), 1.78 (d, *J* = 4.6 Hz, 2H), 1.73 – 1.58 (m, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 158.54, 148.10, 133.66, 130.70, 120.14, 115.23, 113.97, 86.07, 31.39, 23.31; HRMS (ESI-TOF) m/z Calcd. for C₁₂H₁₅ClNO₂⁺ (M+H)⁺: 240.0786; found: 240.0792.

(E)-2-bromo-6-hydroxybenzaldehyde O-cyclopentyl oxime (DG7-CP)

The product is obtained as a colorless oil, 78% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.78 (s, 1H), 8.69 (s, 1H), 7.17 – 7.05 (m, 2H), 6.95 (dd, J = 7.9, 1.3 Hz, 1H), 4.82 (tt, J = 5.8, 2.9 Hz, 1H), 2.01 – 1.85 (m, 4H), 1.85 – 1.73 (m, 2H), 1.70 – 1.59 (m, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 158.51, 150.64, 131.00, 123.73, 123.58, 115.97, 115.24, 86.11, 31.40, 23.33; HRMS (ESI-TOF) m/z Calcd. for C₁₂H₁₅BrNO₂⁺ (M+H)⁺: 284.0281; found: 284.0283.

(E)-2,4-difluoro-6-hydroxybenzaldehyde O-cyclopentyl oxime (DG8-CP)

The product is obtained as a colorless oil, 86% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.66 (s, 1H), 8.36 (s, 1H), 6.56 – 6.48 (m, 1H), 6.44 – 6.36 (m, 1H), 4.79 (dt, *J* = 5.6, 2.6 Hz, 1H), 1.88 (m, 4H), 1.76 (td, *J* = 7.6, 7.1, 4.0 Hz, 2H), 1.69 – 1.59 (m, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 164.44, 164.33, 162.78, 162.67, 161.83, 161.72, 160.16, 160.05, 159.46, 159.42, 159.36, 159.32, 143.72, 143.67, 102.48, 102.42, 102.39, 99.83, 99.81, 99.67, 99.64, 94.98, 94.81, 94.63, 86.02, 31.34, 23.26; HRMS (ESI-TOF) m/z Calcd. for C₁₂H₁₄F₂NO₂⁺ (M+H)⁺: 242.0987; found: 242.0992.

(E)-2-fluoro-6-methoxybenzaldehyde O-cyclopentyl oxime (DG10-CP)

The product is obtained as a colorless oil, 85% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.31 (s, 1H), 7.26 (td, J = 8.4, 6.3 Hz, 1H), 6.78 – 6.72 (m, 1H), 6.70 (d, J = 8.4 Hz, 1H), 4.86 (m, 1H), 3.87 (s, 3H), 1.95 – 1.83 (m, 4H), 1.80 – 1.71 (m, 2H), 1.66 – 1.56 (m, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 161.42, 159.73, 158.50, 158.45, 141.03, 141.01, 130.05, 129.97, 109.49, 109.40, 108.29, 108.14, 106.05, 106.03, 84.91, 55.67, 31.64, 23.37; HRMS (ESI-TOF) m/z Calcd. for C₁₃H₁₇FNO₂⁺ (M+H)⁺: 238.1238; found: 238.1239.

Preparation of DG9-tethered alcohol substrates

General procedure A:

Alcohol (5.0 mmol) and Et₃N (10 mmol) were dissolved in anhydrous

dichloromethane (30 mL), and cooled with an ice-bath. To the pre-cooled solution was added MsCl (7.5 mmol) dropwise and the resulting mixture was stirred at room temperature for 1 h before poured into 1 M HCl solution (50 mL). The organic phase was collected, and the aqueous phase was extracted with CH_2Cl_2 (2×30 mL). The CH_2Cl_2 solution was dried with anhydrous sodium sulfate and concentrated under reduced pressure. The residue was dissolved in DMF (10 mL), then *N*-hydroxyphthalimide (5.0 mmol) and DBU (10 mmol) were added. The resulting dark brown solution was stirred at 80 °C for 4 h before being poured into aq. HCl (1 M, 80 mL). For solid products, the precipitate was collected and washed with sat. aq. NaHCO₃, dried under air. For the oil product the aqueous solution was extracted with 50 mL CH_2Cl_2 (×2). The combined CH_2Cl_2 solution was evaporated under reduced pressure and the residue was used in the next step without further purification.

The crude intermediate was dissolved in CH_2Cl_2 (40 mL), then hydrazine monohydrate (10 mmol) and MeOH (5 mL) were added sequentially. The reaction was stirred at room temperature for 1 h. The white solid formed during the reaction was filtered, and to the filtrate were added AcOH (20 mmol) and 2,4-dichlorosalicylaldehyde (3.0 mmol). The resulting mixture was stirred at room temperature for 1 h, then washed with sat. aq. NaHCO₃ and extracted with 40 mL CH₂Cl₂, the organic phase was dried with anhydrous Na₂SO₄, evaporated and purified by flash column chromatography to give the desired product.

General procedure B:

Alkyl bromide or alkyl iodide (7.0 mmol) was dissolved in DMF (10 mL), then *N*-hydroxyphthalimide (NHPI, 5.0 mmol) and 1,8-Diazabicyclo(5.4.0)undec-7-ene (DBU, 10.0 mmol) were added. The resulting dark brown solution was stirred at 80 °C until the deep color disappeared (typically 1 h). The reaction mixture was cooled to room temperature and poured into aq. HCL (1 M, 80 mL). For solid products, the precipitate was collected and washed with sat. aq. NaHCO₃ and water, dried under air. For oil products, the aqueous solution was extracted with CH_2Cl_2 (50 mL × 2); organic layers were combined, washed with brine (× 3) and dried with anhydrous sodium sulfate. The solvent was evaporated under reduced pressure and the residue was used in the next step without further purification.

The resulting intermediate was dissolved in CH_2Cl_2 (40 mL), then hydrazine monohydrate (10 mmol) and MeOH (5 mL) were added sequentially. The reaction was stirred at room temperature for 1 h. The white solid formed during the reaction was filtered, and to the filtrate were added AcOH (20 mmol) and 2,4-dichlorosalicylaldehyde (3.0 mmol). The resulting mixture was stirred at room temperature for 1 h, then washed with sat. aq. NaHCO3 and extracted with 40 mL CH₂Cl₂. The organic phase was dried with anhydrous Na₂SO₄, concentrated under reduced pressure, and purified by flash column chromatography to give the desired product.

General procedure C:

Alcohol (5.0 mmol), NHPI (10.0 mmol) and Ph_3P (7.5 mmol) were dissolved in anhydrous THF (30 mL), and cooled with an ice-bath. To the pre-cooled solution was added DIAD (7.5 mmol) dropwise and the resulting mixture was stirred at room temperature for 12 h. The solvent was evaporated, and the residue was purified by flash column chromatography.

The intermediate was dissolved in CH₂Cl₂ (40 mL), then hydrazine monohydrate (10 mmol) and MeOH (5 mL) were added sequentially. The reaction was stirred at room temperature for 1 h. The white solid formed during the reaction was filtered, and to the filtrate were added AcOH (20 mmol) and 2,4-dichlorosalicylaldehyde (3.0 mmol). The resulting mixture was stirred at room temperature for 1 h, then washed with sat. aq. NaHCO3 and extracted with CH₂Cl₂ (40 mL). The organic phase was dried with anhydrous Na₂SO₄, evaporated and purified by flash column chromatography to give the desired product.

(E)-2,4-dichloro-6-hydroxybenzaldehyde O-ethyl oxime (1a)

Following General procedure B, the product is obtained as a colorless oil, 78% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.75 (s, 1H), 8.64 (s, 1H), 6.96 (d, *J* = 2.0 Hz, 1H), 6.91 (dd, *J* = 2.0, 0.6 Hz, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 1.35 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 158.77, 147.59, 136.06, 134.20, 120.41, 115.70, 112.62, 70.42, 13.79; HRMS (ESI-TOF) m/z Calcd. for C₉H₁₀Cl₂NO₂⁺ (M+H)⁺: 234.0089; found: 234.0085.

Methyl (*E*)-2-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)propanoate (1b) Following General procedure A, the product is obtained as a colorless oil, 68% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.23 (s, 1H), 8.73 (s, 1H), 6.97 (d, *J* = 1.9 Hz, 1H), 6.90 (dd, *J* = 2.1, 0.6 Hz, 1H), 4.82 (q, *J* = 7.0 Hz, 1H), 3.79 (s, 3H), 1.57 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 171.40, 158.74, 149.17, 136.73, 134.67, 120.60, 115.81, 112.22, 77.91, 51.88, 16.27; HRMS (ESI-TOF) m/z Calcd. for C₁₁H₁₂Cl₂NO₄⁺ (M+H)⁺: 292.0143; found: 292.0145.

(E)-2,4-dichloro-6-hydroxybenzaldehyde O-(3-methylbutan-2-yl) oxime (1c)

Following General procedure A, the product is obtained as a colorless oil, 54% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.87 (s, 1H), 8.62 (s, 1H), 6.95 (d, *J* = 2.0 Hz, 1H), 6.90 (dd, *J* = 2.0, 0.6 Hz, 1H), 4.11 (m, 1H), 1.96 (pd, *J* = 6.8, 5.8 Hz, 1H), 1.26 (d, *J* = 6.5 Hz, 3H), 0.96 (dd, *J* = 19.4, 6.8 Hz, 6H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.19, 147.44, 136.25, 134.48, 120.78, 116.07, 113.33, 85.61, 32.12, 18.47, 17.46, 15.78; HRMS (ESI-TOF) m/z Calcd. for C₁₂H₁₆Cl₂NO₂⁺ (M+H)⁺: 276.0558; found: 276.0562.

(E)-2,4-dichloro-6-hydroxybenzaldehyde O-(sec-butyl) oxime (1d)

Following General procedure B, the product is obtained as a colorless oil, 82% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.85 (s, 1H), 8.62 (s, 1H), 6.94 (d, J = 2.1 Hz, 1H), 6.90 (d, J = 2.0 Hz, 1H), 4.25 (h, J = 6.3 Hz, 1H), 1.79 – 1.70 (m, 1H), 1.65 – 1.57 (m, 1H), 1.31 (d, J = 6.3 Hz, 3H), 0.97 (t, J = 7.5 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.19, 147.57, 136.27, 134.50, 120.76, 116.07, 113.29, 82.13, 28.19, 18.92, 9.57; HRMS (ESI-TOF) m/z Calcd. for C₁₁H₁₄Cl₂NO₂⁺ (M+H)⁺: 262.0396; found: 262.0391.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-isopropyl oxime (1e)

Following General procedure B, the product is obtained as a colorless oil, 84% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.84 (s, 1H), 8.62 (s, 1H), 6.95 (d, *J* = 2.0 Hz, 1H), 6.91 (dd, *J* = 2.1, 0.6 Hz, 1H), 4.47 (hept, *J* = 6.3 Hz, 1H), 1.33 (d, *J* = 6.3 Hz, 6H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.22, 147.69, 136.35, 134.58, 120.81, 116.10, 113.27, 77.13, 21.31; HRMS (ESI-TOF) m/z Calcd. for C₁₀H₁₂Cl₂NO₂⁺ (M+H)⁺: 248.0245; found: 248.0246.

(E)-2,4-dichloro-6-hydroxybenzaldehyde O-propyl oxime (1f)

Following General procedure B, the product is obtained as a colorless oil, 92% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.72 (s, 1H), 8.61 (s, 1H), 6.92 (d, *J* = 2.0 Hz, 1H), 6.88 (dd, *J* = 2.0, 0.6 Hz, 1H), 4.15 (t, *J* = 6.7 Hz, 2H), 1.75 (h, *J* = 7.4 Hz, 2H), 1.00 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.16, 147.82, 136.39, 134.53, 120.74, 116.09, 113.01, 76.82, 22.07, 10.21; HRMS (ESI-TOF) m/z Calcd. for C₁₀H₁₂Cl₂NO₂⁺ (M+H)⁺: 248.0245; found: 248.0240.

(E)-2,4-dichloro-6-hydroxybenzaldehyde O-butyl oxime (1g)

Following General procedure B, the product is obtained as a colorless oil, 85% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.76 (s, 1H), 8.63 (s, 1H), 6.96 (d, J = 2.0 Hz, 1H), 6.91 (dd, J = 2.0, 0.6 Hz, 1H), 4.20 (t, J = 6.7 Hz, 2H), 1.71 (ddt, J = 9.0, 7.8, 6.6Hz, 2H), 1.48 – 1.41 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.22, 147.90, 136.47, 134.62, 120.85, 116.15, 113.10, 75.16, 30.81, 19.01, 13.81; HRMS (ESI-TOF) m/z Calcd. for C₁₁H₁₄Cl₂NO₂⁺ (M+H)⁺: 262.0402; found: 262.0401.

(E)-2,4-dichloro-6-hydroxybenzaldehyde O-pentyl oxime (1h)

Following General procedure B, the product is obtained as a colorless oil, 75% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.75 (s, 1H), 8.62 (s, 1H), 6.95 (d, J = 2.0 Hz, 1H), 6.90 (dd, J = 2.0, 0.5 Hz, 1H), 4.19 (t, J = 6.7 Hz, 2H), 1.78 – 1.68 (m, 2H), 1.43 – 1.33 (m, 4H), 0.97 – 0.89 (m, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.20, 147.85, 136.44, 134.59, 120.81, 116.13, 113.08, 75.42, 28.45, 27.92, 22.42, 13.95; HRMS (ESI-TOF) m/z Calcd. for C₁₂H₁₆Cl₂NO₂⁺ (M+H)⁺: 276.0558; found: 276.0553.

(E)-2,4-dichloro-6-hydroxybenzaldehyde O-phenethyl oxime (1i)

Following General procedure A, the product is obtained as a colorless oil, 66% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.67 (s, 1H), 8.68 (s, 1H), 7.38 – 7.34 (m, 2H), 7.31 – 7.26 (m, 3H), 6.99 (d, *J* = 2.0 Hz, 1H), 6.95 (dd, *J* = 2.0, 0.6 Hz, 1H), 4.46 (t, *J* = 7.0 Hz, 2H), 3.09 (t, *J* = 7.0 Hz, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.20, 148.40, 137.62, 136.64, 134.70, 128.87, 128.56, 126.58, 120.88, 116.17, 112.93, 75.71, 35.31; HRMS (ESI-TOF) m/z Calcd. for C₁₅H₁₄Cl₂NO₂⁺ (M+H)⁺: 310.0402; found: 310.0401.

(E)-2,4-dichloro-6-hydroxybenzaldehyde O-(3-phenylpropyl) oxime (1j)

Following General procedure A, the product is obtained as a colorless oil, 74% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.69 (s, 1H), 8.65 (d, *J* = 0.6 Hz, 1H), 7.33 – 7.27 (m, 2H), 7.24 – 7.16 (m, 3H), 6.97 (d, *J* = 2.1 Hz, 1H), 6.92 (dd, *J* = 2.0, 0.6 Hz, 1H), 4.21 (t, *J* = 6.5 Hz, 2H), 2.75 (dd, *J* = 8.4, 6.9 Hz, 2H), 2.11 – 2.03 (m, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.22, 148.17, 141.17, 136.58, 134.68, 128.46, 128.43, 126.04, 120.89, 116.18, 113.03, 74.42, 31.93, 30.30; HRMS (ESI-TOF) m/z Calcd. for C₁₆H₁₆Cl₂NO₂⁺ (M+H)⁺: 324.0558; found: 324.0555.

(E)-2,4-dichloro-6-hydroxybenzaldehyde O-hexadecyl oxime (1k)

Following General procedure A, the product is obtained as a white solid, 72% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.76 (s, 1H), 8.63 (s, 1H), 6.96 (d, J = 2.0 Hz, 1H), 6.91 (d, J = 2.0 Hz, 1H), 4.19 (t, J = 6.7 Hz, 2H), 1.72 (dt, J = 14.7, 6.8 Hz, 2H), 1.44 – 1.23 (m, 26H), 0.88 (t, J = 7.0 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.22, 147.89, 136.46, 134.62, 120.84, 116.15, 113.10, 75.47, 31.92, 29.70, 29.69, 29.69, 29.67, 29.66, 29.64, 29.56, 29.51, 29.36, 29.35, 28.76, 25.77, 22.69, 14.12; HRMS (ESI-TOF) m/z Calcd. for C₂₃H₃₈Cl₂NO₂⁺ (M+H)⁺: 430.2280; found: 430.2274.

(E)-2,4-dichloro-6-hydroxybenzaldehyde O-dodecyl oxime (11)

Following General procedure A, the product is obtained as a white solid, 74% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.76 (s, 1H), 8.63 (s, 1H), 6.96 (d, *J* = 2.0 Hz, 1H), 6.91 (d, *J* = 2.0 Hz, 1H), 4.19 (t, *J* = 6.7 Hz, 2H), 1.72 (dt, *J* = 14.8, 6.8 Hz, 2H), 1.42 – 1.23 (m, 18H), 0.88 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.22, 147.89, 136.46, 134.61, 120.84, 116.15, 113.10, 75.47, 31.91, 29.64, 29.63, 29.56, 29.52, 29.35, 28.76, 25.77, 22.69, 14.11; HRMS (ESI-TOF) m/z Calcd. for C₁₉H₃₀Cl₂NO₂⁺ (M+H)⁺: 374.1654; found: 374.1647.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(3-(1,3-dioxoisoindolin-2-yl)propyl) oxime (1m)

Following General procedure A from N-Boc protected 1, 3-amino alcohol, then remove the Boc in TFA/CH₂Cl₂ and re-protect the amine with phthalic anhydride. The product is obtained as a pale yellow solid, 42% yield. 1H NMR (600 MHz, Chloroform-*d*) δ 10.52 (s, 1H), 8.48 (d, *J* = 0.6 Hz, 1H), 7.84 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.77 – 7.67 (m, 2H), 6.93 (d, *J* = 2.0 Hz, 1H), 6.89 (dd, *J* = 2.0, 0.6 Hz, 1H), 4.28 (t, *J* = 6.1 Hz, 2H), 3.87 (t, *J* = 6.8 Hz, 2H), 2.14 (m, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 168.29, 159.18, 148.50, 136.69, 134.71, 133.99, 132.05, 123.26, 120.86, 116.19, 112.82, 72.90, 35.18, 27.65; HRMS (ESI-TOF) m/z Calcd. for C₁₈H₁₅Cl₂N₂O₄⁺ (M+H)⁺: 393.0409; found: 393.0406.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(4-(1,3-dioxoisoindolin-2-yl)butyl) oxime (1n) Following General procedure A from N-Boc protected 1, 4-amino alcohol, then remove the Boc in TFA/CH₂Cl₂ and re-protect the amine with phthalic anhydride. The product is obtained as a pale yellow solid, 48% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.61 (s, 1H), 8.60 (s, 1H), 7.83 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.70 (dd, *J* = 5.4, 3.0 Hz, 2H), 6.95 (d, *J* = 2.0 Hz, 1H), 6.90 – 6.86 (m, 1H), 4.23 (t, *J* = 6.2 Hz, 2H), 3.75 (t, *J* = 6.9 Hz, 2H), 1.85 – 1.76 (m, 4H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 168.40, 159.18, 148.26, 136.56, 134.69, 133.92, 132.03, 123.22, 120.85, 116.16, 112.95, 74.48, 37.52, 28.40, 26.04, 24.97; HRMS (ESI-TOF) m/z Calcd. for C₁₉H₁₇Cl₂N₂O₄⁺ (M+H)⁺: 407.0565; found: 407.0558.

(E)-5-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)pentyl acetate (10)

Following General procedure A, the product is obtained as a colorless oil, 62% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.69 (s, 1H), 8.62 (s, 1H), 6.95 (d, *J* = 2.0 Hz, 1H), 6.90 (dd, *J* = 2.1, 0.6 Hz, 1H), 4.20 (t, *J* = 6.6 Hz, 2H), 4.08 (t, *J* = 6.6 Hz, 2H), 2.04 (s, 3H), 1.80 – 1.73 (m, 2H), 1.73 – 1.65 (m, 2H), 1.52 – 1.45 (m, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 171.12, 159.18, 148.08, 136.55, 134.63, 120.85, 116.14, 112.98, 75.02, 64.21, 28.38, 28.33, 22.34, 20.95; HRMS (ESI-TOF) m/z Calcd. for C₁₄H₁₈Cl₂NO₄⁺ (M+H)⁺: 334.0613; found: 334.0613.

Methyl (*E*)-5-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)pentanoate (1p) Following General procedure A, the product is obtained as a colorless oil, 72% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.66 (s, 1H), 8.63 (s, 1H), 6.96 (d, *J* = 2.1 Hz, 1H), 6.91 (dd, *J* = 2.1, 0.6 Hz, 1H), 4.26 – 4.16 (m, 2H), 3.68 (s, 3H), 2.44 – 2.33 (m, 2H), 1.84 – 1.69 (m, 4H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 173.68, 159.20, 148.21, 136.60, 134.68, 120.88, 116.17, 112.97, 74.74, 51.57, 33.59, 28.13, 21.32; HRMS (ESI-TOF) m/z Calcd. for C₁₃H₁₆Cl₂NO₄⁺ (M+H)⁺: 320.0456; found: 320.0460.

Methyl (*E*)-6-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)hexanoate (1q) Following General procedure A, the product is obtained as a colorless oil, 70% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.67 (s, 1H), 8.60 (s, 1H), 6.92 (d, *J* = 2.0 Hz, 1H), 6.88 (dd, *J* = 2.0, 0.6 Hz, 1H), 4.17 (t, *J* = 6.6 Hz, 2H), 3.65 (s, 3H), 2.32 (t, *J* = 7.5 Hz, 2H), 1.76 – 1.64 (m, 4H), 1.47 – 1.39 (m, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 173.83, 159.14, 147.96, 136.45, 134.56, 120.76, 116.09, 112.94, 74.97, 51.44, 33.81, 28.37, 25.32, 24.57; HRMS (ESI-TOF) m/z Calcd. for C₁₄H₁₈Cl₂NO₄⁺ (M+H)⁺: 334.0613; found: 334.0607.

(E)-6-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)hexanoic acid (1r)

Following General procedure A, the product is obtained as a white solid, 61% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.69 (s, 1H), 8.63 (s, 1H), 6.96 (d, *J* = 2.0 Hz, 1H), 6.91 (dd, *J* = 2.0, 0.6 Hz, 1H), 4.20 (t, *J* = 6.5 Hz, 2H), 2.39 (t, *J* = 7.4 Hz, 2H), 1.81 – 1.67 (m, 4H), 1.48 (tdd, *J* = 10.6, 8.4, 4.3 Hz, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 179.29, 159.20, 148.11, 136.56, 134.66, 120.87, 116.16, 113.01, 74.97, 33.77, 28.40, 25.30, 24.34; HRMS (ESI-TOF) m/z Calcd. for C₁₃H₁₆Cl₂NO₄⁺ (M+H)⁺: 320.0456; found: 320.0459.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(6-(azetidin-1-yl)-6-oxohexyl) oxime (1s)

Following General procedure A, the product is obtained as a pale-yellow oil, 45% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.67 (s, 1H), 8.58 (s, 1H), 6.91 (d, *J* = 2.0 Hz, 1H), 6.89 – 6.84 (m, 1H), 4.16 (t, *J* = 6.6 Hz, 2H), 4.09 (t, *J* = 7.5 Hz, 2H), 3.98 (t, *J* = 7.6 Hz, 2H), 2.22 (m, 2H), 2.08 – 2.01 (m, 2H), 1.71 (dt, *J* = 14.7, 6.6 Hz, 2H), 1.66 – 1.62 (m, 2H), 1.45 – 1.37 (m, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ

172.85, 159.08, 147.85, 136.37, 134.51, 120.72, 116.02, 112.93, 75.02, 50.01, 47.68, 30.80, 28.47, 25.52, 24.42, 14.92; HRMS (ESI-TOF) m/z Calcd. for C₁₆H₂₁Cl₂N₂O₃⁺ (M+H)⁺: 359.0929; found: 359.0937.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(6-oxo-6-(pyrrolidin-1-yl)hexyl) oxime (1t)

Following General procedure A, the product is obtained as a pale-yellow oil, 48% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.69 (s, 1H), 8.59 (s, 1H), 6.92 (d, J = 2.0 Hz, 1H), 6.87 (d, J = 2.0 Hz, 1H), 4.17 (t, J = 6.6 Hz, 2H), 3.44 (t, J = 6.9 Hz, 2H), 3.38 (t, J = 6.8 Hz, 2H), 2.26 (t, J = 7.5 Hz, 2H), 1.92 (m, 2H), 1.82 (m, 2H), 1.71 (ddt, J = 30.3, 15.3, 7.1 Hz, 4H), 1.44 (m, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 171.51, 159.10, 147.85, 136.38, 134.52, 120.73, 116.04, 112.96, 75.09, 46.59, 45.60, 34.44, 28.54, 26.00, 25.61, 24.49, 24.30; HRMS (ESI-TOF) m/z Calcd. for C₁₇H₂₃Cl₂N₂O₃⁺ (M+H)⁺: 373.1080; found: 373.1084.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(6-oxo-6-(piperidin-1-yl)hexyl) oxime (1u)

Following General procedure A, the product is obtained as a pale-yellow oil, 42% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.65 (s, 1H), 8.55 (s, 1H), 6.88 (d, J = 2.0 Hz, 1H), 6.83 (d, J = 2.0 Hz, 1H), 4.14 (t, J = 6.6 Hz, 2H), 3.49 (dd, J = 5.6, 2.3 Hz, 2H), 3.34 (d, J = 5.5 Hz, 2H), 2.29 (dd, J = 8.3, 7.1 Hz, 2H), 1.64 – 1.57 (m, 6H), 1.52 – 1.46 (m, 6H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 170.97, 158.96, 147.66, 136.21, 134.36, 120.54, 115.88, 112.80, 74.92, 72.82, 46.49, 42.48, 32.89, 28.74, 28.38, 26.33, 25.72, 25.46, 25.35, 25.10, 24.87, 24.31, 21.60; HRMS (ESI-TOF) m/z Calcd. for C₁₈H₂₅Cl₂N₂O₃⁺ (M+H)⁺: 387.1237; found: 387.1240.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(6-morpholino-6-oxohexyl) oxime (1v)

Following General procedure A, the product is obtained as a pale-yellow oil, 51% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.80 – 10.59 (m, 1H), 8.75 – 8.50 (m, 1H), 7.02 – 6.83 (m, 2H), 4.20 (dt, J = 16.1, 6.8 Hz, 2H), 3.65 (tt, J = 15.9, 7.9 Hz, 8H), 2.34 – 2.31 (m, 2H), 1.88 – 1.84 (m, 2H), 1.69 (dq, J = 16.1, 7.6 Hz, 4H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 171.35, 159.11, 147.92, 136.43, 134.54, 120.81, 116.07, 112.94, 75.03, 66.86, 41.83, 32.77, 28.56, 25.61, 24.77, 21.81; HRMS (ESI-TOF) m/z Calcd. for C₁₇H₂₃Cl₂N₂O₄⁺ (M+H)⁺: 389.1029; found: 389.1035.

Methyl (*E*)-2-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)butanoate (1w) Following General procedure A, the product is obtained as a colorless oil, 68% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.23 (s, 1H), 8.74 (s, 1H), 6.95 (d, *J* = 2.0 Hz, 1H), 6.88 (dd, *J* = 2.0, 0.6 Hz, 1H), 4.66 (dd, *J* = 7.4, 5.4 Hz, 1H), 3.78 (s, 3H), 2.02 – 1.89 (m, 2H), 1.05 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 170.93, 158.73, 149.11, 136.66, 134.61, 120.56, 115.78, 112.23, 83.04, 51.72, 24.02, 9.05; HRMS (ESI-TOF) m/z Calcd. for C₁₂H₁₄Cl₂NO₄⁺ (M+H)⁺: 306.0294; found: 306.0296.

(E)-2,4-dichloro-6-hydroxybenzaldehyde O-heptan-4-yl oxime (1x)

Following General procedure A, the product is obtained as a colorless oil, 65% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.88 (s, 1H), 8.62 (s, 1H), 6.95 (d, *J* = 2.0 Hz, 1H), 6.90 (dd, *J* = 2.0, 0.6 Hz, 1H), 4.19 (tt, *J* = 7.4, 5.1 Hz, 1H), 1.67 (dddd, *J* = 14.0, 10.1, 7.4, 5.3 Hz, 2H), 1.57 (dddd, *J* = 14.0, 9.9, 6.0, 5.1 Hz, 2H), 1.51 – 1.34 (m, 4H), 0.94 (t, *J* = 7.4 Hz, 6H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.19, 147.33, 136.23, 134.46, 120.78, 116.06, 113.39, 84.64, 35.80, 18.58, 14.10; HRMS (ESI-TOF) m/z Calcd. for $C_{14}H_{20}Cl_2NO_2^+$ (M+H)⁺: 304.0866; found: 304.0863.

(E)-2,4-dichloro-6-hydroxybenzaldehyde O-cyclobutyl oxime (1y)

Following General procedure B, the product is obtained as a colorless oil, 55% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.74 (s, 1H), 8.64 (s, 1H), 6.95 (d, *J* = 2.0 Hz, 1H), 6.90 (dd, *J* = 2.0, 0.5 Hz, 1H), 4.85 – 4.69 (m, 1H), 2.39 – 2.30 (m, 2H), 2.22 – 2.11 (m, 2H), 1.89 – 1.79 (m, 1H), 1.71 – 1.60 (m, 1H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.24, 148.35, 136.54, 134.67, 120.82, 116.14, 113.09, 77.61, 29.38, 12.78; HRMS (ESI-TOF) m/z Calcd. for C₁₁H₁₂Cl₂NO₂⁺ (M+H)⁺: 260.0240; found: 260.0237.

(E)-2,4-dichloro-6-hydroxybenzaldehyde O-cyclopentyl oxime (1z)

Following General procedure B, the product is obtained as a colorless oil, 85% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.87 (s, 1H), 8.59 (s, 1H), 6.94 (d, J = 2.1 Hz, 1H), 6.90 (dd, J = 2.1, 0.6 Hz, 1H), 4.79 (tt, J = 5.7, 3.1 Hz, 1H), 1.86 (tq, J = 12.0, 6.9, 6.3 Hz, 4H), 1.74 (qt, J = 8.7, 4.7 Hz, 2H), 1.67 – 1.58 (m, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.24, 147.86, 136.33, 134.54, 120.77, 116.10, 113.25, 86.75, 31.82, 23.72; HRMS (ESI-TOF) m/z Calcd. for C₁₂H₁₄Cl₂NO₂⁺ (M+H)⁺: 274.0396; found: 274.0398.

(E)-2,4-dichloro-6-hydroxybenzaldehyde O-cyclohexyl oxime (1aa)

Following General procedure B, the product is obtained as a colorless oil, 74% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.87 (s, 1H), 8.63 (s, 1H), 6.94 (d, *J* = 2.0 Hz, 1H), 6.91 – 6.88 (m, 1H), 4.17 (ddd, *J* = 13.2, 9.3, 3.9 Hz, 1H), 2.07 – 1.95 (m, 2H), 1.79 (dq, *J* = 13.1, 4.2 Hz, 2H), 1.58 (dt, *J* = 12.5, 3.9 Hz, 1H), 1.55 – 1.45 (m, 2H), 1.36 (tdd, J = 13.6, 10.5, 3.3 Hz, 2H), 1.32 – 1.24 (m, 1H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.19, 147.61, 136.25, 134.50, 120.74, 116.06, 113.28, 82.25, 31.30, 25.47, 23.61; HRMS (ESI-TOF) m/z Calcd. for C₁₃H₁₆Cl₂NO₂⁺ (M+H)⁺: 288.0553; found: 288.0557.

(E)-2,4-dichloro-6-hydroxybenzaldehyde O-cycloheptyl oxime (1ab)

Following General procedure A, the product is obtained as a colorless oil, 54% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.86 (s, 1H), 8.59 (s, 1H), 6.92 (d, *J* = 2.1 Hz, 1H), 6.88 (d, *J* = 2.0 Hz, 1H), 4.35 (tt, *J* = 8.3, 4.6 Hz, 1H), 2.04 (dddd, *J* = 13.3, 7.6, 4.5, 2.8 Hz, 2H), 1.81 – 1.74 (m, 2H), 1.70 (ddq, *J* = 11.7, 7.0, 3.0 Hz, 2H), 1.58 (tq, *J* = 8.6, 5.6, 4.5 Hz, 4H), 1.46 (dtt, *J* = 12.3, 6.0, 3.8 Hz, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.16, 147.46, 136.19, 134.43, 120.68, 116.01, 113.26, 85.16, 33.07, 28.52, 22.76; HRMS (ESI-TOF) m/z Calcd. for C₁₄H₁₈Cl₂NO₂⁺ (M+H)⁺: 302.0709; found: 302.0711.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(1-((2-nitrophenyl)sulfonyl)azetidine -3-yl) oxime (1ad)

Following General procedure C, first with the Boc protection of azetidine, then changed the Boc to Ns, the product is obtained as pale yellow solid, 34% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.04 (s, 1H), 8.71 (s, 1H), 8.06 (dd, J = 6.9, 2.7 Hz, 1H), 7.77 – 7.70 (m, 3H), 7.00 – 6.94 (m, 1H), 6.89 (d, J = 2.0 Hz, 1H), 5.04 (tt, J = 6.5, 4.4 Hz, 1H), 4.41 (dd, J = 9.7, 6.6 Hz, 2H), 4.27 (dd, J = 9.7, 4.3 Hz, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.17, 150.90, 148.17, 137.60, 135.17, 133.88, 132.14, 132.11, 130.66, 124.46, 121.19, 116.36, 112.31, 70.26, 57.71; HRMS (ESI-TOF) m/z Calcd. for C₁₆H₁₄Cl₂N₃O₆S⁺ (M+H)⁺: 445.9975; found: 445.9978.

(E)-2,4-dichloro-6-hydroxybenzaldehyde

O-(1-(2,2,2-trifluoroacetyl)azetidin-3-yl) oxime (1ae)

Following General procedure C, first with the Boc protection of azetidine, then changed the Boc to TFA, the product is obtained as pale yellow solid, 42% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.00 (s, 1H), 8.78 (s, 1H), 7.05 – 6.98 (m, 1H), 6.97 – 6.89 (m, 1H), 5.17 (ddd, J = 10.5, 6.5, 3.9 Hz, 1H), 4.71 (dd, J = 10.1, 7.5 Hz, 1H), 4.48 (dd, J = 11.7, 5.6 Hz, 2H), 4.30 – 4.21 (m, 1H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.20, 156.46 (q, J = 37.5 Hz), 151.37, 137.91, 135.31, 121.36, 116.44, 115.92 (q, J = 288.4 Hz), 112.19, 71.76, 58.22 (q, J = 2.11 Hz), 55.29; HRMS (ESI-TOF) m/z Calcd. for C₁₂H₁₀Cl₂F₃N₂O₃⁺ (M+H)⁺: 357.0021; found: 357.0026.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(1-(2,2,2-trifluoroacetyl)pyrrolidin-3yl) oxime (1af)

Following General procedure C, first with the Boc protection of pyrrolidine, then changed the Boc to TFA, the product is obtained as pale yellow solid, 48% yield. The NMR corresponding to the major rotamer. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.28 (s, 1H), 8.70 (d, J = 4.4 Hz, 1H), 7.01 (dt, J = 3.6, 1.6 Hz, 1H), 6.95 (d, J = 1.9 Hz, 1H), 5.11 – 4.96 (m, 1H), 4.09 – 3.67 (m, 4H), 2.50 – 2.35 (m, 1H), 2.31 – 2.13 (m, 1H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.16, 155.86 (q, J = 37.5 Hz), 150.14, 137.39, 135.06, 121.18, 116.31, 116.15 (q, J = 287.4 Hz), 112.50, 80.32, 52.30, 45.48, 28.53; HRMS (ESI-TOF) m/z Calcd. for C₁₃H₁₂Cl₂F₃N₂O₃⁺ (M+H)⁺: 371.0172; found: 371.0175.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(1-(2,2,2-trifluoroacetyl)piperidin-4yl) oxime (1ag)

Following General procedure C, first with the Boc protection of pyrrolidine, then changed the Boc to TFA, the product is obtained as pale yellow solid, 44% yield. ¹H

NMR (600 MHz, Chloroform-*d*) δ 10.47 (s, 1H), 8.71 (s, 1H), 6.99 (d, J = 2.0 Hz, 1H), 6.93 (dd, J = 2.0, 0.5 Hz, 1H), 4.52 (tt, J = 6.7, 3.5 Hz, 1H), 3.86 – 3.53 (m, 4H), 2.11 – 2.00 (m, 2H), 2.00 – 1.86 (m, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.18, 155.51 (q, J = 35.8 Hz), 149.20, 137.11, 134.90, 121.12, 116.48 (q, J = 288.4 Hz), 116.27, 112.76, 77.36, 42.21 (q, J = 3.8 Hz), 40.09, 30.53, 29.56; HRMS (ESI-TOF) m/z Calcd. for C₁₄H₁₄Cl₂F₃N₂O₃⁺ (M+H)⁺: 385.0328; found: 385.0332.

(E)-2,4-dichloro-6-hydroxybenzaldehyde O-cyclopropylmethyl oxime (1ah)

Following General procedure A, the product is obtained as a colorless oil, 58% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.76 (s, 1H), 8.66 (d, *J* = 0.6 Hz, 1H), 6.95 (d, *J* = 2.1 Hz, 1H), 6.90 (dd, *J* = 2.1, 0.6 Hz, 1H), 4.01 (d, *J* = 7.2 Hz, 2H), 1.26 – 1.14 (m, 1H), 0.70 – 0.59 (m, 2H), 0.39 – 0.29 (m, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.22, 148.00, 136.47, 134.63, 120.81, 116.12, 113.08, 79.96, 9.95, 3.17; HRMS (ESI-TOF) m/z Calcd. for C₁₁H₁₂Cl₂NO₂⁺ (M+H)⁺: 260.0240; found: 260.0241.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-((3S,8R,9S,10S,13R,14S,17R)-10,13dimethyl-17-((R)-6-methylheptan-2-yl)hexadecahydro-1H-cyclopenta[a]phenant hren-3-yl) oxime (4)

Following General procedure C, the product is obtained as a white solid, 48% yield. $[\alpha]^{20}_{D} = +24.7$ (*c*=1, CHCl₃); ¹H NMR (600 MHz, Chloroform-*d*) δ 10.96 (s, 1H), 8.69 (s, 1H), 6.98 (t, *J* = 2.2 Hz, 1H), 6.93 (d, *J* = 2.0 Hz, 1H), 4.43 (q, *J* = 2.9 Hz, 1H), 2.04 - 1.93 (m, 2H), 1.83 (dtd, *J* = 13.3, 9.3, 5.6 Hz, 1H), 1.77 - 1.65 (m, 3H), 1.64 - 1.44 (m, 8H), 1.43 - 1.33 (m, 4H), 1.31 - 1.19 (m, 5H), 1.19 - 1.08 (m, 5H), 1.07 – 0.97 (m, 3H), 0.95 – 0.86 (m, 9H), 0.84 (s, 3H), 0.68 (s, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 158.80, 147.03, 135.78, 134.05, 120.33, 115.64, 112.94, 79.17, 56.07, 55.83, 53.70, 42.13, 39.56, 39.10, 39.06, 35.72, 35.36, 35.33, 35.02, 32.05, 31.95, 31.47, 28.03, 27.79, 27.55, 25.06, 23.72, 23.41, 22.37, 22.10, 20.34, 18.21, 11.62, 10.96; HRMS (ESI-TOF) m/z Calcd. for C₃₄H₅₂Cl₂NO₂⁺ (M+H)⁺: 576.3370; found: 576.3373.

C(sp³)-H arylation of aliphatic alcohols

General procedure D:

To a 8-mL vial were added **DG9**-tethered alcohol (0.1 mmol), methyl 4-iodobenzoate (78 mg, 0.3 mmol), palladium acetate (2.3 mg, 0.01 mmol), 3-nitro-5-trifluoromethyl-2-pyridone (8.1 mg, 0.04 mmol), and silver trifluoroacetate (33 mg, 0.15 mmol). The mixture was dissolved with 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP, 1.0 mL). The vial was sealed and stirred at 100 °C for 12 hours unless otherwise stated. The reaction was cooled to room temperature, diluted with 5 mL of EtOAc, and filtered through a pad of Celite. The filtrate was concentrated and purified by preparative thin-layer chromatography.

Methyl (*E*)-4-(2-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)ethyl)benzoate (2a)

Following General procedure D, the product is obtained as a colorless oil, 30% yield. ¹H NMR (600 MHz, CDCl₃) δ 10.55 (br s, 1H), 8.63 (s, 1H), 7.99 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.4 Hz, 2H), 6.96 (d, *J* = 2.4 Hz, 1H), 6.91 (d, *J* = 2.4 Hz, 1H), 4.44 (t, *J* = 6.6 Hz, 2H), 3.91 (s, 3H), 3.10 (t, *J* = 6.6 Hz, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 166.9, 159.2, 148.7, 143.2, 136.8, 134.8, 129.9, 128.9, 128.6, 121.0, 116.2, 112.9, 75.1, 52.1, 35.3; HRMS (ESI-TOF) m/z Calcd. for C₁₇H₁₆Cl₂NO₄⁺ (M+H)⁺: 368.0456; found: 368.0451.

Dimethyl 4,4'-(2-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)

ethane-1,1-diyl)(*E*)-dibenzoate (2a')

Following General procedure D, the product is obtained as a colorless oil, 45% yield. ¹H NMR (600 MHz, CDCl₃) δ 10.44 (br s, 1H), 8.57 (s, 1H), 8.03 (d, *J* = 8.4 Hz, 4H), 7.35 (d, *J* = 8.4 Hz, 4H), 6.96 (d, *J* = 1.8 Hz, 1H), 6.92 (d, *J* = 1.8 Hz, 1H), 4.79 (d, *J* = 7.8 Hz, 2H), 4.60 (t, *J* = 7.8 Hz, 1H), 3.92 (s, 6H),; ¹³C NMR (151 MHz, CDCl₃) δ 166.7, 159.2, 149.2, 145.3, 137.0, 134.9, 130.1, 129.1, 128.3, 121.0, 116.2, 112.7, 77.0, 52.2, 50.1; HRMS (ESI-TOF) m/z Calcd. for C₂₅H₂₂Cl₂NO₆⁺ (M+H)⁺: 502.0819; found: 502.0822.

Methyl(E)-4-(2-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)-3-methoxy-3-oxopropyl)benzoate (2b)

Following General procedure D, the product is obtained as a colorless oil, 65% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.09 (s, 1H), 8.73 (d, *J* = 0.6 Hz, 1H), 8.06 – 7.99 (m, 2H), 7.39 – 7.33 (m, 2H), 6.99 (d, *J* = 2.0 Hz, 1H), 6.91 (dd, *J* = 2.0, 0.6 Hz, 1H), 4.98 (dd, *J* = 8.3, 5.0 Hz, 1H), 3.93 (s, 3H), 3.78 (s, 3H), 3.34 – 3.25 (m, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 170.50, 166.80, 159.16, 150.10, 140.95, 137.39, 135.18, 129.89, 129.33, 129.11, 121.12, 116.28, 112.46, 82.56, 52.43, 52.10, 37.22; HRMS (ESI-TOF) m/z Calcd. for C₁₉H₁₈Cl₂NO₆⁺ (M+H)⁺: 426.0511; found: 426.0513.

Methyl (E)-4-(2-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)-3-

methylbutyl) benzoate (2c)

Following General procedure D, the product is obtained as a colorless oil, 52% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.53 (s, 1H), 8.60 (d, *J* = 0.6 Hz, 1H), 7.98 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.3 Hz, 2H), 6.96 (d, *J* = 2.0 Hz, 1H), 6.89 (dd, *J* = 2.0, 0.5 Hz, 1H), 4.26 (dt, *J* = 7.6, 5.3 Hz, 1H), 3.92 (s, 3H), 3.05 – 2.96 (m, 2H), 2.05 (pd, *J* = 6.9, 5.2 Hz, 1H), 1.06 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.53, 158.66, 147.37, 143.52, 136.04, 134.11, 129.27, 128.86, 127.89, 120.40, 115.64, 112.61, 89.72, 51.56, 36.34, 30.55, 17.87, 17.42; HRMS (ESI-TOF) m/z Calcd. for C₂₀H₂₂Cl₂NO₄⁺ (M+H)⁺: 410.0926; found: 410.0922.

Dimethyl 4,4'-(2-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)-3methylbutane-1,1-diyl)(*E*)-dibenzoate (2c')

Following General procedure D, the product is obtained as a pale-yellow oil, 20% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.19 (s, 1H), 8.39 (s, 1H), 7.95 (dd, J = 12.9, 8.4 Hz, 4H), 7.45 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 8.3 Hz, 2H), 6.90 (d, J = 2.0 Hz, 1H), 6.83 (dd, J = 2.0, 0.5 Hz, 1H), 4.82 (dd, J = 9.1, 4.3 Hz, 1H), 4.39 (d, J = 9.0 Hz, 1H), 3.88 (s, 3H), 3.86 (s, 3H), 1.87 (pd, J = 6.8, 4.2 Hz, 1H), 1.02 (d, J = 6.9 Hz, 3H), 0.98 (d, J = 6.8 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.73, 166.62, 158.96, 147.29, 146.16, 145.73, 136.54, 134.52, 130.18, 129.88, 128.92, 128.77, 128.34, 120.83, 116.07, 112.77, 91.70, 54.03, 52.11, 52.04, 30.44, 20.47, 16.31; HRMS (ESI-TOF) m/z Calcd. for C₂₈H₂₈Cl₂NO₆⁺ (M+H)⁺: 544.1294; found: 544.1293.

Methyl (*E*)-4-(2-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)butyl)benzoate (2d)

Following General procedure D, the product is obtained as a pale-yellow oil, 68% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.62 (s, 1H), 8.62 (s, 1H), 7.97 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 8.3 Hz, 2H), 6.96 (d, J = 2.0 Hz, 1H), 6.90 (d, J = 2.0 Hz, 1H), 4.41 – 4.32 (m, 1H), 3.90 (s, 3H), 3.06 (dd, J = 14.1, 7.0 Hz, 1H), 2.97 (dd, J = 14.1, 5.7 Hz, 1H), 1.74 – 1.66 (m, 2H), 1.00 (t, J = 7.4 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.97, 159.17, 148.20, 143.27, 136.60, 134.65, 129.73, 129.42, 128.45, 120.91, 116.13, 113.09, 52.03, 39.65, 26.11, 9.65; HRMS (ESI-TOF) m/z Calcd. for C₁₉H₂₀Cl₂NO₄⁺ (M+H)⁺: 396.0764; found: 396.0763.

Methyl(E)-4-(2-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)propyl)benzoate (2e)

Following General procedure D, the product is obtained as a colorless oil, 63% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.64 (s, 1H), 8.62 (s, 1H), 7.98 (d, *J* = 8.3 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 6.96 (d, *J* = 2.0 Hz, 1H), 6.90 (dd, *J* = 2.0, 0.5 Hz, 1H), 4.57 (h, *J* = 6.3 Hz, 1H), 3.90 (s, 3H), 3.10 (dd, *J* = 13.9, 6.6 Hz, 1H), 2.92 (dd, *J* = 13.9, 6.2 Hz, 1H), 1.32 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.94, 159.18, 148.30, 142.95, 136.63, 134.68, 129.73, 129.45, 128.53, 120.91, 116.14, 113.04, 81.05, 52.03, 41.75, 19.15; HRMS (ESI-TOF) m/z Calcd. for C₁₈H₁₈Cl₂NO₄⁺ (M+H)⁺: 382.0607; found: 382.0609.

Dimethyl 4,4'-(2-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)propane-1,3diyl)(*E*)-dibenzoate (2e') Following General procedure D, the product is obtained as a colorless oil, 21% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.38 (s, 1H), 8.62 (s, 1H), 8.00 (d, *J* = 8.4 Hz, 4H), 7.29 (t, *J* = 4.2 Hz, 4H), 6.98 (d, *J* = 2.0 Hz, 1H), 6.91 (dd, *J* = 2.0, 0.5 Hz, 1H), 4.73 (tt, *J* = 7.3, 5.4 Hz, 1H), 3.93 (s, 6H), 3.12 – 2.99 (m, 4H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.88, 159.13, 148.87, 142.62, 136.92, 134.79, 129.83, 129.42, 128.70, 121.01, 116.18, 112.81, 85.27, 52.07, 39.67; HRMS (ESI-TOF) m/z Calcd. for C₂₆H₂₄Cl₂NO₆⁺ (M+H)⁺: 516.0975; found: 516.0983.

Following General procedure D, the product is obtained as a colorless oil, 85% yield. ¹H NMR (600 MHz, CDCl₃) δ 10.54 (br s, 1H), 8.58 (s, 1H), 8.00 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 6.94 (d, *J* = 1.8 Hz, 1H), 6.89 (d, *J* = 1.8 Hz, 1H), 4.34-4.25 (m, 2H), 3.91 (s, 3H), 3.31-3.25 (m, 1H), 1.36 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 166.9, 159.2, 148.5, 148.4, 136.8, 134.8, 129.9, 128.7, 127.4, 120.9, 116.2, 112.9, 79.9, 52.1, 39.4, 17.9; HRMS (ESI-TOF) m/z Calcd. for C₁₈H₁₈ Cl₂NO₄⁺ (M+H)⁺: 382.0607; found: 382.0609.

Methyl (*E*)-4-(1-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)butan-2-yl) benzoate (2g)

Following General procedure D, the product is obtained as a colorless oil, 82% yield. ¹H NMR (600 MHz, CDCl₃) δ 10.54 (br s, 1H), 8.55 (s, 1H), 8.00 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 6.94 (d, *J* = 1.8 Hz, 1H), 6.89 (d, *J* = 1.8 Hz, 1H), 4.38-4.32 (m, 2H), 3.91 (s, 3H), 3.04-2.99 (m, 1H), 1.91-1.84 (m, 1H), 1.70-1.62 (m, 1H), 0.85 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 167.0, 159.2, 148.4, 147.2, 136.7, 134.7, 129.9, 128.8, 128.0, 120.9, 116.2, 112.9, 78.9, 52.1, 47.1, 25.3, 11.8; HRMS (ESI-TOF) m/z Calcd. for $C_{19}H_{20}Cl_2NO_4^+$ (M+H)⁺: 396.0764; found: 396.0763.

Methyl (*E*)-4-(1-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)pentan-2-yl) benzoate (2h)

Following General procedure D, the product is obtained as a colorless oil, 72% yield. ¹H NMR (600 MHz, CDCl₃) δ 10.54 (br s, 1H), 8.55 (s, 1H), 8.00 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 6.94 (d, *J* = 1.8 Hz, 1H), 6.89 (d, *J* = 1.8 Hz, 1H), 4.36-4.31 (m, 2H), 3.90 (s, 3H), 3.13-3.10 (m, 1H), 1.78-1.75 (m, 1H), 1.67-1.60 (m, 1H), 1.25-1.21 (m, 2H), 0.88 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 167.0, 159.2, 148.4, 147.5, 136.7, 134.7, 129.9, 128.7, 128.0, 120.9, 116.2, 112.9, 79.1, 52.1, 45.2, 34.4, 20.3, 14.0; HRMS (ESI-TOF) m/z Calcd. for C₂₀H₂₂Cl₂NO₄⁺ (M+H)⁺: 410.0926; found: 410.0927.

Methyl (*E*)-4-(2-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)-1-phenylethyl) benzoate (2i)

Following General procedure D, the product is obtained as a colorless oil, 61% yield. ¹H NMR (600 MHz, CDCl₃) δ 10.50 (br s, 1H), 8.56 (s, 1H), 8.00 (d, *J* = 8.4 Hz, 2H), 7.36 (d, *J* = 8.4 Hz, 2H), 7.34-7.33 (m, 2H), 7.28-7.24 (m, 3H), 6.94 (d, *J* = 1.8 Hz, 1H), 6.91 (d, *J* = 1.8 Hz, 1H), 4.79-4.74 (m, 2H), 4.53 (t, *J* = 7.2 Hz, 1H), 3.90 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 166.8, 159.2, 148.9, 146.3, 140.2, 136.9, 134.9, 130.0, 128.9, 128.4, 128.2, 127.2, 121.0, 116.2, 112.8, 77.4, 52.1, 50.1; HRMS (ESI-TOF) m/z Calcd. for C₂₃H₂₀Cl₂NO₄⁺ (M+H)⁺: 444.0764; found: 444.0761.

Methyl (*E*)-4-(1-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)

-3-phenylpropan-2-yl)benzoate (2j)

Following General procedure D, the product is obtained as a colorless oil, 54% yield. ¹H NMR (600 MHz, CDCl₃) δ 10.48 (br s, 1H), 8.58 (s, 1H), 8.00 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 7.26-7.23 (m, 2H), 7.20-7.18 (m, 1H), 7.08-7.06 (m, 2H), 6.97 (d, *J* = 1.8 Hz, 1H), 6.92 (d, *J* = 1.8 Hz, 1H), 4.43 (d, *J* = 6.6 Hz, 2H), 3.93 (s, 3H), 3.47-3.43 (m, 1H), 3.17-3.13 (m, 1H), 3.01-2.98 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 166.9, 159.2, 148.6, 146.7, 138.7, 136.8, 134.8, 129.9, 129.0, 128.9, 128.4, 128.1, 126.4, 121.0, 116.2, 112.8, 77.8, 52.1, 47.1, 39.0; HRMS (ESI-TOF) m/z Calcd. for C₂₄H₂₂Cl₂NO₄⁺ (M+H)⁺: 458.0920; found: 458.0919.

Methyl

(*E*)-4-(1-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)hexadecan-2-yl)

benzoate (2k)

Following General procedure D, the product is obtained as a colorless oil, 71% yield. ¹H NMR (600 MHz, CDCl₃) δ 10.54 (br s, 1H), 8.55 (s, 1H), 8.00 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 6.94 (d, *J* = 1.8 Hz, 1H), 6.89 (d, *J* = 1.8 Hz, 1H), 4.36-4.32 (m, 2H), 3.90 (s, 3H), 3.12-3.07 (m, 1H), 1.82-1.77 (m, 1H), 1.67-1.60 (m, 1H), 1.30-1.16 (m, 24H), 0.88 (t, J = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 166.96, 159.20, 148.42, 147.53, 136.72, 134.73, 129.90, 128.72, 127.95, 120.92, 116.19, 112.86, 79.15, 52.04, 45.45, 32.27, 31.94, 29.70, 29.69, 29.67, 29.66, 29.62, 29.57, 29.55, 29.43, 29.38, 27.15, 22.71, 14.14; HRMS (ESI-TOF) m/z Calcd. for C₃₁H₄₄Cl₂NO₄⁺ (M+H)⁺: 564.2647; found: 564.2657.

Methyl (*E*)-4-(1-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)dodecan-2-yl) benzoate (2l)

Following General procedure D, the product is obtained as a colorless oil, 76% yield. ¹H NMR (600 MHz, CDCl₃) δ 10.54 (br s, 1H), 8.55 (s, 1H), 8.00 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 6.93 (d, *J* = 2.4 Hz, 1H), 6.89 (d, *J* = 2.4 Hz, 1H), 4.36-4.30 (m, 2H), 3.90 (s, 3H), 3.12-3.07 (m, 1H), 1.83-1.77 (m, 1H), 1.67-1.61 (m, 1H), 1.29-1.17 (m, 16H), 0.87 (t, J = 7.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 166.95, 159.19, 148.42, 147.53, 136.72, 134.73, 129.90, 128.72, 127.95, 120.91, 116.19, 112.86, 79.15, 52.04, 45.45, 32.26, 31.90, 29.57, 29.56, 29.55, 29.42, 29.31, 27.14, 22.69, 14.12; HRMS (ESI-TOF) m/z Calcd. for C₂₇H₃₆Cl₂NO₄⁺ (M+H)⁺: 508.2021; found: 508.2023.

Methyl (*E*)-4-(1-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)-3-(1,3-dioxoisoindolin-2-yl)propan-2-yl)benzoate (2m)

Following General procedure D, the product is obtained as a pale-yellow oil, 58% yield. ¹H NMR (600 MHz, CDCl₃) δ 10.31 (br s, 1H), 8.40 (s, 1H), 7.99 (d, *J* = 8.4 Hz, 2H), 7.80-7.78 (m, 2H), 7.69-7.67 (m, 2H), 7.39 (d, *J* = 8.4 Hz, 2H), 6.92 (d, *J* = 2.4 Hz, 1H), 6.88 (d, *J* = 2.4 Hz, 1H), 4.50-4.45 (m, 2H), 4.13-4.03 (m, 2H), 3.89 (s, 3H), 3.84-3.80 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 168.1, 166.7, 159.2, 148.9, 143.4, 136.9, 134.8, 134.1, 131.7, 130.1, 129.6, 128.2, 123.4, 120.9, 116.3, 112.6, 77.0, 52.1, 43.5, 40.5; HRMS (ESI-TOF) m/z Calcd. for C₂₆H₂₁Cl₂N₂O₆⁺ (M+H)⁺: 527.0771; found: 527.0768.

Methyl(E)-4-(1-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)-4-(1,3-dioxoisoindolin-2-yl)butan-2-yl)benzoate (2n)

Following General procedure D, the product is obtained as a pale-yellow oil, 62% yield. ¹H NMR (600 MHz, CDCl₃) δ 10.38 (s, 1H), 8.54 (s, 1H), 7.91 (d, *J* = 8.4 Hz, 2H), 7.72 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.62 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 6.93 (d, *J* = 2.4 Hz, 1H), 6.85 (d, *J* = 2.4 Hz, 1H), 4.29 (d, *J* = 6.6 Hz, 2H), 3.87 (s, 3H), 3.67 (t, *J* = 6.6 Hz, 2H), 3.20-3.16 (m, 1H), 2.27-2.17 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 168.2, 166.7, 159.1, 148.8, 145.6, 136.8, 134.8, 133.8, 131.8, 130.0, 128.9, 128.0, 123.1, 120.9, 116.2, 112.7, 78.6, 52.0, 43.4, 36.2, 30.2; HRMS (ESI-TOF) m/z Calcd. for C₂₇H₂₃Cl₂N₂O₆⁺ (M+H)⁺: 541.0933; found: 541.0938.

Methyl (*E*)-4-(5-acetoxy-1-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy) pentan-2-yl)benzoate (20)

Following General procedure D, the product is obtained as a colorless oil, 69% yield. ¹H NMR (600 MHz, CDCl₃) δ 10.48 (s, 1H), 8.56 (s, 1H), 8.01 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 6.94 (d, *J* = 2.4 Hz, 1H), 6.89 (d, *J* = 2.4 Hz, 1H), 4.34 (d, *J* = 6.6 Hz, 2H), 4.02 (t, *J* = 6.6 Hz, 2H), 3.90 (s, 3H), 3.14-3.09 (m, 1H), 2.02 (s, 3H), 1.94-1.88 (m, 1H), 1.72-1.68 (m, 1H), 1.59-1.50 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 171.1, 166.8, 159.2, 148.6, 146.6, 136.8, 134.8, 130.1, 129.0, 127.9, 121.0, 116.2, 112.8, 78.9, 64.0, 52.1, 45.1, 28.6, 26.3, 20.9; HRMS (ESI-TOF) m/z Calcd. for C₂₂H₂₄Cl₂NO₆⁺ (M+H)⁺: 468.0981; found: 468.0984.

Methyl (*E*)-4-(1-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)-5-methoxy-5-oxopentan-2-yl)benzoate (2p)

Following General procedure D, the product is obtained as a colorless oil, 70% yield. ¹H NMR (600 MHz, CDCl₃) δ 10.45 (s, 1H), 8.56 (s, 1H), 8.00 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 6.93 (d, *J* = 2.4 Hz, 1H), 6.88 (d, *J* = 2.4 Hz, 1H), 4.34 (d, *J* = 7.2 Hz, 2H), 3.90 (s, 3H), 3.61 (s, 3H), 3.19-3.12 (m, 1H), 2.25-2.18 (m, 3H), 2.01-1.92 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 173.3, 166.8, 159.2, 148.7, 145.9, 136.8, 134.8, 130.1, 129.2, 128.0, 121.0, 116.2, 112.8, 78.7, 52.1, 51.6, 44.7, 31.6, 27.3; HRMS (ESI-TOF) m/z Calcd. for C₂₁H₂₂Cl₂NO₆⁺ (M+H)⁺: 454.0824; found: 454.0823.

Methyl (*E*)-4-(1-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)-6-methoxy-6-oxohexan-2-yl)benzoate (2q)

Following General procedure D, the product is obtained as a colorless oil, 73% yield. ¹H NMR (600 MHz, CDCl₃) δ 10.47 (s, 1H), 8.54 (s, 1H), 8.00 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 6.93 (d, *J* = 2.4 Hz, 1H), 6.88 (d, *J* = 2.4 Hz, 1H), 4.32 (d, *J* = 7.2 Hz, 2H), 3.90 (s, 3H), 3.63 (s, 3H), 3.12-3.09 (m, 1H), 2.30-2.27 (m, 2H), 1.88-1.82 (m, 1H), 1.73-1.66 (m,1H), 1.59-1.48 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 173.6, 166.9, 159.2, 148.6, 146.7, 136.8, 134.8, 130.0, 129.0, 127.9, 120.9, 116.2, 112.8, 78.9, 52.1, 51.5, 45.3, 33.8, 31.6, 22.6; HRMS (ESI-TOF) m/z Calcd. for C₂₂H₂₄Cl₂NO₆⁺ (M+H)⁺: 468.0981; found: 468.0985.

(*E*)-6-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)-5-(4-(methoxycarbonyl)p henyl)hexanoic acid (2r)

Following General procedure D, the product is obtained as a colorless oil, 71% yield. ¹H NMR (600 MHz, CDCl₃) δ 10.48 (s, 1H), 8.56 (s, 1H), 8.00 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 6.94 (d, *J* = 2.4 Hz, 1H), 6.89 (d, *J* = 2.4 Hz, 1H), 4.33 (d, *J* = 7.2 Hz, 2H), 3.91 (s, 3H), 3.12-3.10 (m, 1H), 2.37-2.28 (m, 2H), 1.91-1.86 (m, 1H), 1.75-1.68 (m,1H), 1.60-1.49 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 178.9, 166.9, 159.2, 148.6, 146.6, 136.8, 134.8, 130.1, 129.0, 127.9, 121.0, 116.2, 112.8, 78.9, 52.1, 45.3, 33.7, 31.5, 22.3; HRMS (ESI-TOF) m/z Calcd. for $C_{21}H_{21}Cl_2NO_6^+$ (M+H)⁺: 454.0819; found: 454.0816.

Methyl (*E*)-4-(6-(azetidin-1-yl)-1-(((2,4-dichloro-6-hydroxybenzylidene) amino)oxy)-6-oxohexan-2-yl)benzoate (2s)

Following General procedure D, the product is obtained as a pale-yellow oil, 58% yield. ¹H NMR (600 MHz, CDCl₃) δ 10.49 (br s, 1H), 8.55 (s, 1H), 8.00 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 6.94 (d, J = 2.4 Hz, 1H), 6.89 (d, J = 2.4 Hz, 1H), 4.35-4.30 (m, 2H), 4.01 (t, J = 7.8 Hz, 4H), 3.90 (s, 3H), 3.13-3.08 (m, 1H), 2.25-2.20 (m, 2H), 2.03 (td, J = 7.2, 2.0 Hz, 2H), 1.89-1.83 (m, 1H), 1.73-1.66 (m, 1H), 1.58-1.46 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 172.1, 166.5, 158.7, 148.1, 146.4, 136.3, 134.3, 129.5, 128.4, 127.5, 120.5, 115.7, 112.4, 78.5, 51.6, 48.7 (broad), 44.9, 31.4, 30.3, 22.0, 14.6; HRMS (ESI-TOF) m/z Calcd. for C₂₄H₂₇Cl₂N₂O₅⁺ (M+H)⁺: 493.1292; found: 493.1295.

Methyl (*E*)-4-(1-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)-6oxo-6-(pyrrolidin-1-yl)hexan-2-yl)benzoate (2t)

Following General procedure D, the product is obtained as a pale-yellow oil, 48% yield. ¹H NMR (600 MHz, CDCl₃) δ 10.50 (br s, 1H), 8.55 (s, 1H), 7.99 (d, *J* = 8.4 Hz, 2H), 7.30 (d, *J* = 8.4 Hz, 2H), 6.94 (d, *J* = 2.4 Hz, 1H), 6.89 (d, *J* = 2.4 Hz, 1H), 4.37-4.31 (m, 2H), 3.90 (s, 3H), 3.42-3.32 (br 4H), 3.14-3.11 (m, 1H), 2.26-2.20 (m, 2H), 1.92-1.83 (m, 5H), 1.76-1.70 (m, 1H), 1.65-1.51 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 170.7, 166.5, 158.7, 148.1, 146.6, 136.3, 134.3, 129.5, 128.4, 127.5, 120.5, 115.7, 112.4, 78.6, 51.6, 46.1 (broad), 45.4 (broad), 45.0, 33.9, 31.4, 25.6 (broad),

23.9 (broad), 22.1; HRMS (ESI-TOF) m/z Calcd. for $C_{25}H_{29}Cl_2N_2O_5^+$ (M+H)⁺: 507.1454; found: 507.1457.

Methyl (*E*)-4-(1-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)-6-oxo-6 -(piperidin-1-yl)hexan-2-yl)benzoate (2u)

Following General procedure D, the product is obtained as a pale-yellow oil, 54% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.52 (s, 1H), 8.57 (s, 1H), 8.02 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.3 Hz, 2H), 6.97 (d, J = 2.0 Hz, 1H), 6.92 (d, J = 2.0 Hz, 1H), 4.41 – 4.30 (m, 2H), 3.93 (s, 3H), 3.65 – 3.20 (m, 4H), 3.15 (dq, J = 11.9, 6.8 Hz, 1H), 2.41 – 2.25 (m, 2H), 1.95 – 1.89 (m, 1H), 1.77 – 1.71 (m, 1H), 1.65 – 1.47 (m, 8H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 170.72, 166.88, 159.16, 148.50, 146.96, 136.73, 134.73, 129.95, 128.84, 127.97, 120.91, 116.17, 112.81, 78.97, 52.04, 45.41, 32.98, 31.86, 25.94 (broad), 24.46, 22.98; HRMS (ESI-TOF) m/z Calcd. for C₂₆H₃₁Cl₂N₂O₅⁺ (M+H)⁺: 521.1610; found: 521.1613.

Methyl (*E*)-4-(1-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)-6-morpholino -6-oxohexan-2-yl)benzoate (2v)

Following General procedure D, the product is obtained as a pale-yellow oil, 62% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.49 (s, 1H), 8.55 (s, 1H), 8.00 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 6.95 (d, J = 2.0 Hz, 1H), 6.89 (dd, J = 2.0, 0.6 Hz, 1H), 4.38 – 4.29 (m, 2H), 3.90 (s, 3H), 3.61 (d, J = 14.9 Hz, 6H), 3.45 – 3.26 (m, 2H), 3.13 (dtd, J = 9.7, 6.9, 4.9 Hz, 1H), 2.32 – 2.22 (m, 2H), 1.89 (ddt, J = 13.4, 10.7, 5.4 Hz, 1H), 1.76 – 1.69 (m, 1H), 1.62 – 1.49 (m, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 170.54, 166.40, 158.71, 148.11, 146.38, 136.35, 134.30, 129.54,

128.48, 127.52, 120.51, 115.74, 112.34, 78.49, 66.43, 66.09, 51.63, 45.42, 44.97, 41.42, 32.31, 31.36, 22.27; HRMS (ESI-TOF) m/z Calcd. for $C_{25}H_{29}Cl_2N_2O_6^+$ (M+H)⁺: 523.1403; found: 523.1404.

Methyl (*E*)-4-(3-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)-4-methoxy -4-oxobutan-2-yl)benzoate (2w)

Following General procedure D, the product is obtained as a pale-yellow oil, 74% yield (dr = 4:1). ¹H NMR (600 MHz, Chloroform-*d*) δ 10.10 (s, 1H), 8.65 (s, 1H), 8.02 (d, *J* = 8.4 Hz, 2H), 7.38 (d, *J* = 8.2 Hz, 2H), 6.96 (d, *J* = 2.0 Hz, 1H), 6.90 (d, *J* = 1.6 Hz, 1H), 4.87 (d, *J* = 7.5 Hz, 1H), 3.92 (s, 3H), 3.76 (s, 2H), 3.64 (s, 1H), 3.48 (m, 1H), 1.43 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 170.43, 166.81, 159.12, 149.96, 146.34, 137.30, 135.11, 129.81, 129.08, 127.86, 121.06, 116.24, 112.40, 86.53, 52.23, 52.05, 41.39, 17.56; HRMS (ESI-TOF) m/z Calcd. for C₂₀H₂₀Cl₂NO₆⁺ (M+H)⁺: 440.0662; found: 440.0655.

Methyl (*E*)-4-(4-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)heptan-3-yl) benzoate (2x)

Following General procedure D, the product is obtained as a pale-yellow oil, 63% yield (dr = 5:1). ¹H NMR (600 MHz, Chloroform-*d*) δ 10.73 (s, 1H), 8.58 (s, 1H), 8.00 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 8.3 Hz, 2H), 7.00 – 6.97 (m, 1H), 6.95 – 6.91 (m, 1H), 4.42 (dt, *J* = 9.2, 4.4 Hz, 1H), 3.92 (s, 3H), 2.88 (dt, *J* = 10.2, 4.9 Hz, 1H), 2.02 – 1.71 (m, 2H), 1.60 – 1.36 (m, 4H), 0.90 (t, *J* = 7.1 Hz, 3H), 0.82 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.02, 159.11, 147.49, 146.54, 136.44, 134.53, 129.50, 129.04, 128.48, 120.85, 116.07, 113.12, 87.85, 51.98, 51.59, 33.80,

24.49, 18.93, 13.95, 12.13; HRMS (ESI-TOF) m/z Calcd. for C₂₂H₂₆Cl₂NO₄⁺ (M+H)⁺: 438.1239; found: 438.1241.

Methyl (*E*)-4-(2-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)cyclobutyl) benzoate (2y)

Following General procedure D, the product is obtained as a colorless oil, 18% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.39 (s, 1H), 8.32 (d, *J* = 0.5 Hz, 1H), 7.95 (d, *J* = 8.4 Hz, 2H), 7.36 (d, *J* = 8.1 Hz, 2H), 6.89 (d, *J* = 2.0 Hz, 1H), 6.84 (d, *J* = 2.0 Hz, 1H), 5.14 – 5.07 (m, 1H), 3.97 (q, *J* = 7.5 Hz, 1H), 3.88 (s, 3H), 2.57 – 2.42 (m, 2H), 2.37 – 2.26 (m, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.01, 159.12, 149.09, 144.26, 136.70, 134.70, 129.39, 128.38, 128.30, 120.81, 116.10, 112.72, 80.58, 51.98, 45.56, 26.51, 21.63; HRMS (ESI-TOF) m/z Calcd. for C₁₉H₁₈Cl₂NO₄⁺ (M+H)⁺: 394.0607; found: 394.0607.

Dimethyl 4,4'-(2-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)cyclobutane-1,3-diyl)(*E*)-dibenzoate (2y')

Following General procedure D, the product is obtained as a pale-yellow solid, 58% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 9.79 (s, 1H), 8.08 (s, 1H), 7.96 (d, *J* = 8.3 Hz, 4H), 7.38 (d, *J* = 8.2 Hz, 4H), 6.80 (d, *J* = 2.0 Hz, 1H), 6.72 (d, *J* = 2.0 Hz, 1H), 5.39 (td, *J* = 5.6, 4.1 Hz, 1H), 3.99 (ddd, *J* = 11.0, 7.8, 5.9 Hz, 2H), 3.88 (s, 6H), 3.17 (q, *J* = 11.0 Hz, 1H), 2.75 (dtd, *J* = 11.6, 7.9, 3.9 Hz, 1H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.87, 158.87, 149.26, 143.11, 136.64, 134.49, 129.45, 128.50, 128.29, 120.64, 115.98, 112.32, 86.25, 52.00, 41.75, 29.42; HRMS (ESI-TOF) m/z Calcd. for C₂₇H₂₄Cl₂NO₆⁺ (M+H)⁺: 528.0981; found: 528.0988.

Methyl (*E*)-4-(2-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)cyclopentyl) benzoate (2z)

Following General procedure D, the product is obtained as a colorless oil, 66% yield, dr > 20:1. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.39 (s, 1H), 8.35 (s, 1H), 7.94 (d, *J* = 8.4 Hz, 2H), 7.38 (d, *J* = 8.3 Hz, 2H), 6.89 (d, *J* = 2.0 Hz, 1H), 6.82 (d, *J* = 2.0 Hz, 1H), 4.90 (td, *J* = 5.0, 2.2 Hz, 1H), 3.88 (s, 3H), 3.25 (ddd, *J* = 12.1, 7.8, 4.9 Hz, 1H), 2.25 – 2.06 (m, 4H), 2.01 (ddt, *J* = 17.8, 11.8, 6.0 Hz, 1H), 1.79 (ddd, *J* = 13.9, 11.9, 6.5 Hz, 1H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.01, 159.07, 148.05, 145.06, 136.40, 134.48, 129.34, 128.78, 128.29, 120.73, 116.03, 112.92, 88.14, 51.96, 50.35, 31.72, 29.01, 22.22; HRMS (ESI-TOF) m/z Calcd. for C₂₀H₂₀Cl₂NO₄⁺ (M+H)⁺: 408.0764; found: 408.0758.

Dimethyl 4,4'-(2-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)cyclopentane -1,3-diyl)(*E*)-dibenzoate (2z')

Following General procedure D, the product is obtained as a pale-yellow oil, 16% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 9.52 (s, 1H), 8.13 (s, 1H), 7.95 (d, *J* = 8.3 Hz, 4H), 7.42 (d, *J* = 8.3 Hz, 4H), 6.83 (d, *J* = 2.0 Hz, 1H), 6.68 (d, *J* = 2.0 Hz, 1H), 4.99 (t, *J* = 4.0 Hz, 1H), 3.88 (s, 6H), 3.64 (dq, *J* = 6.9, 4.0 Hz, 2H), 2.55 – 2.44 (m, 2H), 2.39 (ddt, *J* = 13.8, 8.1, 4.3 Hz, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.87, 158.74, 147.53, 144.84, 136.32, 134.28, 129.44, 128.76, 128.49, 120.54, 115.86, 112.43, 91.29, 51.96, 50.57, 28.23; HRMS (ESI-TOF) m/z Calcd. for C₂₈H₂₆Cl₂NO₆⁺ (M+H)⁺: 542.1132; found: 542.1128.

Methyl (*E*)-4-(2-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)cyclohexyl) benzoate (2aa)

Following General procedure D, the product is obtained as a pale-yellow oil, 31% yield, dr = 1.5:1. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.43 (s, 1H), 8.56 (s, 1H), 7.96 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 8.4 Hz, 2H), 6.91 (d, *J* = 2.0 Hz, 1H), 6.87 – 6.80 (m, 1H), 4.65 – 4.28 (m, 1H), 3.88 (s, 3H), 2.95 – 2.78 (m, 1H), 2.38 – 2.21 (m, 1H), 2.16 – 1.92 (m, 2H), 1.87 – 1.76 (m, 1H), 1.71 – 1.41 (m, 4H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.02, 166.95, 159.09, 159.05, 148.76, 148.73, 147.87, 147.77, 136.34, 134.49, 134.42, 129.79, 129.47, 128.28, 128.00, 127.57, 120.74, 120.72, 116.03, 115.99, 113.01, 112.99, 85.95, 82.86, 51.94, 49.35, 46.85, 34.08, 32.13, 30.43, 25.88, 25.83, 25.66, 24.68, 19.57; HRMS (ESI-TOF) m/z Calcd. for C₂₁H₂₂Cl₂NO₄⁺ (M+H)⁺: 422.0920; found: 422.0924.

Following General procedure D, the product is obtained as a pale-yellow oil, 62% yield, dr = 2:1. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.99 (s, 1H), 8.34 (s, 1H), 7.94 (d, *J* = 8.4 Hz, 4H), 7.37 (d, *J* = 8.3 Hz, 4H), 6.83 (d, *J* = 2.0 Hz, 1H), 6.59 (d, *J* = 2.0 Hz, 1H), 4.69 (s, 1H), 3.88 (s, 6H), 3.12 (d, *J* = 12.8 Hz, 2H), 2.32 – 2.13 (m, 3H), 1.99 – 1.86 (m, 2H), 1.68 (dtd, *J* = 13.2, 9.5, 3.5 Hz, 1H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.88, 158.70, 147.87, 146.75, 136.22, 134.20, 129.57, 128.50,

127.97, 120.43, 115.82, 112.34, 88.02, 51.93, 48.31, 25.70, 25.14; HRMS (ESI-TOF) m/z Calcd. for C₂₉H₂₈Cl₂NO₆⁺ (M+H)⁺: 556.1288; found: 556.1289.

Methyl (*E*)-4-(2-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)cycloheptyl) benzoate (2ab)

Following General procedure D, the product is obtained as a colorless oil, 76% yield, dr = 2:1. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.49 (s, 1H), 8.60 (s, 1H), 7.97 (d, *J* = 8.5 Hz, 2H), 7.37 (d, *J* = 8.2 Hz, 2H), 6.95 (d, *J* = 2.0 Hz, 1H), 6.86 (dd, *J* = 2.0, 0.5 Hz, 1H), 4.63 (dt, *J* = 5.9, 2.9 Hz, 1H), 3.90 (s, 3H), 3.08 (dt, *J* = 11.2, 2.8 Hz, 1H), 2.28 - 2.08 (m, 2H), 1.95 - 1.61 (m, 8H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.00, 159.11, 150.79, 147.83, 137.68, 134.47, 130.99, 129.54, 127.93, 120.75, 116.06, 113.02, 86.63, 49.47, 32.67, 29.19, 27.52, 27.35, 22.65; HRMS (ESI-TOF) m/z Calcd. for C₂₂H₂₄Cl₂NO₄⁺ (M+H)⁺: 436.1077; found: 436.1076.

Following General procedure D, the product is obtained as a pale-yellow oil, 39% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 9.77 (s, 1H), 8.21 (s, 1H), 8.02 (d, *J* = 8.4 Hz, 2H), 7.38 (d, *J* = 8.1 Hz, 2H), 6.93 (t, *J* = 2.4 Hz, 1H), 6.88 (dd, *J* = 3.8, 2.0 Hz, 1H), 5.82 (d, *J* = 6.8 Hz, 1H), 5.40 (tt, *J* = 7.1, 3.9 Hz, 1H), 4.88 (dd, *J* = 11.0, 7.3 Hz, 1H), 4.59 (dd, *J* = 11.2, 4.2 Hz, 1H), 3.91 (s, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 158.98, 151.29, 137.86, 136.91, 135.14, 129.73, 127.38, 127.20,

121.20, 116.32, 73.91, 73.66, 69.45, 56.47, 53.96, 52.16; HRMS (ESI-TOF) m/z Calcd. for $C_{20}H_{16}Cl_2F_3N_2O_5^+$ (M+H)⁺: 491.0388; found: 491.0388.

Dimethyl 4,4'-(3-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)-1-(2,2,2trifluoroacetyl)azetidine-2,4-diyl)(*E*)-dibenzoate (2ae')

Following General procedure D, the product is obtained as a pale-yellow oil, 6% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 9.65 (s, 1H), 8.12 (d, J = 3.3 Hz, 4H), 7.85 (s, 1H), 7.50 (s, 4H), 6.87 (d, J = 2.0 Hz, 1H), 6.84 (dd, J = 2.0, 0.5 Hz, 1H), 6.09 (s, 2H), 5.61 (t, J = 7.2 Hz, 1H), 3.93 (s, 6H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 158.89, 151.45, 137.87, 135.09, 130.28, 126.98, 121.16, 116.27, 111.63, 76.60, 52.23; HRMS (ESI-TOF) m/z Calcd. for C₂₈H₂₂Cl₂F₃N₂O₇⁺ (M+H)⁺: 625.0756; found: 625.0766.

Following General procedure D, the product is obtained as a pale-yellow oil, 42% yield (rotamers). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.90 (s, 1H), 8.54 (s, 1H), 8.06 (d, *J* = 8.3 Hz, 2H), 7.42 (d, *J* = 8.6 Hz, 2H), 6.97 (dd, *J* = 3.1, 2.0 Hz, 1H), 6.89 (ddd, *J* = 2.6, 2.0, 0.5 Hz, 1H), 5.14 (dt, *J* = 14.3, 3.9 Hz, 1H), 4.34 – 3.96 (m, 4H), 3.94 (s, 3H), 3.84 – 3.70 (m, 1H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.52, 159.08, 150.48, 150.31, 139.23, 138.90, 137.60, 137.51, 135.14, 135.01, 129.95, 128.48,

121.17, 116.31, 112.21, 84.32, 82.02, 53.09, 52.22, 49.38, 48.37, 45.80; HRMS (ESI-TOF) m/z Calcd. for $C_{21}H_{18}Cl_2F_3N_2O_5^+$ (M+H)⁺: 505.0545; found: 505.0547.

Methyl (*E*)-4-(4-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)-1-(2,2,2trifluoroacetyl)piperidin-3-yl)benzoate (2ag)

Following General procedure D, the product is obtained as a pale-yellow oil, 41% yield (major diastereomer). ¹H NMR (600 MHz, Chloroform-*d*) δ 10.05 (s, 1H), 8.66 (s, 1H), 8.04 (t, *J* = 8.0 Hz, 2H), 7.38 (d, *J* = 8.3 Hz, 2H), 6.98 (t, *J* = 2.0 Hz, 1H), 6.87 (t, *J* = 2.3 Hz, 1H), 4.78 (dd, *J* = 5.4, 2.6 Hz, 1H), 4.71 – 4.55 (m, 1H), 4.03 (m, 1H), 3.93 (s, 3H), 3.65 – 3.15 (m, 3H), 2.42 – 2.33 (m, 1H), 2.06 – 1.97 (m, 1H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.65, 159.06, 155.53, 149.35, 143.41, 143.10, 137.25, 134.83, 129.98, 129.87, 127.96, 121.10, 116.25, 112.41, 79.80, 52.13, 46.37, 45.18, 42.53, 40.48, 30.37, 29.29; HRMS (ESI-TOF) m/z Calcd. for C₂₂H₂₀Cl₂F₃N₂O₅⁺ (M+H)⁺: 519.0696; found: 519.0698.

Methyl (*E*)-4-(4-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)-1-(2,2,2trifluoroacetyl)piperidin-3-yl)benzoate (2ag')

Following General procedure D, the product is obtained as a pale-yellow oil, 20% yield (minor diastereomer, rotamers). ¹H NMR (600 MHz, Chloroform-*d*) δ 10.14 (d, J = 11.0 Hz, 1H), 8.49 (d, J = 13.8 Hz, 1H), 8.06 (t, J = 8.1 Hz, 2H), 7.37 (t, J = 8.2 Hz, 2H), 6.95 (dd, J = 3.7, 2.0 Hz, 1H), 6.89 (t, J = 2.0 Hz, 1H), 4.81 – 4.62 (m, 2H), 4.16 (m, 1H), 3.93 (s, 3H), 3.45 – 3.31 (m, 1H), 3.07 (dd, J = 24.7, 10.1 Hz, 2H), 2.50

-2.42 (m, 1H), 1.90 -1.80 (m, 1H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.59, 159.03, 155.53, 149.34, 143.01, 142.74, 137.11, 130.36, 130.22, 129.67, 127.75, 127.68, 121.08, 82.77, 52.15, 48.51, 47.41, 47.01, 42.13, 31.16, 30.51; HRMS (ESI-TOF) m/z Calcd. for C₂₂H₂₀Cl₂F₃N₂O_{5⁺} (M+H)⁺: 519.0696; found: 519.0699.

Methyl (*E*)-4-(1-((((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)methyl) cyclopropyl)benzoate (2ah)

Following General procedure D, the product is obtained as a colorless oil, 32% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.54 (s, 1H), 8.60 (s, 1H), 7.97 (d, *J* = 8.7 Hz, 2H), 7.39 (d, *J* = 8.7 Hz, 2H), 6.95 (d, *J* = 2.0 Hz, 1H), 6.89 (dd, *J* = 2.0, 0.6 Hz, 1H), 4.32 (s, 2H), 3.90 (s, 3H), 0.91 – 0.82 (m, 4H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.91, 159.21, 148.49, 147.79, 136.73, 134.76, 129.69, 128.38, 128.29, 120.93, 116.17, 112.89, 82.15, 52.04, 29.70, 24.96, 12.83; HRMS (ESI-TOF) m/z Calcd. for C₁₉H₁₈Cl₂NO₄⁺ (M+H)⁺: 394.0607; found: 394.0602.

C(sp³)-H arylation of DG9-tethered 1-propanol

General procedure E:

To a 8-mL vial were added **DG9**-tethered 1-propanol (0.1 mmol), aryl iodide (0.3 mmol), palladium acetate (2.3 mg, 0.01 mmol), 3-nitro-5-trifluoromethyl-2-pyridone (8.1 mg, 0.04 mmol) and silver trifluoroacetate (33 mg, 0.15 mmol). the mixture was dissolved with 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP, 1.0 mL). The vial was sealed and stirred at 100 $^{\circ}$ C for 12 hours unless otherwise stated. The reaction was cooled to room temperature and diluted with 5 mL of EtOAc and filtered through a pad of Celite. The filtrate was concentrated and purified by preparative thin-layer chromatography.

(E)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(p-tolyl)propyl) oxime (3a)

Following General procedure E, the product is obtained as a colorless oil, 88% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.65 (s, 1H), 8.62 (s, 1H), 7.15 (s, 4H), 6.96 (d, *J* = 2.0 Hz, 1H), 6.91 (d, *J* = 2.0 Hz, 1H), 4.31 (dd, *J* = 10.5, 6.9 Hz, 1H), 4.22 (dd, *J* = 10.5, 7.5 Hz, 1H), 3.19 (m, 1H), 2.34 (s, 3H), 1.34 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.21, 148.23, 139.96, 136.57, 136.30, 134.67, 129.27, 127.15, 120.87, 116.15, 112.99, 80.61, 38.82, 21.02, 18.12; HRMS (ESI-TOF) m/z Calcd. for C₁₇H₁₈Cl₂NO₂⁺ (M+H)⁺: 338.0709; found: 338.0714.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(4-methoxyphenyl)propyl) oxime (3b)

Following General procedure E, the product is obtained as a colorless oil, 66% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.64 (s, 1H), 8.61 (s, 1H), 7.17 (d, *J* = 8.5 Hz, 2H), 6.96 (d, *J* = 2.0 Hz, 1H), 6.91 (d, *J* = 2.4 Hz, 1H), 6.88 (d, *J* = 8.7 Hz, 2H), 4.29 (dd, *J* = 10.5, 6.9 Hz, 1H), 4.20 (dd, *J* = 10.5, 7.5 Hz, 1H), 3.80 (s, 3H), 3.17 (m, 1H), 1.33 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.20, 158.36, 148.22, 136.58, 135.02, 134.67, 128.20, 120.87, 116.15, 113.98, 112.98, 80.70, 55.25, 38.40, 18.16; HRMS (ESI-TOF) m/z Calcd. for C₁₇H₁₈Cl₂NO₃⁺ (M+H)⁺: 354.0658; found: 354.0659.

(*E*)-4-(1-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)propan-2-yl)benzonitri le (3c)

Following General procedure E, the product is obtained as a colorless oil, 68% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.43 (s, 1H), 8.58 (s, 1H), 7.63 (d, *J* = 8.4 Hz, 2H), 7.36 (d, *J* = 8.1 Hz, 2H), 6.96 (d, *J* = 2.0 Hz, 1H), 6.93 – 6.88 (m, 1H), 4.35 – 4.24 (m, 2H), 3.29 (m, 1H), 1.36 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.14, 148.70, 148.67, 136.92, 134.79, 132.43, 128.19, 121.01, 118.81, 116.22, 112.70, 110.71, 79.55, 39.51, 17.72; HRMS (ESI-TOF) m/z Calcd. for $C_{17}H_{15}Cl_2N_2O_2^+$ (M+H)⁺: 349.0505; found: 349.0513.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(4-nitrophenyl)propyl) oxime (3d) Following General procedure E, the product is obtained as a pale-yellow oil, 57% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.43 (s, 1H), 8.58 (s, 1H), 8.20 (d, *J* = 8.8 Hz, 2H), 7.42 (d, *J* = 8.6 Hz, 2H), 6.96 (d, *J* = 2.0 Hz, 1H), 6.93 – 6.88 (m, 1H), 4.38 – 4.27 (m, 2H), 3.35 (m, 1H), 1.39 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.15, 150.81, 148.78, 146.91, 136.97, 134.82, 128.24, 123.87, 121.04, 116.23, 112.69, 79.51, 39.36, 17.82; HRMS (ESI-TOF) m/z Calcd. for C₁₆H₁₅Cl₂N₂O₄⁺ (M+H)⁺: 369.0403; found: 369.0402.

(*E*)-4-(1-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)propan-2-yl)benzaldeh yde (3e)

Following General procedure E, the product is obtained as a colorless oil, 84% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.49 (s, 1H), 9.99 (s, 1H), 8.58 (s, 1H), 7.85 (d, *J* = 8.2 Hz, 2H), 7.42 (d, *J* = 8.1 Hz, 2H), 6.95 (d, *J* = 2.0 Hz, 1H), 6.90 (d, *J* = 2.0 Hz, 1H), 4.40 – 4.26 (m, 2H), 3.32 (m, 1H), 1.38 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 191.81, 159.15, 150.31, 148.58, 136.82, 135.22, 134.75, 130.10, 128.04, 120.96, 116.19, 112.77, 79.76, 39.58, 17.83; HRMS (ESI-TOF) m/z Calcd. for C₁₇H₁₆Cl₂NO₃⁺ (M+H)⁺: 352.0502; found: 352.0508.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(4-bromophenyl)propyl) oxime (3f)

Following General procedure E, the product is obtained as a colorless oil, 80% yield.

¹H NMR (600 MHz, Chloroform-*d*) δ 10.55 (s, 1H), 8.60 (s, 1H), 7.45 (d, J = 8.4 Hz, 2H), 7.13 (d, J = 8.3 Hz, 2H), 6.96 (d, J = 2.0 Hz, 1H), 6.91 (dd, J = 2.0, 0.5 Hz, 1H), 4.32 – 4.18 (m, 2H), 3.19 (m, 1H), 1.33 (d, J = 7.0 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.18, 148.46, 142.03, 136.74, 134.73, 131.66, 129.05, 120.94, 120.51, 116.19, 112.86, 80.07, 38.79, 17.93; HRMS (ESI-TOF) m/z Calcd. for C₁₆H₁₅BrCl₂NO₂⁺ (M+H)⁺: 401.9658; found: 401.9661.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(4-iodophenyl)propyl) oxime (3g) Following General procedure E, the product is obtained as a colorless oil, 72% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.55 (s, 1H), 8.59 (s, 1H), 7.65 (d, *J* = 8.4 Hz, 2H), 7.00 (d, *J* = 8.1 Hz, 2H), 6.96 (d, *J* = 2.0 Hz, 1H), 6.91 (dd, *J* = 2.0, 0.5 Hz, 1H), 4.33 – 4.18 (m, 2H), 3.17 (m, 1H), 1.32 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.19, 148.48, 142.74, 137.64, 136.74, 134.74, 129.38, 120.94, 116.19, 112.86, 91.94, 80.04, 38.89, 17.89; HRMS (ESI-TOF) m/z Calcd. for C₁₆H₁₅ICl₂NO₂⁺ (M+H)⁺: 449.9519; found: 449.9519.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-([1,1'-biphenyl]-4-yl)propyl) oxime (3h)

Following General procedure E, the product is obtained as a colorless oil, 78% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.65 (s, 1H), 8.66 (s, 1H), 7.60 (ddt, J = 10.4, 8.5, 1.7 Hz, 4H), 7.51 – 7.44 (m, 2H), 7.41 – 7.33 (m, 3H), 6.99 (d, J = 2.0 Hz, 1H), 6.96 – 6.92 (m, 1H), 4.42-4.30 (m, 2H), 3.30 (m, 1H), 1.43 (d, J = 7.0 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.21, 148.34, 142.07, 140.86, 139.74, 136.63, 134.70, 128.71, 127.72, 127.33, 127.15, 127.03, 120.89, 116.17, 112.95, 80.45, 38.97, 18.05; HRMS (ESI-TOF) m/z Calcd. for C₂₂H₂₀Cl₂NO₂⁺ (M+H)⁺: 400.0866; found: 400.0862.

(E)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(m-tolyl)propyl) oxime (3i)

Following General procedure E, the product is obtained as a colorless oil, 80% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.65 (s, 1H), 8.62 (s, 1H), 7.25 – 7.20 (m, 1H), 7.10 – 7.03 (m, 3H), 6.96 (d, J = 2.0 Hz, 1H), 6.91 (dd, J = 2.0, 0.5 Hz, 1H), 4.36 – 4.19 (m, 2H), 3.18 (m, 1H), 2.36 (s, 3H), 1.35 (d, J = 7.0 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.21, 148.26, 142.95, 138.17, 136.59, 134.68, 128.47, 128.07, 127.51, 124.29, 120.87, 116.16, 112.99, 80.56, 21.47, 18.12; HRMS (ESI-TOF) m/z Calcd. for C₁₇H₁₈Cl₂NO₂⁺ (M+H)⁺: 338.0709; found: 338.0711.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(3-methoxyphenyl)propyl) oxime (3j)

Following General procedure E, the product is obtained as a colorless oil, 78% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.65 (s, 1H), 8.64 (s, 1H), 7.29 (d, *J* = 7.7 Hz, 1H), 6.98 (d, *J* = 2.0 Hz, 1H), 6.93 (d, *J* = 2.0 Hz, 1H), 6.87 (d, *J* = 7.6 Hz, 1H), 6.81 (dd, *J* = 9.2, 1.6 Hz, 2H), 4.35 (dd, *J* = 10.5, 6.9 Hz, 1H), 4.25 (dd, *J* = 10.5, 7.4 Hz, 1H), 3.84 (s, 3H), 3.22 (m, 1H), 1.37 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.75, 159.21, 148.30, 144.71, 136.61, 134.69, 129.56, 120.88, 119.65, 116.16, 113.43, 112.95, 111.69, 80.41, 55.17, 39.31, 18.06; HRMS (ESI-TOF) m/z Calcd. for C₁₇H₁₈Cl₂NO₃⁺ (M+H)⁺: 354.0658; found: 354.0662.

(*E*)-3-(1-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)propan-2-yl)benzonitri le (3k)

Following General procedure E, the product is obtained as a colorless oil, 62% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.45 (s, 1H), 8.59 (s, 1H), 7.58 – 7.52 (m, 2H), 7.52 – 7.47 (m, 1H), 7.44 (t, *J* = 8.0 Hz, 1H), 6.96 (d, *J* = 2.1 Hz, 1H), 6.90 (dd, *J* = 2.1, 0.5 Hz, 1H), 4.34 – 4.23 (m, 2H), 3.26 (m, 1H), 1.37 (d, J = 7.0 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.16, 148.73, 144.59, 136.90, 134.81, 131.98, 131.01, 130.53, 129.38, 121.00, 118.83, 116.21, 112.72, 112.71, 79.65, 39.01, 29.69, 17.76; HRMS (ESI-TOF) m/z Calcd. for C₁₇H₁₅Cl₂N₂O₂⁺ (M+H)⁺: 349.0505; found: 349.0507.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(3-acetylphenyl)propyl) oxime (3l) Following General procedure E, the product is obtained as a colorless oil, 81% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.55 (s, 1H), 8.61 (s, 1H), 7.91 – 7.83 (m, 2H), 7.50 – 7.44 (m, 2H), 6.97 (d, *J* = 2.0 Hz, 1H), 6.92 (d, *J* = 2.4 Hz, 1H), 4.40 – 4.27 (m, 2H), 3.32 (m, 1H), 2.63 (s, 3H), 1.41 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 198.09, 159.17, 148.48, 143.72, 136.73, 134.73, 132.19, 128.82, 127.03, 126.94, 120.92, 116.18, 112.83, 80.08, 39.25, 26.68, 17.99; HRMS (ESI-TOF) m/z Calcd. for C₁₈H₁₈Cl₂NO₃⁺ (M+H)⁺: 366.0658; found: 366.0663.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(3-bromophenyl)propyl) oxime (3m)

Following General procedure E, the product is obtained as a colorless oil, 86% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.55 (s, 1H), 8.61 (s, 1H), 7.51 – 7.34 (m, 2H), 7.24 – 7.11 (m, 2H), 6.96 (d, *J* = 2.0 Hz, 1H), 6.91 (d, *J* = 2.0 Hz, 1H), 4.31-4.22 (m, 2H), 3.19 (m, 1H), 1.34 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.19, 148.53, 145.42, 136.74, 134.76, 130.42, 130.15, 129.88, 126.04, 122.68, 120.93, 116.19, 112.86, 80.02, 39.08, 17.93; HRMS (ESI-TOF) m/z Calcd. for C₁₆H₁₅BrCl₂NO₂⁺ (M+H)⁺: 401.9658; found: 401.9661.

(E)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(3-nitrophenyl)propyl) oxime (3n)

Following General procedure E, the product is obtained as a colorless oil, 88% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.46 (s, 1H), 8.61 (s, 1H), 8.20 – 8.09 (m, 2H), 7.61 (d, *J* = 7.7 Hz, 1H), 7.53 (t, *J* = 7.9 Hz, 1H), 6.98 (d, *J* = 2.0 Hz, 1H), 6.92 (dd, *J* = 2.0, 0.5 Hz, 1H), 4.41 – 4.28 (m, 2H), 3.38 (m, 1H), 1.43 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.15, 148.78, 148.49, 145.21, 136.91, 134.81, 133.76, 129.49, 122.25, 121.93, 121.00, 116.21, 112.70, 79.62, 39.11, 17.82; HRMS (ESI-TOF) m/z Calcd. for C₁₆H₁₅Cl₂N₂O₄⁺ (M+H)⁺: 369.0403; found: 369.0405.

Methyl(E)-3-(1-(((2,4-dichloro-6-hydroxybenzylidene)amino)oxy)propan-2-yl)benzoate (30)

Following General procedure E, the product is obtained as a colorless oil, 78% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.57 (s, 1H), 8.62 (s, 1H), 8.00 – 7.89 (m, 2H), 7.50 – 7.38 (m, 2H), 6.97 (d, J = 2.0 Hz, 1H), 6.93 (dd, J = 2.0, 0.6 Hz, 1H), 4.38-4.28 (m, 2H), 3.94 (s, 3H), 3.31 (m, 1H), 1.40 (d, J = 7.0 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.03, 159.19, 148.47, 143.43, 136.70, 134.72, 132.06, 130.47, 128.64, 128.37, 128.04, 120.90, 116.18, 112.87, 80.10, 52.12, 39.15, 17.98; HRMS (ESI-TOF) m/z Calcd. for C₁₈H₁₈Cl₂NO₄⁺ (M+H)⁺: 382.0607; found: 382.0608.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(2-fluorophenyl)propyl) oxime (3p)

Following General procedure E, the product is obtained as a colorless oil, 72% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.61 (s, 1H), 8.63 (s, 1H), 7.14 (td, *J* = 7.5, 1.3 Hz, 1H), 7.07 (dd, *J* = 10.6, 8.1 Hz, 1H), 6.98 (d, *J* = 2.1 Hz, 1H), 6.93 (dd, *J* = 2.0, 0.5 Hz, 1H), 4.41 (dd, *J* = 10.6, 6.7 Hz, 1H), 4.29 (dd, *J* = 10.6, 7.2 Hz, 1H), 3.58 (m, 1H), 1.40 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 160.93 (d, *J* = 244.6 Hz), 159.22, 148.34, 136.62, 134.70, 129.66 (d, *J* = 15.1 Hz), 128.37 (d, *J* = 4.5 Hz), 128.19 (d, J = 7.6 Hz), 124.24 (d, J = 3.0 Hz), 120.86, 116.19, 115.57 (d, J = 22.7 Hz), 112.94, 79.19 (d, J = 1.5 Hz), 32.89 (d, J = 1.5 Hz), 16.81 (d, J = 0.8 Hz); HRMS (ESI-TOF) m/z Calcd. for C₁₆H₁₅Cl₂FNO₂⁺ (M+H)⁺: 342.0458; found: 342.0461.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(2-nitrophenyl)propyl) oxime (3q) Following General procedure E, the product is obtained as a pale-yellow oil, 62% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.41 (s, 1H), 8.58 (s, 1H), 7.77 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.62 – 7.56 (m, 1H), 7.50 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.42 – 7.34 (m, 1H), 6.95 (d, *J* = 2.0 Hz, 1H), 6.91 – 6.89 (m, 1H), 4.38 (dd, *J* = 10.7, 6.9 Hz, 1H), 4.28 (dd, *J* = 10.7, 6.7 Hz, 1H), 3.85 (h, *J* = 6.9 Hz, 1H), 1.41 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.21, 148.67, 137.02, 136.77, 134.79, 132.69, 128.24, 127.50, 124.31, 120.90, 116.24, 112.76, 79.44, 33.49, 17.53; HRMS (ESI-TOF) m/z Calcd. for C₁₆H₁₅Cl₂N₂O₄⁺ (M+H)⁺: 369.0403; found: 369.0410.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(3-chloro-4-fluorophenyl)propyl) oxime (3r)

Following General procedure E, the product is obtained as a colorless oil, 86% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.51 (s, 1H), 8.60 (s, 1H), 7.28 (dd, J = 7.3, 1.5 Hz, 1H), 7.14 – 7.05 (m, 2H), 6.96 (d, J = 2.0 Hz, 1H), 6.91 (dd, J = 2.0, 0.5 Hz, 1H), 4.30 – 4.18 (m, 2H), 3.18 (m, 1H), 1.33 (d, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.18, 157.76, 156.12, 148.60, 140.09 (d, J = 4.5 Hz), 136.82, 134.78, 129.35, 126.99 (d, J = 6.8 Hz), 120.97, 116.59 (d, J = 20.8 Hz), 116.21, 112.80, 79.97, 38.50, 18.00; HRMS (ESI-TOF) m/z Calcd. for C₁₆H₁₄Cl₃FNO₂⁺ (M+H)⁺: 376.0069; found: 376.0073.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(naphthalen-1-yl)propyl) oxime (3s)

Following General procedure E, the product is obtained as a colorless oil, 74% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.66 (s, 1H), 8.61 (s, 1H), 7.87 – 7.78 (m, 3H), 7.69 (s, 1H), 7.51 – 7.42 (m, 2H), 7.40 (dd, J = 8.4, 1.8 Hz, 1H), 6.95 (d, J = 2.0 Hz, 1H), 6.91 (dd, J = 2.0, 0.6 Hz, 1H), 4.44 (dd, J = 10.6, 7.0 Hz, 1H), 4.33 (dd, J = 10.5, 7.3 Hz, 1H), 3.40 (m, 1H), 1.45 (d, J = 7.0 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.20, 148.37, 140.44, 136.62, 134.70, 133.54, 132.46, 128.24, 127.61, 126.07, 125.77, 125.70, 125.54, 120.89, 116.16, 112.94, 80.38, 39.36, 18.13; HRMS (ESI-TOF) m/z Calcd. for C₂₀H₁₈Cl₂NO₂⁺ (M+H)⁺: 374.0709; found: 374.0713.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(pyridin-2-yl)propyl) oxime (3t) Following General procedure E, the product is obtained as a pale-yellow oil, 38%

yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.54 (s, 1H), 8.58 (d, J = 4.8 Hz, 1H), 8.56 (s, 1H), 7.62 (td, J = 7.7, 1.8 Hz, 1H), 7.18 (d, J = 7.8 Hz, 1H), 7.17 – 7.12 (m, 1H), 6.93 (d, J = 2.0 Hz, 1H), 6.89 (d, J = 2.0 Hz, 1H), 4.56 (dd, J = 10.6, 7.5 Hz, 1H), 4.37 (dd, J = 10.6, 6.5 Hz, 1H), 3.37 (m, 1H), 1.37 (d, J = 7.0 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 162.39, 159.18, 149.47, 148.20, 136.56, 136.50, 134.64, 122.49, 121.76, 120.82, 116.15, 112.93, 79.33, 41.32, 17.20; HRMS (ESI-TOF) m/z Calcd. for C₁₅H₁₅Cl₂N₂O₂⁺ (M+H)⁺: 325.0505; found: 325.0511.

(E)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(pyridin-3-yl)propyl) oxime (3u)

Following General procedure E, the product is obtained as a pale-yellow oil, 34% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.49 (s, 1H), 8.59 (s, 1H), 8.51 (d, *J* = 11.6 Hz, 2H), 7.57 (dddd, *J* = 7.9, 2.2, 1.6, 0.5 Hz, 1H), 7.30 – 7.26 (m, 1H), 6.95 (d, *J* = 2.0 Hz, 1H), 6.90 (dd, *J* = 2.0, 0.5 Hz, 1H), 4.37 – 4.23 (m, 2H), 3.25 (m, 1H), 1.38 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.16, 149.33, 148.63, 148.24, 138.36, 136.82, 134.78, 134.56, 123.52, 120.97, 116.19, 112.78, 79.75, 36.94, 17.69; HRMS (ESI-TOF) m/z Calcd. for C₁₅H₁₅Cl₂N₂O₂⁺ (M+H)⁺: 325.0505; found: 325.0507.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(2-chloropyridin-4-yl)propyl) oxime (3v)

Following General procedure E, the product is obtained as a pale-yellow oil, 70% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.40 (s, 1H), 8.59 (s, 1H), 8.33 (s, 1H), 7.22 (s, 1H), 7.11 (dd, J = 5.1, 1.4 Hz, 1H), 6.96 (d, J = 2.0 Hz, 1H), 6.91 (d, J = 2.0 Hz, 1H), 4.38 – 4.22 (m, 2H), 3.21 (m, 1H), 1.35 (d, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.15, 155.53, 151.90, 149.80, 148.96, 137.01, 134.86, 123.23, 121.55, 121.04, 116.24, 112.63, 78.86, 38.66, 17.27; HRMS (ESI-TOF) m/z Calcd. for C₁₅H₁₄Cl₃N₂O₂⁺ (M+H)⁺: 359.0115; found: 359.0113.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(2-bromopyridin-4-yl)propyl) oxime (3w)

Following General procedure E, the product is obtained as a pale-yellow oil, 58% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.42 (s, 1H), 8.62 (s, 1H), 8.33 (d, J = 5.4 Hz, 1H), 7.40 (d, J = 1.5 Hz, 1H), 7.16 (dd, J = 5.1, 1.2 Hz, 1H), 6.98 (d, J = 2.0 Hz, 1H), 6.93 (dd, J = 2.0, 0.4 Hz, 1H), 4.38 – 4.25 (m, 2H), 3.22 (dt, J = 13.9, 7.0 Hz, 1H), 1.37 (d, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.15, 155.27, 150.22, 148.98, 142.64, 137.01, 134.87, 127.04, 121.94, 121.04, 116.24,

112.63, 78.84, 38.60, 17.27; HRMS (ESI-TOF) m/z Calcd. for $C_{15}H_{14}BrCl_2N_2O_2^+$ (M+H)⁺: 402.9610; found: 402.9610.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(2-(trifluoromethyl)pyridin-4-yl) propyl) oxime (3x)

Following General procedure E, the product is obtained as a pale-yellow oil, 71% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.37 (s, 1H), 8.67 (d, *J* = 5.0 Hz, 1H), 8.59 (s, 1H), 7.57 (s, 1H), 7.38 (d, *J* = 5.0 Hz, 1H), 6.96 (d, *J* = 2.0 Hz, 1H), 6.91 (dd, *J* = 2.0, 0.5 Hz, 1H), 4.33 (d, *J* = 6.9 Hz, 2H), 3.32 (m, 1H), 1.39 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.15, 154.22, 150.19, 149.06, 148.58 (q, *J* = 34.4 Hz), 137.08, 134.89, 125.42, 121.53 (q, *J* = 274.8 Hz), 121.07, 119.51 (q, *J* = 2.7 Hz), 116.25, 112.58, 78.81, 38.93, 17.26; HRMS (ESI-TOF) m/z Calcd. for C₁₆H₁₄Cl₂F₃N₂O₂⁺ (M+H)⁺: 393.0379; found: 393.0387.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(2-fluoropyridin-3-yl)propyl) oxime (3y)

Following General procedure E, the product is obtained as a pale-yellow oil, 56% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.48 (s, 1H), 8.60 (s, 1H), 8.17 – 8.06 (m, 1H), 7.77 – 7.64 (m, 1H), 7.25 – 7.13 (m, 1H), 6.97 (d, *J* = 2.0 Hz, 1H), 6.93 (d, *J* = 2.0 Hz, 1H), 4.37 (ddd, *J* = 47.9, 10.7, 6.8 Hz, 2H), 3.50 (m, 1H), 1.40 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 161.68 (d, *J* = 238.9 Hz), 159.19, 148.68, 145.72 (d, *J* = 1.5 Hz), 139.10, 136.84, 134.78, 124.74 (d, *J* = 29.1 Hz), 121.64, 120.95, 116.22, 112.75, 78.36, 33.14, 16.43; HRMS (ESI-TOF) m/z Calcd. for C₁₅H₁₄Cl₂FN₂O₂⁺ (M+H)⁺: 343.0411; found: 343.0417.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(6-(trifluoromethyl)pyridin-2-yl) propyl) oxime (3z)

Following General procedure E, the product is obtained as a pale-yellow oil, 88% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.47 (s, 1H), 8.56 (d, *J* = 0.5 Hz, 1H), 7.79 (td, *J* = 7.8, 0.7 Hz, 1H), 7.54 (dd, *J* = 7.8, 0.9 Hz, 1H), 7.38 (d, *J* = 7.8 Hz, 1H), 6.94 (d, *J* = 2.0 Hz, 1H), 6.89 (dd, *J* = 2.1, 0.5 Hz, 1H), 4.56 (dd, *J* = 10.6, 7.6 Hz, 1H), 4.40 (dd, *J* = 10.6, 6.1 Hz, 1H), 3.51 – 3.40 (m, 1H), 1.40 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 163.36, 159.18, 148.40, 147.99 (q, *J* = 33.2 Hz), 137.64, 136.69, 134.69, 125.12, 121.50 (q, *J* = 274.8), 120.87, 118.36 (q, *J* = 3.0 Hz), 116.18, 112.82, 78.96, 41.22, 16.98; HRMS (ESI-TOF) m/z Calcd. for C₁₆H₁₄Cl₂F₃N₂O₂⁺ (M+H)⁺: 393.0379; found: 393.0383.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(6-bromopyridin-2-yl)propyl) oxime (3aa)

Following General procedure E, the product is obtained as a pale-yellow oil, 66% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.52 (s, 1H), 8.59 (s, 1H), 7.50 (d, J = 7.7 Hz, 1H), 7.36 (d, J = 7.8 Hz, 1H), 7.16 (d, J = 7.5 Hz, 1H), 6.96 (d, J = 2.0 Hz, 1H), 6.92 (d, J = 2.0 Hz, 1H), 4.55 (dd, J = 10.6, 7.5 Hz, 1H), 4.38 (dd, J = 10.6, 6.2 Hz, 1H), 3.41 – 3.31 (m, 1H), 1.38 (d, J = 7.0 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 164.06, 159.18, 148.38, 141.94, 138.72, 136.66, 134.67, 126.16, 121.18, 120.85, 116.18, 112.84, 78.90, 41.12, 17.03; HRMS (ESI-TOF) m/z Calcd. for C₁₅H₁₄BrCl₂N₂O₂⁺ (M+H)⁺: 402.9610; found: 402.9611.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(6-methylpyridin-2-yl)propyl) oxime (3ab)

Following General procedure E, the product is obtained as a pale-yellow oil, 70% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.57 (s, 1H), 8.57 (s, 1H), 7.51 (t, *J* =

7.7 Hz, 1H), 6.99 (t, J = 8.0 Hz, 2H), 6.94 (d, J = 2.0 Hz, 1H), 6.89 (dd, J = 2.0, 0.5 Hz, 1H), 4.55 (dd, J = 10.5, 7.2 Hz, 1H), 4.36 (dd, J = 10.5, 6.5 Hz, 1H), 3.34 (m, 1H), 2.54 (s, 3H), 1.36 (d, J = 7.0 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 161.70, 159.20, 158.08, 148.10, 136.70, 136.50, 134.62, 121.30, 120.80, 118.94, 116.15, 112.98, 79.49, 41.40, 24.49, 17.27; HRMS (ESI-TOF) m/z Calcd. for C₁₆H₁₇Cl₂N₂O_{2⁺} (M+H)⁺: 339.0662; found: 339.0665.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(2,6-difluoropyridin-4-yl)propyl) oxime (3ac)

Following General procedure E, the product is obtained as a pale-yellow oil, 62% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.35 (s, 1H), 8.60 (s, 1H), 6.97 (d, *J* = 2.0 Hz, 1H), 6.91 (dd, *J* = 2.0, 0.6 Hz, 1H), 6.72 (s, 2H), 4.31 (d, *J* = 6.8 Hz, 2H), 3.30 (h, *J* = 6.9 Hz, 1H), 1.37 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 162.93 (t, *J* = 7.5 Hz), 161.99 (dd, *J* = 246.6, 16.0 Hz), 159.15, 149.14, 137.13, 134.93, 121.10, 116.27, 112.57, 104.85 (dd, *J* = 30.1, 12.1 Hz), 78.62, 38.96 (t, *J* = 2.7 Hz), 17.26; HRMS (ESI-TOF) m/z Calcd. for C₁₅H₁₃Cl₂F₂N₂O₂⁺ (M+H)⁺: 361.0317; found: 361.0319.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(2,6-difluoropyridin-3-yl)propyl) oxime (3ad)

Following General procedure E, the product is obtained as a pale-yellow oil, 60% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.44 (s, 1H), 8.61 (s, 1H), 7.85 – 7.77 (m, 1H), 6.98 (d, *J* = 2.0 Hz, 1H), 6.93 (dd, *J* = 2.0, 0.5 Hz, 1H), 6.84 (dd, *J* = 8.1, 2.9 Hz, 1H), 4.40 – 4.29 (m, 2H), 3.50 (m, 1H), 1.39 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 160.42 (dd, *J* = 154.8, 14.0 Hz), 159.17, 158.79 (dd, *J* = 155.4, 14.3 Hz), 148.81, 143.28 (dd, *J* = 7.6, 5.7 Hz), 136.94, 134.82, 121.18 (d, *J* = 6.0 Hz),

121.00, 116.24, 112.68, 106.22 (dd, J = 34.7, 6.0 Hz), 78.26, 32.44 (d, J = 3.0 Hz), 16.53; HRMS (ESI-TOF) m/z Calcd. for $C_{15}H_{13}Cl_2F_2N_2O_2^+$ (M+H)⁺: 361.0317; found: 361.0318.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(6-fluoropyridin-3-yl)propyl) oxime (3ae)

Following General procedure E, the product is obtained as a pale-yellow oil, 61% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.44 (s, 1H), 8.59 (s, 1H), 8.10 (d, J = 2.5 Hz, 1H), 7.68 (td, J = 8.1, 2.6 Hz, 1H), 6.96 (d, J = 2.0 Hz, 1H), 6.94 – 6.88 (m, 2H), 4.32 – 4.23 (m, 2H), 3.27 (m, 1H), 1.37 (d, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 162.70 (d, J = 238.6 Hz), 159.15, 146.64 (d, J = 15.1 Hz), 139.71, 136.92, 136.01, 134.82, 121.02, 116.21, 112.70, 109.54, 109.30, 79.64, 36.14, 17.78; HRMS (ESI-TOF) m/z Calcd. for C₁₅H₁₄Cl₂FN₂O₂⁺ (M+H)⁺: 343.0411; found: 343.0414.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(6-chloropyridin-3-yl)propyl) oxime (3af)

Following General procedure E, the product is obtained as a pale-yellow oil, 56% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.43 (s, 1H), 8.59 (s, 1H), 8.28 (d, J = 2.5 Hz, 1H), 7.55 (dd, J = 8.4, 2.7 Hz, 1H), 7.30 (d, J = 8.2 Hz, 1H), 6.96 (d, J = 2.0 Hz, 1H), 6.90 (d, J = 2.0 Hz, 1H), 4.32 – 4.22 (m, 2H), 3.25 (m, 1H), 1.36 (d, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.14, 149.89, 149.07, 148.81, 137.45, 137.35, 136.94, 134.83, 124.19, 121.02, 116.21, 112.68, 79.42, 36.29, 17.61; HRMS (ESI-TOF) m/z Calcd. for C₁₅H₁₄Cl₃N₂O₂⁺ (M+H)⁺: 359.0115; found: 359.0122.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(6-bromopyridin-3-yl)propyl) oxime (3ag)

Following General procedure E, the product is obtained as a pale-yellow oil, 57% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.45 (s, 1H), 8.61 (s, 1H), 8.36 – 8.25 (m, 1H), 7.54 – 7.42 (m, 2H), 6.98 (d, *J* = 2.0 Hz, 1H), 6.93 (dd, *J* = 2.0, 0.4 Hz, 1H), 4.30 (qd, *J* = 10.6, 6.9 Hz, 2H), 3.25 (m, 1H), 1.39 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.14, 149.62, 148.83, 140.38, 137.79, 137.27, 136.95, 134.84, 127.99, 121.03, 116.21, 112.67, 79.34, 36.34, 17.55; HRMS (ESI-TOF) m/z Calcd. for C₁₅H₁₄BrCl₂N₂O₂⁺ (M+H)⁺: 402.9610; found: 402.9616.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(6-(trifluoromethyl)pyridin-3-yl) propyl) oxime (3ah)

Following General procedure E, the product is obtained as a pale-yellow oil, 62% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.40 (s, 1H), 8.66 (s, 1H), 8.61 (s, 1H), 7.79 (d, J = 8.1 Hz, 1H), 7.69 (d, J = 8.1 Hz, 1H), 6.98 (d, J = 2.0 Hz, 1H), 6.96 – 6.89 (m, 1H), 4.36 (qd, J = 10.6, 6.9 Hz, 2H), 3.38 (m, 1H), 1.44 (d, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.14, 149.62, 148.95, 146.79 (q, J = 33.2 Hz), 141.87, 137.02, 135.86, 134.87, 121.56 (q, J = 274.8 Hz), 121.05, 120.38, 116.22, 112.61, 79.20, 36.90, 17.52; HRMS (ESI-TOF) m/z Calcd. for C₁₆H₁₄Cl₂F₃N₂O₂⁺ (M+H)⁺: 393.0379; found: 393.0381.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(6-chloro-5-(trifluoromethyl) pyridine-3-yl)propyl) oxime (3ai)

Following General procedure E, the product is obtained as a pale-yellow oil, 78% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.35 (s, 1H), 8.62 (s, 1H), 8.48 (d, *J* = 2.3 Hz, 1H), 7.91 (d, *J* = 2.4 Hz, 1H), 6.99 (d, *J* = 2.0 Hz, 1H), 6.93 (dd, *J* = 2.0, 0.5 Hz, 1H), 4.41 – 4.27 (m, 2H), 3.36 (h, *J* = 7.2 Hz, 1H), 1.43 (d, *J* = 7.1 Hz, 3H); ¹³C

NMR (151 MHz, Chloroform-*d*) δ 159.13, 151.63, 149.16, 147.27, 137.70, 137.13, 135.28 (q, J = 4.5 Hz), 134.92, 125.16 (q, J = 33.2 Hz), 122.14 (q, J = 273.3 Hz), 121.10, 116.24, 112.53, 78.92, 36.25, 17.40; HRMS (ESI-TOF) m/z Calcd. for $C_{16}H_{13}Cl_3F_3N_2O_2^+$ (M+H)⁺: 426.9989; found: 426.9996.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(6-hydroxy-5-(trifluoromethyl) pyridin-3-yl)propyl) oxime (3aj)

Following General procedure E, the product is obtained as a pale-yellow oil, 56% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.40 (s, 1H), 8.64 (s, 1H), 7.93 (d, J = 53.5 Hz, 1H), 7.83 (d, J = 2.0 Hz, 1H), 7.57 (d, J = 2.2 Hz, 1H), 6.98 (d, J = 2.0 Hz, 1H), 6.95 – 6.89 (m, 1H), 4.29 – 4.18 (m, 2H), 3.10 (m, 1H), 1.34 (d, J = 7.1 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 160.44, 158.71, 148.62, 136.59, 134.48, 128.00, 127.89, 127.83, 127.63, 120.61, 120.25, 115.78, 112.17, 78.59, 35.05, 16.60; HRMS (ESI-TOF) m/z Calcd. for C₁₆H₁₄Cl₂F₃N₂O₃⁺ (M+H)⁺: 409.0328; found: 409.0331.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(thiophen-3-yl)propyl) oxime (3ak)

Following General procedure E, the product is obtained as a pale-yellow oil, 64% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.60 (s, 1H), 8.64 (s, 1H), 7.30 (dd, J = 4.9, 2.9 Hz, 1H), 7.05 (ddd, J = 3.0, 1.4, 0.7 Hz, 1H), 7.03 (dd, J = 5.0, 1.4 Hz, 1H), 6.96 (d, J = 2.1 Hz, 1H), 6.91 (dd, J = 2.0, 0.6 Hz, 1H), 4.33 (dd, J = 10.5, 6.5 Hz, 1H), 4.22 (dd, J = 10.5, 7.3 Hz, 1H), 3.34 (h, J = 6.9 Hz, 1H), 1.37 (d, J = 7.0 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.19, 148.29, 143.78, 136.65, 134.70, 126.83, 125.70, 120.91, 120.30, 116.18, 112.94, 80.21, 34.75, 17.95; HRMS (ESI-TOF) m/z Calcd. for C₁₄H₁₄Cl₂NO₂S⁺ (M+H)⁺: 330.0117; found: 330.0115.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(2-chloroquinolin-6-yl)propyl) oxime (3al)

Following General procedure E, the product is obtained as a pale-yellow oil, 33% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.56 (s, 1H), 8.59 (s, 1H), 8.12 (d, *J* = 8.7 Hz, 1H), 7.85 (d, *J* = 8.6 Hz, 1H), 7.67 – 7.59 (m, 2H), 7.08 (d, *J* = 8.8 Hz, 1H), 6.95 (d, *J* = 2.0 Hz, 1H), 6.90 (d, *J* = 2.4 Hz, 1H), 6.89 – 6.84 (m, 1H), 4.44 – 4.30 (m, 2H), 3.40 (m, 1H), 1.44 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 158.72, 157.54, 148.08, 143.70, 140.01, 139.93, 136.33, 134.29, 129.62, 127.31, 125.84, 125.07, 120.51, 115.73, 112.39, 111.44, 79.72, 38.68, 17.68; HRMS (ESI-TOF) m/z Calcd. for C₁₉H₁₆Cl₃N₂O₂⁺ (M+H)⁺: 409.0272; found: 409.0278.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-(2-(quinoxalin-6-yl)propyl) oxime (3am)

Following General procedure E, the product is obtained as a pale-yellow oil, 35% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.50 (s, 1H), 8.86 – 8.77 (m, 2H), 8.58 (s, 1H), 8.09 (d, J = 8.6 Hz, 1H), 7.98 (d, J = 1.9 Hz, 1H), 7.70 (dd, J = 8.7, 2.0 Hz, 1H), 6.93 (d, J = 2.0 Hz, 1H), 6.88 (dd, J = 2.0, 0.6 Hz, 1H), 4.47 – 4.35 (m, 2H), 3.48 (m, 1H), 1.48 (d, J = 7.0 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 158.71, 148.18, 145.19, 144.64, 144.20, 142.65, 141.69, 136.33, 134.31, 129.79, 129.17, 126.77, 120.49, 115.73, 112.34, 79.43, 38.94, 17.52; HRMS (ESI-TOF) m/z Calcd. for C₁₈H₁₆Cl₂N₃O₂⁺ (M+H)⁺: 376.0614; found: 376.0621.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde oxime (3an)

O-(2-(1-tosyl-1H-indol-5-yl)propyl)

Following General procedure E, the product is obtained as a pale-yellow oil, 82% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.63 (s, 1H), 8.61 (s, 1H), 7.97 (d, J = 8.6 Hz, 1H), 7.80 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 3.7 Hz, 1H), 7.42 (d, J = 1.6 Hz, 1H), 7.28 – 7.19 (m, 4H), 6.97 (d, J = 2.0 Hz, 1H), 6.90 (dd, J = 2.0, 0.5 Hz, 1H), 4.35 (dd, J = 10.5, 6.8 Hz, 1H), 4.26 (dd, J = 10.5, 7.4 Hz, 1H), 3.30 (m, 1H), 2.36 (s, 3H), 1.39 (d, J = 7.0 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 159.16, 148.30, 144.87, 138.10, 136.60, 135.37, 134.67, 133.72, 132.98, 130.99, 129.85, 126.82, 126.75, 126.57, 124.09, 120.86, 116.13, 115.31, 113.54, 112.91, 108.79, 107.95, 80.63, 39.08, 21.53, 18.39; HRMS (ESI-TOF) m/z Calcd. for C₂₅H₂₃Cl₂N₂O₄S⁺ (M+H)⁺: 517.0750; found: 517.0754.

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde

O-(2-(1-methyl-2,3-dioxoindolin-

5-yl)propyl) oxime (3ao)

Following General procedure E, the product is obtained as a pale-yellow oil, 74% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 10.45 (s, 1H), 8.58 (s, 1H), 7.52 (d, *J* = 1.9 Hz, 1H), 7.49 (dd, *J* = 8.1, 1.9 Hz, 1H), 6.95 (d, *J* = 2.1 Hz, 1H), 6.89 (dd, *J* = 2.0, 0.5 Hz, 1H), 6.85 (d, *J* = 8.0 Hz, 1H), 4.29 – 4.22 (m, 2H), 3.24 (m, 4H), 1.34 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 183.41, 159.14, 158.29, 150.24, 148.67, 139.17, 137.54, 136.88, 134.78, 123.90, 120.99, 117.70, 116.19, 112.73, 110.02, 79.83, 38.65, 26.25, 17.78; HRMS (ESI-TOF) m/z Calcd. for C₁₉H₁₇Cl₂N₂O₄⁺ (M+H)⁺: 407.0560; found: 407.0565.

C-H arylation/annulation of dihydrocholesterol

(*E*)-2,4-dichloro-6-hydroxybenzaldehyde O-((2S,3S,8R,9S,10S,13R,14S,17R)-2-(2-fluoropyridin-3-yl)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)hexadecahyd ro-1H-cyclopenta[a]phenanthren-3-yl) oxime (4p)

To a 8-mL vial were added DG9-tethered dihydrocholesterol (4, 115 mg, 0.2 mmol), 2-fluoro-3-iodopyridine (134 mg, 0.6 mmol), palladium acetate (4.5 mg, 0.02 mmol), 3-nitro-5-trifluoromethyl-2-pyridone (16.2 mg, 0.08 mmol) and silver trifluoroacetate (110)0.5 mg, mmol). The mixture was dissolved with 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP, 2.0 mL). The vial was sealed and stirred at 105 °C for 12 hours. The reaction was cooled to room temperature and diluted with 5 mL of EtOAc, filtered through a pad of Celite, the filtrate was concentrated and purified by preparative thin-layer chromatography (hexanes : EtOAc = 4:1) to give 4p as a white solid (68 mg, 51% yield).

[α]²⁰_D = +57.6 (*c*=0.25, CHCl₃); ¹H NMR (600 MHz, Chloroform-*d*) δ 10.36 (s, 1H), 8.53 (s, 1H), 8.07 (d, *J* = 4.6 Hz, 1H), 7.80 (t, *J* = 8.6 Hz, 1H), 7.14 (ddd, *J* = 7.5, 4.8, 1.4 Hz, 1H), 6.94 (d, *J* = 2.0 Hz, 1H), 6.87 (d, *J* = 2.0 Hz, 1H), 4.58 (d, *J* = 2.4 Hz, 1H), 3.40 (dt, *J* = 13.5, 3.2 Hz, 1H), 2.01 (dt, *J* = 12.6, 3.2 Hz, 1H), 1.91 – 1.67 (m, 6H), 1.61 – 1.49 (m, 4H), 1.44 – 1.24 (m, 8H), 1.22 – 1.05 (m, 7H), 1.01 (d, *J* = 10.1 Hz, 5H), 0.95 – 0.84 (m, 10H), 0.69 (s, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 161.31 (d, *J* = 237 Hz), 159.14, 147.74, 145.26 (d, *J* = 15 Hz), 140.15 (d, *J* = 6 Hz), 136.50, 134.40, 124.78 (d, *J* = 28.7 Hz), 121.29 (d, *J* = 4.5 Hz), 120.75, 116.17, 112.90, 81.34, 56.51, 56.31, 54.34, 42.61, 39.96, 39.50, 39.03, 37.44, 36.44, 36.16, 35.80, 35.38, 34.70, 33.09, 31.86, 28.23, 28.00, 27.94, 24.17, 23.86, 22.82, 22.55, 20.92, 18.67, 12.28, 12.11; HRMS (ESI-TOF) m/z Calcd. for C₃₉H₅₄Cl₂FN₂O₂⁺ (M+H)⁺: 671.3541; found: 671.3538.

(1R,3aS,3bR,6aS,11bS,12aS,12bS,14aR)-12a,14a-dimethyl-1-((R)-6-methylhepta n-2-yl)-2,3,3a,3b,4,5,5a,6,6a,11b,12,12a,12b,13,14,14a-hexadecahydro-1H-cyclope nta[7',8']phenanthro[3',2':4,5]furo[2,3-b]pyridine (5)

Product **4p** was dissolved with EtOH (1.0 mL) in an 8-mL vial. Pd(OH)₂ on activated carbon (20 wt. %, 20 mg) and HOAc (20 μ L) were added sequentially. The vial was equipped with a H₂ balloon, evacuated and backfilled with H₂ (× 3), the resulting mixture was stirred at room temperature under H₂ atmosphere for 24 h. The reaction mixture was filtered, the filtrate was concentrated under reduced pressure, and the residue was dissolved with anhydrous THF (2.0 mL), then NaH (60 wt. % in mineral oil, 20 mg, 0.5 mmol) was added. The resulting mixture was stirred at 65 °C for 12 hours. The reaction solution was poured into 20 mL of water, extracted with EtOAc (10 mL × 3), the organic phase was combined and dried with anhydrous sodium sulfate. The solvent was evaporated, and the residue purified by preparative thin-layer chromatography (hexanes : EtOAc = 3:1) to give annulation product **5** (33 mg, white solid, 70% yield over 2 steps).

[α]²⁰_D = +16.2 (*c*=1, CHCl₃); ¹H NMR (600 MHz, Chloroform-*d*) δ 8.04 – 7.95 (m, 1H), 7.42 (dd, J = 7.1, 1.4 Hz, 1H), 6.78 (dd, J = 7.1, 5.3 Hz, 1H), 4.64 (t, J = 4.8 Hz, 1H), 3.14 (dt, J = 12.4, 6.4 Hz, 1H), 2.08 (dd, J = 15.7, 3.6 Hz, 1H), 2.00 – 1.84 (m, 2H), 1.83 – 1.75 (m, 1H), 1.73 – 1.63 (m, 2H), 1.57 – 1.40 (m, 4H), 1.36 – 1.16 (m, 8H), 1.15 – 0.93 (m, 8H), 0.89 – 0.80 (m, 13H), 0.64 (s, 5H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.24, 145.57, 132.36, 128.79, 116.71, 81.28, 56.38, 56.12, 53.49, 42.82, 42.39, 39.83, 39.49, 38.95, 37.03, 36.11, 35.76, 35.45, 34.66, 31.63, 30.47, 28.43, 28.17, 27.99, 24.17, 23.78, 22.80, 22.54, 20.75, 18.64, 12.02, 11.02; HRMS (ESI-TOF) m/z Calcd. for C₃₂H₅₀NO⁺ (M+H)⁺: 464.3887; found: 464.3888.

Synthesis of englitazone precursor via sequential β - and γ -C-H arylations

(S)-1-phenylbutan-2-ol (7)

To an 8-mL vial were added **6** (261 mg, 1.0 mmol), iodobenzene (600 mg, 3.0 mmol), palladium acetate (23 mg, 0.1 mmol) and silver trifluoroacetate (440 mg, 2.0 mmol). The mixture was dissolved with 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP, 5.0 mL). The vial was sealed and stirred at 95 °C for 4 hours. The reaction was cooled to room temperature, diluted with 10 mL of EtOAc and filtered through a pad of Celite. The filtrate was concentrated, the residue was re-dissolved with 1 mL of EtOAc, then 10 mL of hexane was added. The solution was filtered again through a pad of Celite, the filtrate was concentrated under reduced pressure, and the resulting residue was used directly in the next step.

The crude arylation product was dissolved with EtOH (4 mL) in an 8-mL vial, following which Pd(OH)₂ on activated carbon (20 wt. %, 100 mg) and HOAc (100 μ L) were added sequentially. The vial was equipped with a H₂ balloon, evacuated and backfilled with H₂ (× 3), and the resulting mixture was stirred at room temperature under H₂ atmosphere for 24 hours. The reaction mixture was filtered, the filtrate was concentrated under reduced pressure, and the residue was purified by flash column chromatography (hexanes : EtOAc = 5:1) to afford **7** (97 mg, 65% over 2 steps).

Colorless oil, 65% yield from **6**. $[\alpha]^{20}_{D} = +28.7$ (c=1, CHCl₃); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.41 – 7.32 (m, 2H), 7.31 – 7.23 (m, 3H), 3.78 (ddt, *J* = 8.3, 7.4, 4.6 Hz, 1H), 2.87 (dd, *J* = 13.6, 4.3 Hz, 1H), 2.68 (dd, *J* = 13.6, 8.4 Hz, 1H), 1.66 – 1.51 (m, 3H), 1.03 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 138.63, 129.38, 128.49, 126.37, 74.00, 43.55, 29.55, 10.02; HRMS (ESI-TOF) m/z Calcd. for C₁₀H₁₅O⁺ (M+H)⁺: 151.1117; found: 151.1114.

Directing group installation for γ-C-H arylation:

(*R*,*E*)-2-(((1-phenylbutan-2-yl)oxy)imino)propanoic acid (7b)

Alcohol **7** (75 mg, 0.5 mmol), NHPI (100 mg, 0.6 mmol) and Ph₃P (160 mg, 0.6 mmol) were dissolved in anhydrous THF (3.0 mL) and cooled with an ice-bath. To the pre-cooled solution was added DIAD (180 μ L, 0.9 mmol) dropwise and the resulting mixture was stirred at room temperature for 12 h. The solvent was evaporated, and the residue was purified by flash column chromatography (hexanes : EtOAc = 4:1) to give **7a**: 140 mg, 95% yield.

Product **7a** was dissolved in CH₂Cl₂ (5 mL), then hydrazine monohydrate (1.0 mmol) and MeOH (1 mL) were added sequentially. The reaction mixture was stirred at room temperature for 2 h. The white solid formed during the reaction was removed by filtration. To the filtrate was added pyruvic acid (180 mg, 2.0 mmol), and the resulting mixture was stirred for 1 h at room temperature. The solution was extracted with aq. NaOH (4.0 M, 10 mL) and the aqueous phase was washed with CH₂Cl₂ (5 mL, \times 2). The aqueous phase was then acidified to pH ~ 2.0 by addition of conc. HCl, then extracted with CH₂Cl₂. The organic phase was dried with anhydrous sodium sulfate and concentrated to give the product **7b** (106 mg, 95% yield).

Colorless oil, 90% yield from 7. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.34 – 7.29 (m, 2H), 7.27 – 7.23 (m, 1H), 7.22 – 7.16 (m, 2H), 4.46 (tt, *J* = 7.0, 5.6 Hz, 1H), 3.04 – 2.92 (m, 2H), 2.06 (s, 3H), 1.78 – 1.67 (m, 2H), 1.00 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 163.24, 147.53, 137.77, 129.35, 128.34, 126.45, 88.00, 39.98, 26.18, 10.13, 9.62; HRMS (ESI-TOF) m/z Calcd. for C₁₃H₁₈O₃⁺ (M+H)⁺: 236.1281; found: 236.1276.

γ-C-H arylation of substrate 7b:

Methyl (*R*,*E*)-4-fluoro-3-(3-(((1-methoxy-1-oxopropan-2-ylidene)amino)oxy)-4phenylbutyl)benzoate (8) To a 8-mL vial were added 7b (94 mg, 0.4 mmol), methyl 4-fluoro-3-iodobenzoate (168)mg, 0.6 mmol), palladium acetate (9.2)mg, 0.04 mmol), 3-nitro-5-trifluoro-2-pyridone (32 mg, 0.16 mmol) and silver trifluoroacetate (132 mg, 0.6 mmol), and the mixture was dissolved with 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP, 2.0 mL). The vial was sealed and stirred at 100 °C for 4 hours. The reaction was cooled to room temperature, diluted with EtOAc (5 mL), and filtered through a pad of Celite. The filtrate was concentrated, the residue was re-dissolved with methanol (3 mL), then SOCl₂ (0.3 mL) was added dropwise. After stirring for 30 min at room temperature, the solution was concentrated under reduced pressure and the residue was purified by preparative thin-layer chromatography to give the arylation product 8 (78 mg, 49% yield).

Colorless oil, 49% yield from **7b**. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.91 – 7.86 (m, 2H), 7.30 – 7.27 (m, 2H), 7.25 – 7.22 (m, 1H), 7.22 – 7.18 (m, 2H), 7.07 – 7.03 (m, 1H), 4.65 – 4.61 (m, 1H), 3.91 (d, *J* = 2.2 Hz, 3H), 3.88 (s, 3H), 3.10 (dd, *J* = 14.0, 6.1 Hz, 1H), 2.97 (dd, *J* = 14.0, 6.4 Hz, 1H), 2.84 (ddd, *J* = 15.1, 9.5, 6.1 Hz, 1H), 2.80 – 2.71 (m, 1H), 2.06 (s, 3H), 2.01 – 1.94 (m, 2H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 166.25, 164.40, 148.79, 137.47, 132.50, 132.45, 129.66, 129.60, 129.53, 128.88, 128.73, 128.51, 128.27, 126.33, 115.45, 115.29, 84.74, 52.63, 52.11, 40.11, 32.95, 24.85, 11.60; HRMS (ESI-TOF) m/z Calcd. for C₂₂H₂₅FNO₅⁺ (M+H)⁺: 402.1711; found: 402.1713.

Synthesis of englitazone precursor 9:

Methyl (*R*)-2-benzylchromane-6-carboxylate (9)

Arylation product **8** (40 mg, 0.1 mmol) was dissolved with EtOH (1.0 mL) in an 8-mL vial, and Pd(OH)₂ on activated carbon (20 wt. %, 20 mg) and HOAc (20 μ L) were

added sequentially. The vial was equipped with a H₂ balloon, evacuated and backfilled with H₂ (× 3), and the resulting mixture was stirred at room temperature under H₂ atmosphere for 24 h. The reaction mixture was filtered, the filtrate was concentrated under reduced pressure, and the residue was re-dissolved with anhydrous THF (2.0 mL). Next, NaH (60 wt. % in mineral oil, 20 mg, 0.5 mmol) was added, and the resulting mixture was stirred at 65 °C for 8 h. The reaction solution was poured into water (20 mL) and extracted with EtOAc (10 mL × 3). The organic phase was dried with anhydrous sodium sulfate, concentrated, and the residue was purified by preparative thin-layer chromatography (hexanes : EtOAc = 4:1) to give cyclization product **9** (22 mg, 81% yield over 2 steps).

Colorless oil, 81% yield from **8**. $[\alpha]^{20}_{D} = -94$ (*c*=1, CHCl₃); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.77 (d, *J* = 9.5 Hz, 2H), 7.37 – 7.30 (m, 2H), 7.27 (d, *J* = 7.4 Hz, 2H), 7.26 – 7.22 (m, 1H), 6.84 – 6.79 (m, 1H), 4.30 – 4.25 (m, 1H), 3.86 (s, 3H), 3.14 (dd, *J* = 13.7, 6.3 Hz, 1H), 2.90 (dd, *J* = 13.7, 6.8 Hz, 1H), 2.80 (dd, *J* = 10.1, 5.8 Hz, 2H), 2.05 – 1.99 (m, 1H), 1.72 (m, 1H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.07, 158.93, 137.42, 131.59, 129.54, 129.10, 128.42, 126.56, 121.85, 121.70, 116.74, 77.26, 51.79, 41.67, 26.23, 24.44; HRMS (ESI-TOF) m/z Calcd. for C₁₈H₁₉O₃⁺ (M+H)⁺: 283.1329; found: 283.1331.

x-SM-1u.1.fid

110

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

