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Supplementary Figure 1. Representative sampling protocol for longitudinal studies of the gut microbiome. 
Observed time series of individual taxa are expected to reflect true temporal dynamics. However, time series traces 
may also reflect fecal spatial heterogeneity associated with sampling different spatial locations on stool at different time 
points. Observed variability may also reflect technical noise associated with sample preparation and sequencing at 
each time point. Therefore, using this sampling protocol, it is not possible to quantify the contributions of these three 
sources of variability to the total observed variability of individual bacterial abundances, although this knowledge is 
crucial for data analysis and interpretation. A similar problem exists for other microbiome studies, even when spatial 
sampling location can be controlled for, due to the effects of technical variability. 

 

 

 

 

 

 

 



 
 

Supplementary Figure 2. Assessment of the DIVERS variance decomposition model using simulated bacterial 
dynamics. (a) Stochastic model of spatiotemporal dynamics in an interacting bacterial community. Simulations were 
performed on a 10 x 10 lattice with continuous boundary conditions, where dynamics of each species were governed 
by birth events, death events or random migration to neighboring locations. Species interactions were modeled using 
density-dependent logistic growth at each location (Online Methods). Results for six species with non-zero steady state 
abundances are shown. (b) Expected contributions of temporal, spatial sampling and technical sources to total 
abundance variance, and predictions from the DIVERS variance decomposition model. Technical variability was 
modeled using Poisson sampling noise centered on the true abundances at each spatial location (Online Methods). 
Results for six species in the simulated community are shown and correspond to those in panel a. Expected variance 
contributions were empirically calculated from simulated data (Online Methods). Both expected and DIVERS variance 
contributions were calculated across thirty time points after neglecting any initial transient behavior. Error bars represent 
standard deviations based on n = 5,000 re-samplings from different pairs of spatial locations in the environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
Supplementary Figure 3. Comparison of DIVERS to the Gaussian process variance decomposition model. The 
speed and accuracy of DIVERS was compared a recent approach where Gaussian process decomposition was applied 
to study microbiome variability. True temporal (T), spatial (S) and technical (N) variance contributions were used as 
inputs into a generative statistical model to simulate microbiota abundance dynamics (Online Methods). Results from 
twelve representative simulations are shown as ternary plots. The true set of variance contributions are represented by 
black dots, while DIVERS estimates are represented by red dots, and estimates from the Gaussian process 
decomposition model are represented by blue dots. DIVERS was significantly more accurate than the Gaussian 
process decomposition model (r.m.s. error = 0.017 for DIVERS, r.m.s. error = 0.11 for Gaussian process decomposition; 
p = 2.5x10-34, Wilcoxon test based on 100 random sets of true variance fraction contributions). Notably, DIVERS 
variance decomposition required less than a second of computing time on a standard laptop computer, while the 
Gaussian process inference procedure required roughly four minutes for each individual OTU. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Supplementary Figure 4. Validation of the spike-in sequencing approach to estimate total bacterial loads in 
collected fecal and soil samples. (a) Relative endogenous abundances of the spike-in strain, Sporosarcina Pasteurii, 
in eighteen fecal samples collected from the same human individual presented in the main text. No reads belonging to 
the spike-in strain were detected in any samples. (b) Relative endogenous abundances of Sporosarcina Pasteurii 
across nineteen of the soil sampling sites in Central Park. Observed relative abundances are consistent with sample 
read-through (contamination from other samples in the same sequencing run) and are on average two orders of 
magnitude lower than sequenced abundances in the same samples for which the spike-in strain was added. (c) 
Expected and observed behavior of spike-in strain abundances across two serially diluted fecal samples (Online 
Methods). Expected behavior was derived based on the dilution factor of 2 used in the dilution series of each original 
fecal sample (Online Methods). (d) Technical replicate measurements of bacterial loads in fecal and soil samples. 
Measurements are separately normalized to a mean of one within fecal or soil samples. Technical replicates across all 
fecal and soil samples are highly correlated (Pearson’s r = 0.82, n = 76 samples with two technical replicates each). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Supplementary Figure 5. Variance decomposition of OTU relative abundances in the human gut microbiome. 
OTUs are binned by mean relative abundance across samples. Stacked bars indicate the average fraction of total 
variance attributed to temporal, spatial sampling and technical sources for OTUs within each bin. A total of n = 433 
OTUs were used. Error bars denote the SEM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Supplementary Figure 6. Variance decomposition for high and low-abundance OTUs in the human gut 
microbiome. Temporal, spatial sampling and technical contributions to total variance for all OTUs with (a) mean 
absolute abundance > 10-4 (n = 133 OTUs) and (b) mean absolute abundance < 10-4 (n = 300 OTUs). Boxes show the 
median and interquartile ranges, with maximum whisker lengths three times the interquartile range. (c) OTU abundance 
variability due to technical noise. n=12 independent technical replicates were processed from fecal samples obtained 
from a single spatial location of a stool specimen. Purple dots show the normalized technical variability 
(variance/mean2) as a function of average abundance across twelve technical replicates. Technical noise profiles 
obtained from DIVERS are shown in gray dots. The inverse scaling expected from Poissonian sampling noise is 
indicated with the dashed line with slope = -1. A noise floor is observed at high OTU abundances (indicated by the 
horizontal dashed line) as a result of variability in the spike-in process to estimate total bacterial loads. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
Supplementary Figure 7. Technical noise and spatial sampling variability of OTUs in the human fecal 
microbiome. (a,b) Visualization of individual OTU relative abundance across multiple technical and spatial replicates. 
Technical replicates (n=12) were obtained by subjecting the same underlying fecal matter to multiple rounds of sample 
preparation and 16S rRNA sequencing. Spatial replicates (n=14) were collected from multiple random locations of a 
single defecated stool specimen. Colors denote the log10 relative abundance of OTUs in each sample. Only the top 
most abundant OTUs across each set of replicates are shown. Spatial replicate variability suggests that fecal 
heterogeneity is an inherent feature of fecal bacterial sequencing studies. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
Supplementary Figure 8. Variance decomposition of microbiota abundances from control experiments. (a) 
DIVERS applied to stool samples without spatial variability; (b) DIVERS applied to stool samples without temporal 
variability. Stacked bars indicate the average fraction of total variance attributed to temporal, spatial sampling and 
technical sources for OTUs within each bin. A total of n = 314 OTUs were used. Error bars denote the SEM. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
Supplementary Figure 9. Correlation between fecal bacterial loads between 16S rRNA or whole-metagenome 
shotgun sequencing. Correlation between fecal bacterial loads estimated using the spike-in approach in conjunction 
with either 16S rRNA amplicon sequencing (X-axis) or whole-metagenome shotgun sequencing (Y-axis); n = 88, 
Pearson’s r = 0.91. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
Supplementary Figure 10. Pairwise OTU abundance correlations in the human gut microbiome. Relationship 
between total pairwise OTU absolute abundance correlations and (a) temporal and (b) spatial abundance correlations 
across all pairs of abundant OTUs (mean absolute abundance > 10-4). There is a significant correlation between 
temporal and total correlations (Pearson’s r = 0.94, p < 1e-10). (c) Total correlations calculated across all pairs of highly 
abundant OTUs (mean absolute abundance > 10-4) using relative (pink) or absolute (orange) abundances. Boxes show 
the median and interquartile ranges, with maximum whisker lengths three times the interquartile range. (d) Total 
pairwise OTU abundance correlations calculated using absolute abundances versus pairwise correlations using relative 
abundances; each point represents a pair of OTUs. Dashed line indicates the y = x line. n = 133 OTUs were used in 
the calculations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 

Supplementary Figure 11. Correlations of OTU abundances within and between different phyla in the human 
gut. (a) Boxplots of total, temporal, spatial and technical correlations of OTU abundances, where pairwise comparisons 
were made between OTUs within the indicated phyla. Boxes show median and interquartile ranges, with maximum 
whisker lengths three times the interquartile range (n = 133 OTUs were used). (b-e) Average correlations of OTU 
abundances within and between different phyla. Colors indicate the average (b) total, (c) temporal, (d) spatial and (e) 
technical correlations between pairs of OTUs belonging to the indicated phyla. See online methods Eq. 9 for the 
definition of correlations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 

 
 

Supplementary Figure 12. Average correlations of OTU abundances within and between different microbial 
families in the human gut. Colors indicate the average (a) total, (b) temporal, (c) spatial and (d) technical correlations 
between pairs of OTUs belonging to the indicated families. The three families belonging to the Bacteroidetes phylum 
are shown in green. n = 133 OTUs were used. See online methods Eq. 9 for the definition of correlations.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

 
 

Supplementary Figure 13. Pairwise abundance correlations of gut bacterial OTU abundances within phyla at 
different phylogenetic distances. (a) Total, (b) temporal, (c) spatial and (d) technical correlations were calculated for 
pairs of OTUs belonging to the same phyla, but with different degrees of 16S rRNA sequence dissimilarity (n = 133 
OTUs were used). OTU pairs are binned by 16S sequence dissimilarity and mean correlations within each bin are 
shown for the indicated phyla with error bars denoting the SEM. Pairwise correlations for all abundant OTUs are shown 
in gray. Proteobacteria were excluded from the analysis due to insufficient sample size. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

 
 

Supplementary Figure 14. Sampling sites from which soil bacteria were collected for 16S rRNA sequencing. 
Sites were located around the periphery of a small pond in Central Park, Manhattan. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 

 
 

Supplementary Figure 15. Application of DIVERS to a Central Park soil community. (a,c) Bacterial loads of soil 
samples across different spatial locations. X and Y correspond to measurements made at a single time point, while Z 
corresponds to measurements from the second time point collected either one week or four months apart. (b,d) 
Variance decomposition of n = 24667 individual OTU relative abundances. OTUs are binned by their mean relative 
abundance across all samples, and stacked bars show the average variance contribution of technical, spatial sampling 
and temporal sources to OTUs within each bin. Error bars represent the SEM. Temporal variability reflects average 
changes in the community at the indicated time scale. The gray line is the average ½(Z + ½(X+Y)) of the three bacterial 
loads. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 
 

 
 

Supplementary Figure 16. Decomposition of pairwise OTU abundance correlations in the Central Park soil 
microbiome. (a,c) Boxplots of total, temporal, spatial and technical correlations for all pairs of abundant OTUs (average 
log10 absolute abundance > -3.5) in data collected one week and four months apart. Boxes denote the median and 
interquartile ranges, with maximum whisker lengths three times the interquartile range. (b,d) Decomposition of pairwise 
OTU abundance correlations within and between different phyla in data collected one week and four months apart. 
Heatmaps show the average total, temporal, spatial and technical correlations between pairs of OTUs belonging to the 
indicated phyla. n = 68, 66, 115, 22, 8, 8, 18, 204, and 36 OTUs of Acidobacteria, Actinobacteria, Bacteroidetes, 
Chloroflexi, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria, and Verrucomicrobia respectively in 
panel (a,b) and (c,d). See online methods for the definition of correlations. 

 
 
 



 
 

Supplementary Table 1. Metadata for all fecal samples. 
 

Sample Name Day Time Spatial_Rep. Tech._Rep. Weight (mg) 
d16s1r1 1 9:00AM 1 1 41.5 
d16s2r1 1 9:00AM 2 1 85.5 
d16s2r2 1 9:00AM 2 2 61.6 
d17s1r1 2 7:00PM 1 1 49.5 
d17s2r1 2 7:00PM 2 1 56.3 
d17s2r2 2 7:00PM 2 2 52.2 
d18s1r1 3 3:00PM 1 1 46.5 
d18s2r1 3 3:00PM 2 1 63 
d18s2r2 3 3:00PM 2 2 73.9 
d19s1r1 4 7:00PM 1 1 57.4 
d19s2r1 4 7:00PM 2 1 37.1 
d19s2r2 4 7:00PM 2 2 37.5 
d20s1r1 5 12:00PM 1 1 46.4 
d20s2r1 5 12:00PM 2 1 39.6 
d20s2r2 5 12:00PM 2 2 29.3 
d21s1r1 6 10:30PM 1 1 49.9 
d21s2r1 6 10:30PM 2 1 52.4 
d21s2r2 6 10:30PM 2 2 41.5 
d22s1r1 7 11:56PM 1 1 47.7 
d22s2r1 7 11:56PM 2 1 36.7 
d22s2r2 7 11:56PM 2 2 35.8 
d23s1r1 8 4:00PM 1 1 43 
d23s2r1 8 4:00PM 2 1 41 
d23s2r2 8 4:00PM 2 2 44.4 
d24s1r1 9 4:30PM 1 1 64.9 
d24s2r1 9 4:30PM 2 1 38.8 
d24s2r2 9 4:30PM 2 2 35.3 
d25s1r1 10 11:00PM 1 1 59.2 
d25s2r1 10 11:00PM 2 1 39.2 
d25s2r2 10 11:00PM 2 2 56.4 
d26s1r1 11 10:00AM 1 1 36.7 
d26s2r1 11 10:00AM 2 1 58.8 
d26s2r2 11 10:00AM 2 2 68.2 
d28s1r1 13 3:30PM 1 1 57.4 
d28s2r1 13 3:30PM 2 1 56.2 
d28s2r2 13 3:30PM 2 2 45.5 
d29s1r1 14 3:00PM 1 1 58 
d29s2r1 14 3:00PM 2 1 53 
d29s2r2 14 3:00PM 2 2 64.8 
d30s1r1 15 4:00PM 1 1 71.4 
d30s2r1 15 4:00PM 2 1 16.7 
d30s2r2 15 4:00PM 2 2 23 
d31s1r1 16 8:30PM 1 1 32.4 
d31s2r1 16 8:30PM 2 1 63.5 
d31s2r2 16 8:30PM 2 2 50.3 
d32s1r1 17 5:00PM 1 1 62.3 
d32s2r1 17 5:00PM 2 1 46.7 
d32s2r2 17 5:00PM 2 2 68 
d33s1r1 18 12:45PM 1 1 42.6 
d33s2r1 18 12:45PM 2 1 38.1 
d33s2r2 18 12:45PM 2 2 31.8 
d34as1r1 19a 9:00AM 1 1 41.7 
d34as2r1 19a 9:00AM 2 1 46.4 
d34as2r2 19a 9:00AM 2 2 35.2 



d34bs1r1 19b 7:00PM 1 1 57.1 
d34bs2r1 19b 7:00PM 2 1 46.3 
d34bs2r2 19b 7:00PM 2 2 46.2 
d35s1r1 20 4:00PM 1 1 61.9 
d35s2r1 20 4:00PM 2 1 44.6 
d35s2r2 20 4:00PM 2 2 49 
d42s1r1 27 7:30PM 1 1 58.3 
d42s2r1 27 7:30PM 2 1 47.7 
d42s2r2 27 7:30PM 2 2 54.9 
d63s1r1 48 10:00PM 1 1 49.5 
d63s2r1 48 10:00PM 2 1 38.2 
d63s2r2 48 10:00PM 2 2 28.4 
d30s3r1 15 4:00PM 3 1 60.8 
d30s4r1 15 4:00PM 4 1 39.5 
d30s5r1 15 4:00PM 5 1 44.7 
d30s6r1 15 4:00PM 6 1 32.1 
d30s7r1 15 4:00PM 7 1 54.1 
d30s8r1 15 4:00PM 8 1 85.1 
d30s9r1 15 4:00PM 9 1 39.7 
d30s10r1 15 4:00PM 10 1 46.7 
d30s11r1 15 4:00PM 11 1 65 
d30s12r1 15 4:00PM 12 1 34.7 
d30s13r1 15 4:00PM 13 1 49 
d30s14r1 15 4:00PM 14 1 72.7 
d30s2r3 15 4:00PM 2 3 26.4 
d30s2r4 15 4:00PM 2 4 21.1 
d30s2r5 15 4:00PM 2 5 29.1 
d30s2r6 15 4:00PM 2 6 23.6 
d30s2r7 15 4:00PM 2 7 15.6 
d30s2r8 15 4:00PM 2 8 20.9 
d30s2r9 15 4:00PM 2 9 11.8 
d30s2r10 15 4:00PM 2 10 21 
d30s2r11 15 4:00PM 2 11 16.4 
d30s2r12 15 4:00PM 2 12 11.2 

  



Supplementary Table 2. 16S sequencing primers utilized in the study. 
 

Primer Name Sequence (5' to 3') 

16Sf_501 AATGATACGGCGACCACCGAGATCTACAC TAGATCGC TATGGTAATT GT GTGYCAGCMGCCGCGGTAA 

16Sf_502 AATGATACGGCGACCACCGAGATCTACAC CTCTCTAT TATGGTAATT GT GTGYCAGCMGCCGCGGTAA 

16Sf_503 AATGATACGGCGACCACCGAGATCTACAC TATCCTCT TATGGTAATT GT GTGYCAGCMGCCGCGGTAA 

16Sf_504 AATGATACGGCGACCACCGAGATCTACAC AGAGTAGA TATGGTAATT GT GTGYCAGCMGCCGCGGTAA 

16Sf_505 AATGATACGGCGACCACCGAGATCTACAC GTAAGGAG TATGGTAATT GT GTGYCAGCMGCCGCGGTAA 

16Sf_506 AATGATACGGCGACCACCGAGATCTACAC ACTGCATA TATGGTAATT GT GTGYCAGCMGCCGCGGTAA 

16Sf_507 AATGATACGGCGACCACCGAGATCTACAC AAGGAGTA TATGGTAATT GT GTGYCAGCMGCCGCGGTAA 

16Sf_508 AATGATACGGCGACCACCGAGATCTACAC CTAAGCCT TATGGTAATT GT GTGYCAGCMGCCGCGGTAA 

16Sr_701 CAAGCAGAAGACGGCATACGAGAT TCGCCTTA AGTCAGTCAG CC GGACTACNVGGGTWTCTAAT 

16Sr_702 CAAGCAGAAGACGGCATACGAGAT CTAGTACG AGTCAGTCAG CC GGACTACNVGGGTWTCTAAT 

16Sr_703 CAAGCAGAAGACGGCATACGAGAT TTCTGCCT AGTCAGTCAG CC GGACTACNVGGGTWTCTAAT 

16Sr_704 CAAGCAGAAGACGGCATACGAGAT GCTCAGGA AGTCAGTCAG CC GGACTACNVGGGTWTCTAAT 

16Sr_705 CAAGCAGAAGACGGCATACGAGAT AGGAGTCC AGTCAGTCAG CC GGACTACNVGGGTWTCTAAT 

16Sr_706 CAAGCAGAAGACGGCATACGAGAT CATGCCTA AGTCAGTCAG CC GGACTACNVGGGTWTCTAAT 

16Sr_707 CAAGCAGAAGACGGCATACGAGAT GTAGAGAG AGTCAGTCAG CC GGACTACNVGGGTWTCTAAT 

16Sr_708 CAAGCAGAAGACGGCATACGAGAT CCTCTCTG AGTCAGTCAG CC GGACTACNVGGGTWTCTAAT 

16Sr_709 CAAGCAGAAGACGGCATACGAGAT AGCGTAGC AGTCAGTCAG CC GGACTACNVGGGTWTCTAAT 

16Sr_710 CAAGCAGAAGACGGCATACGAGAT CAGCCTCG AGTCAGTCAG CC GGACTACNVGGGTWTCTAAT 

16Sr_711 CAAGCAGAAGACGGCATACGAGAT TGCCTCTT AGTCAGTCAG CC GGACTACNVGGGTWTCTAAT 

16Sr_712 CAAGCAGAAGACGGCATACGAGAT TCCTCTAC AGTCAGTCAG CC GGACTACNVGGGTWTCTAAT 

16S_read1 TATGGTAATTGTGTGYCAGCMGCCGCGGTAA 

16S_read2 AGTCAGTCAGCCGGACTACNVGGGTWTCTAAT 

16S_index1 ATTAGAWACCCBNGTAGTCCGGCTGACTGACT 
  



Supplementary Table 3. Metadata for all soil samples. 
 

Sample 
Name 

Soil 
Sample ID  

Location Time 
point 

Site 
No.  

Tech. 
Rep. 

Biol. 
Rep. 

Date Time Sample Weight 
(mg) 

Soil1 T1S1 The Pool in Central Park, 
Manhattan 

1 1 0 0 15-Jun-
18 

9:30AM-
11:45AM 

261.5 

Soil2 T1S2 The Pool in Central Park, 
Manhattan 

1 2 1 0 15-Jun-
18 

9:30AM-
11:45AM 

258.1 

Soil3 T1S2 The Pool in Central Park, 
Manhattan 

1 2 2 0 15-Jun-
18 

9:30AM-
11:45AM 

234.1 

Soil4 T1S3 The Pool in Central Park, 
Manhattan 

1 3 0 0 15-Jun-
18 

9:30AM-
11:45AM 

266.1 

Soil5 T1S4 The Pool in Central Park, 
Manhattan 

1 4 1 0 15-Jun-
18 

9:30AM-
11:45AM 

278.9 

Soil6 T1S4 The Pool in Central Park, 
Manhattan 

1 4 2 0 15-Jun-
18 

9:30AM-
11:45AM 

272.4 

Soil7 T1S5 The Pool in Central Park, 
Manhattan 

1 5 0 0 15-Jun-
18 

9:30AM-
11:45AM 

252 

Soil8 T1S5-2 The Pool in Central Park, 
Manhattan 

1 5 0 1 15-Jun-
18 

9:30AM-
11:45AM 

263.1 

Soil9 T1S6 The Pool in Central Park, 
Manhattan 

1 6 1 0 15-Jun-
18 

9:30AM-
11:45AM 

266.8 

Soil10 T1S6 The Pool in Central Park, 
Manhattan 

1 6 2 0 15-Jun-
18 

9:30AM-
11:45AM 

236.2 

Soil11 T1S7 The Pool in Central Park, 
Manhattan 

1 7 0 0 15-Jun-
18 

9:30AM-
11:45AM 

256 

Soil12 T1S8 The Pool in Central Park, 
Manhattan 

1 8 1 0 15-Jun-
18 

9:30AM-
11:45AM 

266.1 

Soil13 T1S8 The Pool in Central Park, 
Manhattan 

1 8 2 0 15-Jun-
18 

9:30AM-
11:45AM 

244 

Soil14 T1S9 The Pool in Central Park, 
Manhattan 

1 9 0 0 15-Jun-
18 

9:30AM-
11:45AM 

651.3 

Soil15 T1S10 The Pool in Central Park, 
Manhattan 

1 10 1 0 15-Jun-
18 

9:30AM-
11:45AM 

318.7 

Soil16 T1S10 The Pool in Central Park, 
Manhattan 

1 10 2 0 15-Jun-
18 

9:30AM-
11:45AM 

268.7 

Soil17 T1S10-2 The Pool in Central Park, 
Manhattan 

1 10 0 1 15-Jun-
18 

9:30AM-
11:45AM 

277.5 

Soil18 T1S11 The Pool in Central Park, 
Manhattan 

1 11 0 0 15-Jun-
18 

9:30AM-
11:45AM 

299.9 

Soil19 T1S12 The Pool in Central Park, 
Manhattan 

1 12 1 0 15-Jun-
18 

9:30AM-
11:45AM 

282.6 

Soil20 T1S12 The Pool in Central Park, 
Manhattan 

1 12 2 0 15-Jun-
18 

9:30AM-
11:45AM 

260.4 

Soil21 T1S13 The Pool in Central Park, 
Manhattan 

1 13 0 0 15-Jun-
18 

9:30AM-
11:45AM 

292.3 

Soil22 T1S14 The Pool in Central Park, 
Manhattan 

1 14 1 0 15-Jun-
18 

9:30AM-
11:45AM 

360.7 

Soil23 T1S14 The Pool in Central Park, 
Manhattan 

1 14 2 0 15-Jun-
18 

9:30AM-
11:45AM 

278 

Soil24 T1S15 The Pool in Central Park, 
Manhattan 

1 15 0 0 15-Jun-
18 

9:30AM-
11:45AM 

341.5 

Soil25 T1S15-2 The Pool in Central Park, 
Manhattan 

1 15 0 1 15-Jun-
18 

9:30AM-
11:45AM 

319.8 

Soil26 T1S16 The Pool in Central Park, 
Manhattan 

1 16 1 0 15-Jun-
18 

9:30AM-
11:45AM 

261 

Soil27 T1S16 The Pool in Central Park, 
Manhattan 

1 16 2 0 15-Jun-
18 

9:30AM-
11:45AM 

267.8 

Soil28 T1S17 The Pool in Central Park, 
Manhattan 

1 17 0 0 15-Jun-
18 

9:30AM-
11:45AM 

250 

Soil29 T1S18 The Pool in Central Park, 
Manhattan 

1 18 1 0 15-Jun-
18 

9:30AM-
11:45AM 

281.8 

Soil30 T1S18 The Pool in Central Park, 
Manhattan 

1 18 2 0 15-Jun-
18 

9:30AM-
11:45AM 

253.3 

Soil31 T1S19 The Pool in Central Park, 
Manhattan 

1 19 0 0 15-Jun-
18 

9:30AM-
11:45AM 

267.1 

Soil32 T1S20 The Pool in Central Park, 
Manhattan 

1 20 1 0 15-Jun-
18 

9:30AM-
11:45AM 

329.2 

Soil33 T1S20 The Pool in Central Park, 
Manhattan 

1 20 2 0 15-Jun-
18 

9:30AM-
11:45AM 

323.4 

Soil34 T1S20-2 The Pool in Central Park, 
Manhattan 

1 20 0 1 15-Jun-
18 

9:30AM-
11:45AM 

429.3 

Soil35 T1S21 The Pool in Central Park, 
Manhattan 

1 21 0 0 15-Jun-
18 

9:30AM-
11:45AM 

376.9 

Soil36 T1S22 The Pool in Central Park, 
Manhattan 

1 22 1 0 15-Jun-
18 

9:30AM-
11:45AM 

259.1 



Soil37 T1S22 The Pool in Central Park, 
Manhattan 

1 22 2 0 15-Jun-
18 

9:30AM-
11:45AM 

273.5 

Soil38 T1S23 The Pool in Central Park, 
Manhattan 

1 23 0 0 15-Jun-
18 

9:30AM-
11:45AM 

289.1 

Soil39 T1S24 The Pool in Central Park, 
Manhattan 

1 24 1 0 15-Jun-
18 

9:30AM-
11:45AM 

329 

Soil40 T1S24 The Pool in Central Park, 
Manhattan 

1 24 2 0 15-Jun-
18 

9:30AM-
11:45AM 

367.2 

Soil41 T1S25 The Pool in Central Park, 
Manhattan 

1 25 0 0 15-Jun-
18 

9:30AM-
11:45AM 

370.6 

Soil42 T1S26 The Pool in Central Park, 
Manhattan 

1 26 1 0 15-Jun-
18 

9:30AM-
11:45AM 

272.4 

Soil43 T1S26 The Pool in Central Park, 
Manhattan 

1 26 2 0 15-Jun-
18 

9:30AM-
11:45AM 

294.6 

Soil44 T1S27 The Pool in Central Park, 
Manhattan 

1 27 0 0 15-Jun-
18 

9:30AM-
11:45AM 

347.4 

Soil45 T1S28 The Pool in Central Park, 
Manhattan 

1 28 1 0 15-Jun-
18 

9:30AM-
11:45AM 

262.7 

Soil46 T1S28 The Pool in Central Park, 
Manhattan 

1 28 2 0 15-Jun-
18 

9:30AM-
11:45AM 

251.5 

Soil47 T1S28-2 The Pool in Central Park, 
Manhattan 

1 28 0 1 15-Jun-
18 

9:30AM-
11:45AM 

276.9 

Soil48 T2S1 The Pool in Central Park, 
Manhattan 

2 1 1 0 22-Jun-
18 

9:30AM-
11:45AM 

327.2 

Soil49 T2S1 The Pool in Central Park, 
Manhattan 

2 1 2 0 22-Jun-
18 

9:30AM-
11:45AM 

307.3 

Soil50 T2S2 The Pool in Central Park, 
Manhattan 

2 2 0 0 22-Jun-
18 

9:30AM-
11:45AM 

258.9 

Soil51 T2S3 The Pool in Central Park, 
Manhattan 

2 3 1 0 22-Jun-
18 

9:30AM-
11:45AM 

263 

Soil52 T2S3 The Pool in Central Park, 
Manhattan 

2 3 2 0 22-Jun-
18 

9:30AM-
11:45AM 

238.9 

Soil53 T2S4 The Pool in Central Park, 
Manhattan 

2 4 0 0 22-Jun-
18 

9:30AM-
11:45AM 

263.7 

Soil54 T2S5 The Pool in Central Park, 
Manhattan 

2 5 1 0 22-Jun-
18 

9:30AM-
11:45AM 

292.1 

Soil55 T2S5 The Pool in Central Park, 
Manhattan 

2 5 2 0 22-Jun-
18 

9:30AM-
11:45AM 

308 

Soil56 T2S5-2 The Pool in Central Park, 
Manhattan 

2 5 0 1 22-Jun-
18 

9:30AM-
11:45AM 

293.1 

Soil57 T2S6 The Pool in Central Park, 
Manhattan 

2 6 0 0 22-Jun-
18 

9:30AM-
11:45AM 

266.6 

Soil58 T2S7 The Pool in Central Park, 
Manhattan 

2 7 1 0 22-Jun-
18 

9:30AM-
11:45AM 

296.1 

Soil59 T2S7 The Pool in Central Park, 
Manhattan 

2 7 2 0 22-Jun-
18 

9:30AM-
11:45AM 

274.4 

Soil60 T2S8 The Pool in Central Park, 
Manhattan 

2 8 0 0 22-Jun-
18 

9:30AM-
11:45AM 

282.2 

Soil61 T2S9 The Pool in Central Park, 
Manhattan 

2 9 1 0 22-Jun-
18 

9:30AM-
11:45AM 

371.1 

Soil62 T2S9 The Pool in Central Park, 
Manhattan 

2 9 2 0 22-Jun-
18 

9:30AM-
11:45AM 

347.2 

Soil63 T2S10 The Pool in Central Park, 
Manhattan 

2 10 0 0 22-Jun-
18 

9:30AM-
11:45AM 

272 

Soil64 T2S10-2 The Pool in Central Park, 
Manhattan 

2 10 0 1 22-Jun-
18 

9:30AM-
11:45AM 

380.1 

Soil65 T2S11 The Pool in Central Park, 
Manhattan 

2 11 1 0 22-Jun-
18 

9:30AM-
11:45AM 

400.6 

Soil66 T2S11 The Pool in Central Park, 
Manhattan 

2 11 2 0 22-Jun-
18 

9:30AM-
11:45AM 

407.8 

Soil67 T2S12 The Pool in Central Park, 
Manhattan 

2 12 0 0 22-Jun-
18 

9:30AM-
11:45AM 

326.9 

Soil68 T2S13 The Pool in Central Park, 
Manhattan 

2 13 1 0 22-Jun-
18 

9:30AM-
11:45AM 

476.4 

Soil69 T2S13 The Pool in Central Park, 
Manhattan 

2 13 2 0 22-Jun-
18 

9:30AM-
11:45AM 

392.1 

Soil70 T2S14 The Pool in Central Park, 
Manhattan 

2 14 0 0 22-Jun-
18 

9:30AM-
11:45AM 

328.4 

Soil71 T2S15 The Pool in Central Park, 
Manhattan 

2 15 1 0 22-Jun-
18 

9:30AM-
11:45AM 

315.5 

Soil72 T2S15 The Pool in Central Park, 
Manhattan 

2 15 2 0 22-Jun-
18 

9:30AM-
11:45AM 

276.6 

Soil73 T2S15-2 The Pool in Central Park, 
Manhattan 

2 15 0 1 22-Jun-
18 

9:30AM-
11:45AM 

313.8 

Soil74 T2S16 The Pool in Central Park, 
Manhattan 

2 16 0 0 22-Jun-
18 

9:30AM-
11:45AM 

261.4 

Soil75 T2S17 The Pool in Central Park, 
Manhattan 

2 17 1 0 22-Jun-
18 

9:30AM-
11:45AM 

226.8 



Soil76 T2S17 The Pool in Central Park, 
Manhattan 

2 17 2 0 22-Jun-
18 

9:30AM-
11:45AM 

103.9 

Soil77 T2S18 The Pool in Central Park, 
Manhattan 

2 18 0 0 22-Jun-
18 

9:30AM-
11:45AM 

274.1 

Soil78 T2S19 The Pool in Central Park, 
Manhattan 

2 19 1 0 22-Jun-
18 

9:30AM-
11:45AM 

251.8 

Soil79 T2S19 The Pool in Central Park, 
Manhattan 

2 19 2 0 22-Jun-
18 

9:30AM-
11:45AM 

250.2 

Soil80 T2S20 The Pool in Central Park, 
Manhattan 

2 20 0 0 22-Jun-
18 

9:30AM-
11:45AM 

294.8 

Soil81 T2S20-2 The Pool in Central Park, 
Manhattan 

2 20 0 1 22-Jun-
18 

9:30AM-
11:45AM 

314.4 

Soil82 T2S21 The Pool in Central Park, 
Manhattan 

2 21 1 0 22-Jun-
18 

9:30AM-
11:45AM 

342.6 

Soil83 T2S21 The Pool in Central Park, 
Manhattan 

2 21 2 0 22-Jun-
18 

9:30AM-
11:45AM 

338.8 

Soil84 T2S22 The Pool in Central Park, 
Manhattan 

2 22 0 0 22-Jun-
18 

9:30AM-
11:45AM 

249.4 

Soil85 T2S23 The Pool in Central Park, 
Manhattan 

2 23 1 0 22-Jun-
18 

9:30AM-
11:45AM 

294.5 

Soil86 T2S23 The Pool in Central Park, 
Manhattan 

2 23 2 0 22-Jun-
18 

9:30AM-
11:45AM 

274.4 

Soil87 T2S24 The Pool in Central Park, 
Manhattan 

2 24 0 0 22-Jun-
18 

9:30AM-
11:45AM 

292.6 

Soil88 T2S25 The Pool in Central Park, 
Manhattan 

2 25 1 0 22-Jun-
18 

9:30AM-
11:45AM 

359.7 

Soil89 T2S25 The Pool in Central Park, 
Manhattan 

2 25 2 0 22-Jun-
18 

9:30AM-
11:45AM 

330.8 

Soil90 T2S25-2 The Pool in Central Park, 
Manhattan 

2 25 0 1 22-Jun-
18 

9:30AM-
11:45AM 

279 

Soil91 T2S26 The Pool in Central Park, 
Manhattan 

2 26 0 0 22-Jun-
18 

9:30AM-
11:45AM 

249.1 

Soil92 T2S27 The Pool in Central Park, 
Manhattan 

2 27 1 0 22-Jun-
18 

9:30AM-
11:45AM 

293.1 

Soil93 T2S27 The Pool in Central Park, 
Manhattan 

2 27 2 0 22-Jun-
18 

9:30AM-
11:45AM 

290.5 

Soil94 T2S28 The Pool in Central Park, 
Manhattan 

2 28 0 0 22-Jun-
18 

9:30AM-
11:45AM 

271.2 

Soil97 T3S1 The Pool in Central Park, 
Manhattan 

3 1 1 0 24-Oct-
18 

9:30AM-
11:45AM 

207.3 

Soil98 T3S1 The Pool in Central Park, 
Manhattan 

3 1 2 0 24-Oct-
18 

9:30AM-
11:45AM 

201.5 

Soil99 T3S2 The Pool in Central Park, 
Manhattan 

3 2 0 0 24-Oct-
18 

9:30AM-
11:45AM 

183 

Soil100 T3S2-2 The Pool in Central Park, 
Manhattan 

3 2 0 1 24-Oct-
18 

9:30AM-
11:45AM 

197.2 

Soil101 T3S3 The Pool in Central Park, 
Manhattan 

3 3 1 0 24-Oct-
18 

9:30AM-
11:45AM 

204.7 

Soil102 T3S3 The Pool in Central Park, 
Manhattan 

3 3 2 0 24-Oct-
18 

9:30AM-
11:45AM 

231.2 

Soil103 T3S4 The Pool in Central Park, 
Manhattan 

3 4 0 0 24-Oct-
18 

9:30AM-
11:45AM 

236.2 

Soil104 T3S4-2 The Pool in Central Park, 
Manhattan 

3 4 0 1 24-Oct-
18 

9:30AM-
11:45AM 

207.1 

Soil105 T3S5 The Pool in Central Park, 
Manhattan 

3 5 1 0 24-Oct-
18 

9:30AM-
11:45AM 

216.2 

Soil106 T3S5 The Pool in Central Park, 
Manhattan 

3 5 2 0 24-Oct-
18 

9:30AM-
11:45AM 

221.1 

Soil107 T3S6 The Pool in Central Park, 
Manhattan 

3 6 0 0 24-Oct-
18 

9:30AM-
11:45AM 

223.3 

Soil108 T3S6-2 The Pool in Central Park, 
Manhattan 

3 6 0 1 24-Oct-
18 

9:30AM-
11:45AM 

309.3 

Soil109 T3S7 The Pool in Central Park, 
Manhattan 

3 7 1 0 24-Oct-
18 

9:30AM-
11:45AM 

257.3 

Soil110 T3S7 The Pool in Central Park, 
Manhattan 

3 7 2 0 24-Oct-
18 

9:30AM-
11:45AM 

251.5 

Soil111 T3S8 The Pool in Central Park, 
Manhattan 

3 8 0 0 24-Oct-
18 

9:30AM-
11:45AM 

194.2 

Soil112 T3S8-2 The Pool in Central Park, 
Manhattan 

3 8 0 1 24-Oct-
18 

9:30AM-
11:45AM 

209.6 

Soil113 T3S9 The Pool in Central Park, 
Manhattan 

3 9 1 0 24-Oct-
18 

9:30AM-
11:45AM 

340.4 

Soil114 T3S9 The Pool in Central Park, 
Manhattan 

3 9 2 0 24-Oct-
18 

9:30AM-
11:45AM 

389.3 

Soil115 T3S10 The Pool in Central Park, 
Manhattan 

3 10 0 0 24-Oct-
18 

9:30AM-
11:45AM 

241.6 

Soil116 T3S10-2 The Pool in Central Park, 
Manhattan 

3 10 0 1 24-Oct-
18 

9:30AM-
11:45AM 

246.8 



Soil117 T3S11 The Pool in Central Park, 
Manhattan 

3 11 1 0 24-Oct-
18 

9:30AM-
11:45AM 

247.9 

Soil118 T3S11 The Pool in Central Park, 
Manhattan 

3 11 2 0 24-Oct-
18 

9:30AM-
11:45AM 

276.6 

Soil119 T3S12 The Pool in Central Park, 
Manhattan 

3 12 0 0 24-Oct-
18 

9:30AM-
11:45AM 

224.2 

Soil120 T3S12-2 The Pool in Central Park, 
Manhattan 

3 12 0 1 24-Oct-
18 

9:30AM-
11:45AM 

236.4 

Soil121 T3S13 The Pool in Central Park, 
Manhattan 

3 13 1 0 24-Oct-
18 

9:30AM-
11:45AM 

220.1 

Soil122 T3S13 The Pool in Central Park, 
Manhattan 

3 13 2 0 24-Oct-
18 

9:30AM-
11:45AM 

288.2 

Soil123 T3S14 The Pool in Central Park, 
Manhattan 

3 14 0 0 24-Oct-
18 

9:30AM-
11:45AM 

239.5 

Soil124 T3S14-2 The Pool in Central Park, 
Manhattan 

3 14 0 1 24-Oct-
18 

9:30AM-
11:45AM 

238.7 

Soil125 T3S15 The Pool in Central Park, 
Manhattan 

3 15 1 0 24-Oct-
18 

9:30AM-
11:45AM 

262 

Soil126 T3S15 The Pool in Central Park, 
Manhattan 

3 15 2 0 24-Oct-
18 

9:30AM-
11:45AM 

229.8 

Soil127 T3S16 The Pool in Central Park, 
Manhattan 

3 16 0 0 24-Oct-
18 

9:30AM-
11:45AM 

193.2 

Soil128 T3S16-2 The Pool in Central Park, 
Manhattan 

3 16 0 1 24-Oct-
18 

9:30AM-
11:45AM 

250.5 

Soil129 T3S17 The Pool in Central Park, 
Manhattan 

3 17 1 0 24-Oct-
18 

9:30AM-
11:45AM 

189.8 

Soil130 T3S17 The Pool in Central Park, 
Manhattan 

3 17 2 0 24-Oct-
18 

9:30AM-
11:45AM 

203.9 

Soil131 T3S18 The Pool in Central Park, 
Manhattan 

3 18 0 0 24-Oct-
18 

9:30AM-
11:45AM 

286 

Soil132 T3S18-2 The Pool in Central Park, 
Manhattan 

3 18 0 1 24-Oct-
18 

9:30AM-
11:45AM 

264.8 

Soil133 T3S19 The Pool in Central Park, 
Manhattan 

3 19 1 0 24-Oct-
18 

9:30AM-
11:45AM 

189.5 

Soil134 T3S19 The Pool in Central Park, 
Manhattan 

3 19 2 0 24-Oct-
18 

9:30AM-
11:45AM 

220.3 

Soil135 T3S20 The Pool in Central Park, 
Manhattan 

3 20 0 0 24-Oct-
18 

9:30AM-
11:45AM 

253.3 

Soil136 T3S20-2 The Pool in Central Park, 
Manhattan 

3 20 0 1 24-Oct-
18 

9:30AM-
11:45AM 

258.4 

Soil137 T3S21 The Pool in Central Park, 
Manhattan 

3 21 1 0 24-Oct-
18 

9:30AM-
11:45AM 

355.2 

Soil138 T3S21 The Pool in Central Park, 
Manhattan 

3 21 2 0 24-Oct-
18 

9:30AM-
11:45AM 

346.8 

Soil139 T3S22 The Pool in Central Park, 
Manhattan 

3 22 0 0 24-Oct-
18 

9:30AM-
11:45AM 

244.2 

Soil140 T3S22-2 The Pool in Central Park, 
Manhattan 

3 22 0 1 24-Oct-
18 

9:30AM-
11:45AM 

269.2 

Soil141 T3S23 The Pool in Central Park, 
Manhattan 

3 23 1 0 24-Oct-
18 

9:30AM-
11:45AM 

260.7 

Soil142 T3S23 The Pool in Central Park, 
Manhattan 

3 23 2 0 24-Oct-
18 

9:30AM-
11:45AM 

277.2 

Soil143 T3S24 The Pool in Central Park, 
Manhattan 

3 24 0 0 24-Oct-
18 

9:30AM-
11:45AM 

273.4 

Soil144 T3S24-2 The Pool in Central Park, 
Manhattan 

3 24 0 1 24-Oct-
18 

9:30AM-
11:45AM 

363.2 

Soil145 T3S25 The Pool in Central Park, 
Manhattan 

3 25 1 0 24-Oct-
18 

9:30AM-
11:45AM 

266.9 

Soil146 T3S25 The Pool in Central Park, 
Manhattan 

3 25 2 0 24-Oct-
18 

9:30AM-
11:45AM 

298 

Soil147 T3S26 The Pool in Central Park, 
Manhattan 

3 26 0 0 24-Oct-
18 

9:30AM-
11:45AM 

325.4 

Soil148 T3S26-2 The Pool in Central Park, 
Manhattan 

3 26 0 1 24-Oct-
18 

9:30AM-
11:45AM 

288.4 

Soil149 T3S27 The Pool in Central Park, 
Manhattan 

3 27 1 0 24-Oct-
18 

9:30AM-
11:45AM 

285.4 

Soil150 T3S27 The Pool in Central Park, 
Manhattan 

3 27 2 0 24-Oct-
18 

9:30AM-
11:45AM 

322.8 

Soil151 T3S28 The Pool in Central Park, 
Manhattan 

3 28 0 0 24-Oct-
18 

9:30AM-
11:45AM 

265.5 

Soil152 T3S28-2 The Pool in Central Park, 
Manhattan 

3 28 0 1 24-Oct-
18 

9:30AM-
11:45AM 

221.1 
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decomposiƟon models

Contents

1 Variance decomposition model 2
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Decomposing the variance in microbiota abundances . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Defining the space and time variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Variance decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Model-driven experimental approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Derivation of statistical estimators for variance decomposition . . . . . . . . . . . . . . . . . . . . . . 4
1.4.1 Variance associated with time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.2 Variance associated with spatial sampling location . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.3 Technical noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Generalizing the hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Covariance decomposition model 7
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Decomposing the covariance in pairs of bacterial species abundances . . . . . . . . . . . . . . . . . . 7

2.2.1 Total and conditional joint distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Covariance decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Derivation of statistical estimators for covariance decomposition . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Covariance associated with time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Covariance associated with spatial sampling location . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Covariance associated with technical noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Covariances induced by conversion to absolute abundances . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Two component variance and covariance decomposition models 12
3.1 Two component variance decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Biological variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 Technical noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Generalizing the interpretation of the two component variance decomposition model . . . . . . . . . 13
3.3 Two component covariance decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.1 Biological covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Covariance associated with technical noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1



1 Variance decomposiƟon model

1.1 Overview
Let Xi be a random variable denoting the abundance of a given bacterial taxon i measured from either 16S

rRNA or whole-metagenome shotgun sequencing. Although we focus on single taxon abundances, the following also
applies for total bacterial loads in each sample. We let the measured abundances of taxon i collected at different time
points of a time series study reflect draws from an underlying distribution p(Xi), which we refer to as the marginal
distribution of Xi. We assume that there are three contributions to the total observed variability of Xi. The first
corresponds to any set of temporal factors that systematically change from one day to the next to drive changes in
taxa abundances over time. This may encompass environmental factors, interspecies interactions and competition,
and neutral drift in abundances. The second contribution reflects heterogeneity in the abundance of bacteria across
different spatial locations in a given environment. Notably, this spatial sampling variability is inherent to some time
series studies such as those of the gut microbiome, where measurements from fecal samples collected at different
time points necessarily come from different spatial locations. We take the spatial sampling variability to reflect
variation arising from differences in niche size and availability or random dispersal of taxa abundances. The third
corresponds to experimental noise associated with bacterial DNA extraction from samples, PCR amplification and
sequencing itself. We collectively refer to these experimental sources of variability as technical noise. Our goal is
to derive expressions for each of these sources of variability and demonstrate how one may estimate them from
experiments.

1.2 Decomposing the variance in microbiota abundances
We first demonstrate how we can use the law of total variance to decompose measured bacterial abundance

variances into the three contributions described in the previous section.

1.2.1 Defining the space and Ɵme variables

As bacterial abundances change over time, we would expect that abundances of the same taxa i measured
at the same time point across different spatial locations in the environment would be more similar to each other
than those collected from different time points. However, even at the same time point, measured abundances
will not be identical due to both variation across different spatial locations and technical noise. Mathematically,
the variability in abundances of taxon i at a fixed time T = t defines a conditional random variable Xt

i with
distribution p(Xi|T = t), where T is a time-associated random variable that captures the collective temporal state
of the community has underlying distribution p(T ). This conditional distribution itself may change when T realizes
different values at different time points. Importantly, however, when conditioned on a particular time point T = t,
the variance of the conditional distribution V ar(Xt

i ) reflects only spatial heterogeneity and technical noise.

At a given point in time, we may also choose a location from which to collect a sample to sequence. We
can therefore define another random variable Xt,s

i with probability distribution p(Xi|T = t, S = s) representing
the abundance of taxon i measured from this fixed time point T = t and spatial location S = s. Here, S is a
space-associated random variable with distribution p(S|T = t) that at a given point in time, changes with the
particular spatial location from which taxon i is collected and measured. Conditioning on both space and time, we
have eliminated any biological sources of variability and the variance of taxon i, V ar(Xt,s

i ), simply reflects technical
noise. The distributions p(Xi), p(Xi|T = t), p(Xi|T = t, S = s) and their hierarchical relationships are illustrated
in Fig. S1, with the fecal microbiome shown as the model ecosystem.

1.2.2 Variance decomposiƟon

Using the law of total variance, we now decompose the total abundance variance of Xi into components
associated with time, spatial sampling location and technical noise. In the following, E and V ar denote the
expectation and variance of a random variable respectively, and subscripts denote the underlying distribution
(p(T ) or p(S|T )) with respect to which the operation is performed. Beginning with the definition of the variance
of Xi,

2
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Fig. S1: Statistical model for the decomposition of bacterial abundance variances in the fecal microbiome.

V ar(Xi) = E(X2
i )− [E(Xi)]

2

= ETES|TE(X2
i |S, T )− [ETES|TE(Xi|S, T )]2

= ETES|TV ar(Xi|S, T ) + ETES|T [E(Xi|S, T )]2 − [ETES|TE(Xi|S, T )]2

= ETES|TV ar(Xi|S, T ) + ETV arS|TE(Xi|S, T ) + ET [ES|TE(Xi|S, T |)]2 − [ETES|TE(Xi|S, T )]2 (1)

Thus,

V ar(Xi) = ETES|TV ar(Xi|S, T )︸ ︷︷ ︸
Technical (⟨σ2

N ⟩S,T )

+ ETV arS|TE(Xi|S, T )︸ ︷︷ ︸
Spatial sampling (⟨σ2

S⟩T )

+V arTES|TE(Xi|S, T )︸ ︷︷ ︸
Temporal (σ2

T )

(2)

The terms in the last line correspond to the contributions of technical, spatial sampling, and temporal factors
to the total variance of Xi, which we denote with the symbols ⟨σ2

N ⟩
S,T

, ⟨σ2
S⟩T and σ2

T respectively. Equation (2)
is the law of total variance generalized to multiple conditional random variables. Indeed, the right-most term can
be recognized as the variance of Xi explained by the time random variable T . The second term reflects the spatial
sampling variance of taxa abundances conditioned on time, then averaged over time. The first term is simply the
technical variability conditioned on a spatial location and time point, and then jointly averaged over space and
time.

1.3 Model-driven experimental approach
We now describe the approach we use to estimate the three contributions to total abundance variability

derived in Section 1.2. We show mathematically how our model can be used to estimate each of these terms with
only a minimal set of experiments. Notably, the approach we adopt is conceptually similar to the dual reporter
method originally described by Elowtiz et. al. [1] used to separate intrinsic versus extrinsic sources of noise in the
gene expression profiles of single cells [2, 3, 4].

3



1.3.1 Experimental setup

Extending the notation described above, we denote Xi, Yi and Zi to be random variables representing
abundances of a taxon i made from three separate measurements at each point in time from the community. Let
us assume that the abundances Xi and Yi are made from the same exact location (by sequencing the sample
twice), whereas Zi is measured from an independent location. As Xi, Yi and Zi correspond to the same bacterial
taxon, their marginal distributions are equivalent. Importantly, however, because the abundances Xi,Yi and Zi

are sampled together at the same time points, there exists a covariance structure driven by shared but unknown
temporal factors tending to cause their abundances to collectively increase or decrease from one day to the next.
Therefore, although Xi, Yi and Zi are identically distributed, they are not independent. In addition, by letting Xi

and Yi correspond to abundances measured not only at the same time point but also from the same spatial location,
the covariance between Xi and Yi is also driven by shared spatial factors that result in similar taxa abundances
across different locations.

We can break the described covariance structures by conditioning abundances on time and spatial location.
Specifically, when conditioning abundances on time T = t, the pairs Xt

i , Z
t
i and Y t

i , Z
t
i have become sets of

independent draws from the distribution p(Xi|T = t). Experimentally, independence is achieved if Zt
i is sampled

from a location in the community independent from Xt
i and Y t

i . Note that while Xt
i and Y t

i have the same
underlying distribution p(Xi|T = t), they are not independent as their values covary across space. However,
further conditioning of Xt

i and Y t
i on spatial location results in the conditional random variables Xt,s

i and Y t,s
i

which are indeed independent draws from the distribution p(Xi|T = t, S = s). The assumption of independence is
reasonable, as Xt,s

i and Y t,s
i are simply technical replicates.

Therefore, our replicate sampling protocol goes as follows: at each time point, we make three abundance
measurements for all bacterial taxa i ∈ 1..N . Two of these abundance measurements (Xi and Yi) are made from the
same spatial location in a given environment. The third (Zi) is measured from a separate, independent location.
From an experimental standpoint, Xi and Yi correspond to technical replicates while Xi,Zi and Yi,Zi correspond
to spatial replicates.

1.4 DerivaƟon of staƟsƟcal esƟmators for variance decomposiƟon
We can now derive the statistical estimators for each of the terms in equation (2) using the complete

hierarchical model described in Section 1.3. We begin by showing that under the specified model, the first two
moments of the marginal distributions of Xi, Yi, and Zi are indeed identical.

Mean: Using the law of total expectation,

E(Xi) = ETES|TE(Xi|S, T ) = ETES|TE(Yi|S, T ) = E(Yi) (3)

E(Xi) = ETE(Xi|T ) = ETE(Zi|T ) = E(Zi) (4)

Variance: By the law of total variance,

V ar(Xi) = ETES|TV ar(Xi|S, T ) + ETV arS|TE(Xi|S, T ) + V arTES|TE(Xi|S, T )

= ETES|TV ar(Yi|S, T ) + ETV arS|TE(Yi|S, T ) + V arTES|TE(Yi|S, T ) = V ar(Yi) (5)

V ar(Xi) = ETV ar(Xi|T ) + V arTE(Xi|T ) = ETV ar(Zi|T ) + V arTE(Zi|T ) = V ar(Zi) (6)

We have now laid the groundwork for the following derivations of statistical estimators for each of the terms
in equation (2). This is the primary result of the variance decomposition model.
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1.4.1 Variance associated with Ɵme

σ2
T = V arTES|TE(Xi|S, T ) = V arTE(Xi|T )

= ET [E(Xi|T )]2 − [ETE(Xi|T )]2

= ET [E(Xi|T )E(Zi|T )]− ETE(Xi|T )ETE(Zi|T )

= ETE(XiZi|T )− ETE(Xi|T )ETE(Zi|T )

= E(XiZi)− E(Xi)E(Zi) = Cov(Xi, Zi) (7)

Hence, the time-associated variability is simply the covariance between Xi and Zi. Its unbiased estimator
is:

σ̂2
T =

1

n− 1

n∑
t=1

(xt
i − x̄i)(z

t
i − z̄i) (8)

1.4.2 Variance associated with spaƟal sampling locaƟon

⟨σ2
S⟩T = ETV arS|TE(Xi|S, T ) = ETES|T [E(Xi|S, T )]2 − ET [ES|TE(Xi|S, T )]2

= ETES|T [E(Xi|S, T )]2 − ET [E(Xi|T )]2

= ETES|T [E(Xi|S, T )E(Yi|S, T )]− ET [E(Zi|T )][E(Yi|T )]

= ETES|TE(XiYi|S, T )− ETE(ZiYi|T )

= E(XiYi)− E(ZiYi)

= E(XiYi − ZiYi)− E(Xi)E(Yi) + E(Zi)E(Yi)

= E((Xi − Zi)Yi)− E(Xi − Zi)E(Yi) = Cov(Xi − Zi, Yi) (9)

Similar to time, the spatial sampling-associated variance reduces to the covariance between Xi − Zi and Yi

and is estimated by:

⟨σ̂2
S⟩T =

1

n− 1

n∑
t=1

[(xt
i − zti)− (x̄i − z̄i)](y

t
i − ȳi) (10)
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1.4.3 Technical noise

⟨σ2
N ⟩S,T = ETES|TV ar(Xi|S, T ) = ETES|TE(X2

i |S, T )− ETES|T [E(Xi|S, T )]2

=
1

2
[ETES|TE(X2

i |S, T )− 2ETES|T [E(Xi|S, T )E(Yi|S, T )] + ETES|TE(Y 2
i |S, T )]

=
1

2
[E(X2

i )− 2ETES|TE(XiYi|S, T ) + E(Y 2
i )]

=
1

2
[E(X2

i )− 2E(XiYi) + E(Y 2
i )]

=
1

2
[E(X2

i )− 2E(XiYi) + E(Y 2
i )− E(Xi)

2 + 2E(Xi)E(Yi)− E(Yi)
2]

=
1

2
[E([Xi − Yi]

2)− [E(Xi − Yi)]
2]

=
1

2
V ar(Xi − Yi) (11)

Finally, the technical variability is simply the variance of the difference between Xi and Yi, whose unbiased
estimator is:

⟨σ̂2
N ⟩S,T =

1

2(n− 1)

n∑
t=1

[(xt
i − yti)− (x̄i − ȳi)]

2 (12)

We note that the protocol and derivations presented above represent the minimum number of sample
collections and preparations required for proper variance decomposition in the data. However, the above derivations
also apply if multiple (more than two) spatial or technical replicates are taken at each time point. In this case, we
may average over pairwise combinations of spatial or technical replicates in the data (i.e. average over different
realizations of X, Y , and Z in the data). Therefore, the presented framework may be applied to a study design
involving an arbitrary number of spatial or technical replicates, so long as these numbers are greater than or equal
to two. Finally, we note that if (1) the number of statistical samples is small and (2) the variances are small, the
variance estimators defined above may return negative or NaN values. In our analysis, we omit these estimations.

1.5 Generalizing the hierarchy
In the sections above, we have implicitly imposed a hierarchy in our model. Namely, quantities in each

term of equation (2) are first averaged with respect to p(Xi|S, T ), followed by p(S|T ) and finally p(T ). One can
also imagine reversing this hierarchy; that is, averaging with respect to p(T |S) second, followed by p(S) last.
Experimentally, this would correspond to drawing temporal replicates from a fixed spatial location, then averaging
quantities over various locations. In ecosystems such as the human gut microbiome, the hierarchy described in
earlier sections arises naturally, as p(S|T ) and p(T ) are experimentally accessible from fecal samples, while p(T |S)
and p(S) are not. In other words, it is only possible to draw spatial replicates from a fixed time point, then average
bacterial abundance measurements over multiple time points. It is not possible to measure abundances from the
same spatial location on fecal samples obtained from two different days. However, in other microbial communities,
such as those found in the soil, one can imagine an alternative hierarchical sampling protocol in which different
spatial locations in the ecosystem are each sampled on two separate days. Equation (2) may then be used to
decompose bacterial abundance variances using this inverted hierarchy:
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V ar(Xi) = ESET |SV ar(Xi|S, T )︸ ︷︷ ︸
Technical (⟨σ2

N ⟩S,T )

+ESV arT |SE(Xi|S, T )︸ ︷︷ ︸
Temporal (⟨σ2

T ⟩S )

+ V arSET |SE(Xi|S, T )︸ ︷︷ ︸
Spatial sampling (σ2

S)

(13)

The first term reflecting technical noise remains the same. The second term now reflects a temporal variance
that is averaged over sampling locations. The third reflects the variance explained by spatial sampling location.
Indeed, we used this inverted hierarchy to carry out sampling of a soil microbial community in Central Park. We
also note that the spatial sampling variability here may be defined rather loosely. For example, if one were to
collect two human microbiome samples at different time points from a large cohort of individuals and sequence one
of these two samples twice, the spatial sampling variability could be referred to as inter-individual variability while
the temporal variability would correspond to intra-individual variability, with the noise term remaining the same.

Finally, we note that abundance measurements may be made from multiple different spatial locations at
multiple different time points, with multiple sequencing replicates performed at each time and location. Although
one may arrive at the different variance contributions directly by following the prescription of equation (2) and
using the typical estimators for mean and variance, this experimental protocol quickly becomes prohibitive for
longer time series studies. Importantly, our hierarchical replicate sampling protocol makes such data collection
unnecessary.

2 Covariance decomposiƟon model

2.1 Overview
We now extend our variance decomposition model for single taxa to a generalized covariance decomposition

for all pairs of taxa. We let Xi and Xj denote the abundances of taxa i and j measured together from the
same sample (i.e. sequenced from the same spatial location in a given environment). As with the case of single
taxon variances, we assume that the total abundance covariance between taxa i and j (across different samples
collected over time) may be attributed to underlying temporal, spatial and technical sources. Intuitively, the
temporal contribution results from the covariation in overall abundances (averaged over all spatial locations in the
community) of taxa i and j from one day to the next. In addition, however, species abundances may be correlated
across different spatial locations at a given time point, which is captured by the spatial contribution to the total
covariance. Finally, technical factors may result in correlated noise, potentially arising from sources such as similar
DNA extraction efficiencies or primer and amplification biases. Again, our goal is to derive expressions for each
of these covariance sources and demonstrate how one may estimate them experimentally using the same protocol
described in Section 1.

2.2 Decomposing the covariance in pairs of bacterial species abundances

2.2.1 Total and condiƟonal joint distribuƟons

The total abundance covariance of taxa i and j may be calculated from the simple experiment: draw a
single sample from a random spatial location in the environment at each time point and sequence the abundances
of i and j. Mathematically, we may consider the bivariate random variable X⃗ with components comprising the
measured abundances (Xi, Xj) and define a total joint distribution p(Xi, Xj). We refer to this as the total joint
distribution because in the data collection process, we have marginalized over time, space and technical noise. In
contrast, one can imagine a second experiment where at a given time point, multiple samples are obtained across
various spatial locations in the community. This defines another distribution, the conditional joint distribution
p(Xi, Xj |T = t) for some fixed time point t, where variances and covariances now reflect both underlying spatial
factors as well as technical noise. Finally, by fixing both time and sampling location S = s and re-extracting
and sequencing bacterial DNA multiple times, a third distribution p(Xi, Xj |T = t, S = s) can be defined. Here,
variances and covariances reflect purely technical sources. The hierarchical relationships of these distributions are
illustrated in Fig. S2. We show in the next section how the total covariance Cov(Xi, Xj) between taxa i and j
may be decomposed by making use of the described conditional joint distributions.
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Fig. S2: Statistical model for the decomposition of bacterial abundance covariances.

2.2.2 Covariance decomposiƟon

The total covariance corresponding to the distribution p(Xi, Xj) can be written as:

Cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj)

= ETES|TE(XiXj |S, T )− E(Xi)E(Xj)

= ETES|TCov(Xi, Xj |S, T ) + ETES|T [E(Xi|S, T )E(Xj |S, T )]− E(Xi)E(Xj)

= ETES|TCov(Xi, Xj |S, T ) + ETCovS|T (E(Xi|S, T ), E(Xj |S, T ))
+ ET [ES|TE(Xi|S, T )ES|TE(Xj |S, T )]− E(Xi)E(Xj) (14)

Mirroring the variance decomposition, we arrive at:

Cov(Xi, Xj) = ETES|TCov(Xi, Xj |S, T )︸ ︷︷ ︸
Technical (⟨σiσj

N ⟩S,T )

+ETCovS|T (E(Xi|S, T ), E(Xj |S, T ))︸ ︷︷ ︸
Spatial sampling (⟨σiσj

S⟩T )

+CovT (E(Xi|T ), E(Xj |T ))︸ ︷︷ ︸
Temporal (σiσj

T )

(15)

Note that we can obtain correlations by simply dividing each term in equation (15) by marginal standard
deviations.
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2.3 DerivaƟon of staƟsƟcal esƟmators for covariance decomposiƟon
Let Xi, Yi and Zi and Xj , Yj and Zj denote abundances of taxa i and j respectively as described in Section

1.3.1. That is, the pairs (Xi, Zi) and (Yi, Zi) correspond to spatial replicates while (Xi, Yi) denote technical
replicates. As before, when conditioning on time T = t, the bivariate random variable pairs X⃗t = (Xt

i , X
t
j) and

Z⃗t = (Zt
i , Z

t
j), and Y⃗ t = (Y t

i , Y
t
j ) and Z⃗t = (Zt

i , Z
t
j) correspond to two i.i.d. draws from the same underlying

distribution p(Xi, Xj |T = t), with a covariance matrix structured by both spatial and technical sources. We
will now define two additional and equivalent conditional joint distributions p(Xi, Zj |T = t), and p(Yi, Zj |T = t)
where the abundance of taxon i from one spatial replicate Xt

i or Y t
i is paired with the abundance of taxon j from

the second spatial replicate Zt
j . Note here that while the conditional marginal distributions of p(Xi, Zj |T = t)

and p(Yi, Zj |T = t) are identical to those of the distribution p(Xi, Xj |T = t) as demonstrated in Section 1.3,
the random variables Xt

i and Zt
j , and Y t

i and Zt
j are independent of one another when conditioned on time, as

abundances from each pair come from different spatial locations and sequencing realizations. Along similar lines,
the bivariate random variables X⃗t,s = (Xt,s

i , Xt,s
j ) and Y⃗ t,s = (Y t,s

i , Y t,s
j ) correspond to random variables drawn

from the distribution p(Xi, Xj |T = t, S = s), where correlations between i and j are driven purely by technical
sources. Again, we may preserve conditional marginal distributions while eliminating covariances by defining the
distribution p(Xi, Yj |T = t, S = s). With this in mind, we will now derive statistical estimators for each of the
terms in equation (15).

2.3.1 Covariance associated with Ɵme

σiσj
T = CovT (E(Xi|T ), E(Xj |T ))

= ET [E(Xi|T )E(Xj |T )]− ETE(Xi|T )ETE(Xj |T )

= ET [E(Xi|T )E(Zj |T )]− ETE(Xi|T )ETE(Zj |T )

= ETE(XiZj |T )− E(Xi)E(Zj)

= Cov(Xi, Zj) (16)

Analogous to the variance decomposition, the unbiased estimator for the time-associated covariance is:

σ̂iσ̂j
T =

1

n− 1

n∑
t=1

(xt
i − x̄i)(z

t
j − z̄j) (17)
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2.3.2 Covariance associated with spaƟal sampling locaƟon

⟨σiσj
S⟩T = ETCovS|T (E(Xi|S, T ), E(Xj |S, T ))

= ETES|T [E(Xi|S, T )E(Xj |S, T )]− ET [ES|TE(Xi|S, T )ES|TE(Xj |S, T )]

= ETES|T [E(Xi|S, T )E(Xj |S, T )]− ET [E(Xi|T )E(Xj |T )]

= ETES|T [E(Xi|S, T )E(Yj |S, T )]− ET [E(Zi|T )E(Yj |T )]

= ETES|TE(XiYj |S, T )− ETE(ZiYj |T )

= E(XiYj)− E(ZiYj)

= E(XiYj)− E(ZiYj)− E(Xi)E(Yj) + E(Zi)E(Yj)

= E((Xi − Zj)Yj) + E(Xi − Zi)E(Yj)

= Cov(Xi − Zi, Yj) (18)

The space-associated covariance is given by:

⟨σiσj
S⟩T =

1

n− 1

n∑
t=1

[(xt
i − zti)− (x̄i − z̄i)](y

t
j − ȳj) (19)
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2.3.3 Covariance associated with technical noise

⟨σiσj
N ⟩S,T = ETES|TCov(Xi, Xj |S, T )

= ETES|TE(XiXj |S, T )− ETES|T [E(Xi|S, T )E(Xj |S, T )]

=
1

2
[ETES|TE(XiXj |S, T )− ETES|T [E(Xi|S, T )E(Yj |S, T )]

− ETES|T [E(Yi|S, T )E(Xj |S, T )] + ETES|TE(YiYj |S, T )]

=
1

2
[ETES|TE(XiXj |S, T )− ETES|TE(XiYj |S, T )

− ETES|TE(YiXj |S, T ) + ETES|TE(YiYj |S, T )]

=
1

2
[E(XiXj)− E(XiYj)− E(YiXj) + E(YiYj)]

=
1

2
[E(XiXj −XiYj − YiXj + YiYj)− E(Xi)E(Xj) + E(Xi)E(Yj)− E(Yi)E(Xj) + E(Yi)E(Yj)]

=
1

2
[E(Xi − Yi)(Xj − Yj)− E(Xi − Yi)E(Xj − Yj)]

=
1

2
Cov(Xi − Yi, Xj − Yj) (20)

Finally, the covariance associated with technical sources is estimated as:

⟨σiσj
N ⟩S,T =

1

2(n− 1)

n∑
t=1

[(xt
i − yti)− (x̄i − ȳi)][(x

t
j − ytj)− (x̄j − ȳj)] (21)

2.4 Covariances induced by conversion to absolute abundances
Finally, we demonstrate that conversion from relative to absolute abundances typically results in higher

covariances for taxa pairs measured in absolute abundances. These higher covariances stem from the variance of
total bacterial densities measured from sample to sample that may induce correlations in taxa pairs whose relative
abundances are otherwise uncorrelated or even negatively correlated. Let Ri and Rj denote the relative abundances
of taxa i and j measured from a single sample. Let us denote A to be the total bacterial abundance density (in
units of DNA copies per mg of environmental sample matter). Note that the absolute abundances Xi and Xj

are simply calculated as ARi and ARj respectively. We will assume that the relative abundances Ri and Rj are
independent of A. Then, we may write:
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Cov(ARi, ARj) = E(A2RiRj)− E(A)2E(Ri)E(Rj)

= E(A2)E(RiRj)− E(A)2E(Ri)E(Rj)

= E(A2)[Cov(Ri, Rj) + E(Ri)E(Rj)]− E(A)2E(Ri)E(Rj)

= E(A2)Cov(Ri, Rj) + E(Ri)E(Rj)[E(A2)− E(A)2)]

= E(A2)Cov(Ri, Rj) + E(Ri)E(Rj)V ar(A) (22)

3 Two component variance and covariance decomposiƟon models

Up to this point, we have considered the general case of three contributions to the variances and covariances
of bacterial taxa. It may be useful in some cases to perform a two component variance/covariance decomposition
(e.g. to separate any technical from non-technical/biological variability in microbiome sequencing studies). Here
we present the mathematical formulation and corresponding statistical estimators for the two component approach.

3.1 Two component variance decomposiƟon
If we are interested in separating biological from technical variability in microbiome studies, we may consider

the following two component variance decomposition model:

V ar(Xi) = E(X2
i )− [E(Xi)]

2

= EBE(X2
i |B)− [EBE(Xi|B)]2

= EBV ar(Xi|B) + EB[E(Xi|B)]2 − [EBE(Xi|B)]2

= EBV ar(Xi|B)︸ ︷︷ ︸
Technical (⟨σ2

N ⟩
B

)

+ V arBE(Xi|B)︸ ︷︷ ︸
Biological (σ2

B)

(23)

Equation (23) is the law of total variance, where the left term reflects the same average technical
noise contributing to the total variance of Xi. The right term now reflects the variance of Xi explained by both
temporal and spatial factors, where B is a random variable capturing the collective temporal and spatial state
of the community. Because, the left term corresponds to noise in the data, the right term captures all the true
biological variability of taxon Xi. We may estimate each of these terms as follows:
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3.1.1 Biological variability

σ2
B = V arBE(Xi|B)

= EB [E(Xi|B)]2 − [EBE(Xi|B)]2

= EB [E(Xi|B)E(Yi|B)]− EBE(Xi|B)EBE(Yi|B)

= EBE(XiYi|B)− EBE(Xi|B)EBE(Yi|B)

= E(XiYi)− E(Xi)E(Yi) = Cov(Xi, Yi) (24)

Keeping the same nomenclature as before, the biological variability is the covariance between the technical
replicate measurements Xi and Yi, whose unbiased estimator is:

σ̂2
B =

1

n− 1

n∑
t=1

(xt
i − x̄i)(y

t
i − ȳi) (25)

3.1.2 Technical noise

⟨σ2
N ⟩B = EBV ar(Xi|B) = EBE(X2

i |B)− EB [E(Xi|B)]2

=
1

2
[EBE(X2

i |B)− 2EB [E(Xi|B)E(Yi|B)] + EBE(Y 2
i |B)]

=
1

2
[E(X2

i )− 2EBE(XiYi|B) + E(Y 2
i )]

=
1

2
[E(X2

i )− 2E(XiYi) + E(Y 2
i )]

=
1

2
[E(X2

i )− 2E(XiYi) + E(Y 2
i )− E(Xi)

2 + 2E(Xi)E(Yi)− E(Yi)
2]

=
1

2
[E([Xi − Yi]

2)− [E(Xi − Yi)]
2]

=
1

2
V ar(Xi − Yi) (26)

The technical variability remains identical to that for the three component variance decomposition:

⟨σ̂2
N ⟩B =

1

2(n− 1)

n∑
t=1

[(xt
i − yti)− (x̄i − ȳi)]

2 (27)

3.2 Generalizing the interpretaƟon of the two component variance decomposiƟon model
While we refer to the biological variability in equation (23) as variability associated with both temporal

and spatial factors, this interpretation will depend from study to study. For example, for studies conducted at a
single time point, in which multiple spatial sites are sampled across an environment, the biological variability in
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equation (23) will simply reflect spatial heterogeneity. The corresponding study design in this scenario would be to
collect samples across different spatial locations, and sequence each of these samples twice to obtain Xi and Yi. For
studies interested in investigating population-wide variability of the human microbiome, two technical replicates
may be sequenced from single samples collected across individuals. Here, the biological variability will reflect inter-
individual variability. Notably, two technical replicates are required from every sample for proper separation of the
technical from biological variance contributions.

3.3 Two component covariance decomposiƟon
The total covariance corresponding to the distribution p(Xi, Xj) can be written as:

Cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj)

= EBE(XiXj |B)− E(Xi)E(Xj)

= EBCov(Xi, Xj |B) + EB[E(Xi|B)E(Xj |B)]− E(Xi)E(Xj)

= EBCov(Xi, Xj |B)︸ ︷︷ ︸
Technical (⟨σiσj

N ⟩B)

+CovB(E(Xi|B), E(Xj |B))︸ ︷︷ ︸
Biological (σiσj

B)

(28)

(29)

These terms are estimated in the following sections.

3.3.1 Biological covariance

σiσj
B = CovB(E(Xi|B), E(Xj |B))

= EB [E(Xi|B)E(Xj |B)]− EBE(Xi|B)EBE(Xj |B)

= EB [E(Xi|B)E(Yj |B)]− EBE(Xi|B)EBE(Yj |B)

= EBE(XiYj |B)− E(Xi)E(Yj)

= Cov(Xi, Yj) (30)

Therefore,

σ̂iσ̂j
B =

1

n− 1

n∑
t=1

(xt
i − x̄i)(y

t
j − ȳj) (31)
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3.3.2 Covariance associated with technical noise

⟨σiσj
N ⟩B = EBCov(Xi, Xj |B)

= EBE(XiXj |B)− EB[E(Xi|B)E(Xj |B)]

=
1

2
[EBE(XiXj |B)− EB[E(Xi|B)E(Yj |B)]

− EB [E(Yi|B)E(Xj |B)] + EBE(YiYj |B)]

=
1

2
[EBE(XiXj |B)− EBE(XiYj |B)

− EBE(YiXj |B) + ETE(YiYj |B)]

=
1

2
[E(XiXj)− E(XiYj)− E(YiXj) + E(YiYj)]

=
1

2
[E(XiXj −XiYj − YiXj + YiYj)− E(Xi)E(Xj) + E(Xi)E(Yj)− E(Yi)E(Xj) + E(Yi)E(Yj)]

=
1

2
[E(Xi − Yi)(Xj − Yj)− E(Xi − Yi)E(Xj − Yj)]

=
1

2
Cov(Xi − Yi, Xj − Yj) (32)

The covariance associated with technical sources is estimated as:

⟨σiσj
N ⟩B =

1

2(n− 1)

n∑
t=1

[(xt
i − yti)− (x̄i − ȳi)][(x

t
j − ytj)− (x̄j − ȳj)] (33)
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