In Silico Fight Against Novel Coronavirus by Finding Chromone Derivatives as Inhibitor of Coronavirus Main Proteases Enzyme

Nayim Sepay^a*, Nadir Sepay^b, Ashique Al Hoque^c, Rina Mondal^d, Umesh Chandra Halder^a* and Mohd. Muddassir^e

^aDepartment of Chemistry, Jadavpur University, Kolkata 700032, India.

^bPlant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata -700118, India.

^cDepartment of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.

^dDepartment of Chemistry, Uluberia College, Howrah, West Bengal 711 315, India.

^eDepartment of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.

*Corresponding authors

Email: <u>nayimsepay@yahoo.com</u> (NS) and <u>uhalder2002@yahoo.com</u> (UCH)

Methods

The study focused on the mutant and earlier three CoV M^{pro} , i.e. 6lu7, 2q6d, 2q6f and 2h2z, respectively, for in silico finding of having the capacity to develop into inhibitors in the near future from chromanone derivatives.

Protein structure modelling.

The crystal data of all the protein structures were downloaded from Protein Data Bank (PDB ID: 6lu7, 2q6d, 2q6f and 2h2z). The structures used for further studies was prepared by Discovery studio 2017 R2 client. The modelling of protein structure was done on I-TASSER. All the pictures of the protein was made with MolSoft-ICM browser, Discovery studio 2017 R2 client and Samson core software.

Bioinformatics.

The protein sequences of selected four above mentioned proteins have been obtained from Discovery studio 2017 R2 client. The sequences were aligned using the bioinformatics web server Clustal Omega of European Bioinformatics Institute (EMBL-EBI). The outcome of the alignment protein sequences was analysed in the same web server, m-view and visualised it with the colour coding provided by the server.

Molecular Electrostatic Potential (MEP) Analysis

The compounds **2a-j** were optimized with the help of density functional theory using B3LYP functional at 6-311g level of besis set. Molecular electrostatic potential map around the molecular frame work were calculated at the combined B3LYP and 6-31g level of theory with the 0.03 iso values. For all of these DFT calculations, Gaussian 09W software with D1 revision has been used at windows platform [1].

ADME study

ADME and toxicity of the designed compounds were predicted at the SwissADME web server [2]. Using huge database, the server can speculate physicochemical properties, lipophilicity, water solubility, pharmacokinetics, drug likeness and medicinal properties with high precision.

Molecular docking estimation

Energy minimized structure of compounds **2a-j**, obtained from DFT optimization and were used for docking with the mentioned four protein structures. The structure of the compounds and proteins were prepared in appropriate format for the studies with the help of MGL Tools. For docking studies, AutoDock 4.2 was employed by following standard procedure as described.³ In this case, a 40 x 40 grid box has been used [3].

Toxicity

Cardiac Toxicity of all the compounds (2a-2j) have been predicted with the help of a webaccessible computational equipment Pred-hERG [4]. Acute toxicity, organ toxicity, toxicological endpoint, nuclear receptor signalling pathways and stress response pathway was also calculated for these compounds and some FDA approved anti-viral drugs using PROTOX-II [5]. Reference sequence (1): 2q6d Identities normalised by aligned length. Colored by: identity

Figure S1: MView representation of protein sequence alignment of novel and previously known CoV M^{pro} (pdb ids: 6lu7, 2q6d, 2q6f and 2h2z)

Figure S2: (a) **Binding of N3 liganCovalent** Amino acid residue at the active site of the mutant coronavirus main protease (SARC-CoV-2 M^{pro}) (pdb id 6lu7).

Figure S3: Docking pose of compound **2a** with SARC-CoV-2 M^{pro} of novel corona virus and the non-covalent interactions causes for their binding.

Figure S4: Docking pose of compound 2b with SARC-CoV-2 M^{pro} of novel corona virus and the non-covalent interactions causes for their binding.

Figure S5: Docking pose of compound 2c with SARC-CoV-2 M^{pro} of novel corona virus and the non-covalent interactions causes for their binding.

Figure S6: Docking pose of compound **2d** with SARC-CoV-2 M^{pro} of novel corona virus and the non-covalent interactions causes for their binding.

Figure S7: Docking pose of compound **2e** with SARC-CoV-2 M^{pro} of novel corona virus and the non-covalent interactions causes for their binding.

Figure S8: Docking pose of compound **2f** with SARC-CoV-2 M^{pro} of novel corona virus and the non-covalent interactions causes for their binding.

Figure S9: Docking pose of compound **2h** with SARC-CoV-2 M^{pro} of novel corona virus and the non-covalent interactions causes for their binding.

Figure S10: Docking pose of compound **2i** with SARC-CoV-2 M^{pro} of novel corona virus and the non-covalent interactions causes for their binding.

Entry	Compound	Inhibitory Activity	Reference
1	$R_{1} + R_{2} + R_{3} + R_{4} + R_{5} + R_{1} + R_{1$	Acetylcholinesterase	<i>Med Chem Res.</i> 2018, 27, 520–530,
2		microsomal cytochrome P450	J.Biol.Chem. 2007 , 282, 14348-14355
3	HO HO HO HO HO HO HO HO HO HO HO HO HO H	 Xanthine oxidase inhibition PDE4 inhibition 	 Arch. Biochem. Biophys. 2008, 469, 209–219 Invest. New Drugs 2008, 26, 417–424 Biochem. Pharmacol. 2004, 68, 2087–2094
4		 NADPH oxidase inhibition Xanthine oxidase inhibition 	 Arch. Biochem. Biophys. 2008, 469, 209–219 Trends Pharmacol Sc 2012, 33, 602-610
5	HO HO HO HO HO HO HO HO HO HO HO HO HO H	 Xanthine oxidase inhibition PDE4 inhibition 	1. Arch. Biochem. Biophys. 2008, 469, 209–219 2. Invest. New Drugs 2008, 26, 417–424 3. Biochem. Pharmacol. 2004, 68, 2087–2094
6	HO HO OH OH Luteolin	 Xanthine oxidase inhibition PDE4 inhibition 	 Arch. Biochem. Biophys. 2008, 469, 209–219 Invest. New Drugs 2008, 26, 417–424 Biochem. Pharmacol. 2004, 68, 2087–2094

Table S1 Protein inhibitory activity of some flavones and 3-benzylidene-4-chromanones

7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Tankyrases-2	J. Med. Chem. 2013 , 56, 3507-3517
8	Me ^O OH OH OH	α-glucosidase inhibitory	<i>Chem. Pharm.</i> <i>Bull.</i> 2016 , <i>64</i> , 1203–1207.
9		MAO-B inhibitor	<i>Eur. J. Med. Chem.</i> 2016 , <i>117</i> , 292–300.
10		AChE inhibitors	J. Photochem. Photobiol.,B 2014 , 130, 179–187.
11	$\begin{array}{c c} & O & H_2 N & O \\ & & & O \end{array}$	AChE inhibitors	J. Photochem. Photobiol.,B 2014 , 130, 179–187.

Table S2 Predicted data of lipophilicity of the designed compound by different methods.

Molecule	iLOGP	XLOGP3	WLOGP	MLOGP	Silicos-IT Log
					Р
2a	2.69	3.33	3.24	2.64	4.02
2b	3.00	3.31	3.25	2.27	4.03
2c	2.92	3.96	3.89	3.15	4.63
2d	3.06	4.03	4.00	3.27	4.67
2e	2.94	3.15	2.97	2.09	3.88
2f	2.44	2.43	2.83	1.29	3.41
2g	2.88	4.5	4.6	4.08	5.19
2h	2.72	3.76	3.41	2.88	4.42
2i	3.03	3.98	3.79	3.04	4.57
2j	1.49	2.48	2.95	1.71	2.84

	2a	2b	2c	2d	2e	2f	2g	2h	2i	2j
ESOL	-3.83	-3.89	-4.41	-4.73	-3.92	-3.19	-4.85	-4.1	-4.29	-3.62
LogS										
ESOL	3.49E	3.44E	1.04E	5.81E	3.38E	1.47E	4.01E	2.01E	1.36E	7.26E
Solubility	-02	-02	-02	-03	-02	-01	-03	-02	-02	-02
(mg/ml)										
ESOL	1.48E	1.29E	3.85E	1.84E	1.20E	6.51E	1.40E	8.02E	5.18E	2.43E
Solubility	-04	-04	-05	-05	-04	-04	-05	-05	-05	-04
(mol/l)										
ESOL	Solub	Solub	Mod.	Mod.	Solub	Solub	Mod.	Mod.	Mod.	Solub
Class	le	le	solu*	solu	le	le	solu	solu	solu	le
Ali Log S	-3.56	-3.73	-4.21	-4.29	-3.76	-2.90	-5.11	-4.01	-4.23	-4.41
Ali	6.52E	4.93E	1.66E	1.63E	4.87E	2.84E	2.22E	2.47E	1.53E	1.16E
Solubility	-02	-02	-02	-02	-02	-01	-03	-02	-02	-02
(mg/ml)		1.075		- 105		1.0.00		0.007		A 0.0 F
Ali	2.76E	1.85E	6.13E	5.18E	1.74E	1.26E	7.75E	9.88E	5.84E	3.89E
Solubility	-04	-04	-05	-05	-04	-03	-06	-05	-05	-05
(mol/l)	G 1 1	0.1.1			0.1.1	G 1 1				
Ali Class	Solub	Solub	Mod.	Mod.	Solub	Solub	Mod.	Mod.	Mod.	Mod.
0.1. 10	le	le	solu	solu	le 5.15	le	solu	solu	solu	solu
Silicos-IT	-5.41	-5.53	-6.02	-6.24	-5.15	-4.62	-6.38	-5.8	-5.5	-4.25
LogSw	0.105	7.005	0.505	1.025	1.075	5.0 (F	1.100	4.000	0.075	1.660
Silicos-IT	9.19E	7.80E	2.59E	1.83E	1.97E	5.36E	1.18E	4.00E	8.37E	1.66E
Solubility	-04	-04	-04	-04	-03	-03	-04	-04	-04	-02
(mg/ml)	2.005	2.025	0.555	5 70F	7.015	0.075	4.100	1.000	2.105	5 5 CD
Silicos-IT	3.89E	2.93E	9.55E	5.79E	7.01E	2.3/E	4.13E	1.60E	3.19E	5.56E
Solubility	-06	-06	-07	-07	-06	-05	-07	-06	-06	-05
(mol/l)	Mad	Mad	Deer	Deer	Mad	Mad	Deen	M - 1	Mad	M - 1
Silicos-IT	Mod.	Mod.	Poor	Poor	Mod.	Mod.	Poor	Mod.	Mod.	Mod.
class	solu	solu	solu	solu	solu	solu	solu	solu	solu	solu

Table S3: Predicted data of water solubility of the designed compound by different methods.

*Mod. solu = Moderately soluble

	2a	2b	2c	2d	2e	2f	2g	2h	2i	2j
GI absorption	High	High	High	High	High	High	High	High	High	High
BBB	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
permeant										
Pgp substrate	No	No	No	No	No	No	No	No	No	Yes
CYP1A2	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
inhibitor										
CYP2C19	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
inhibitor										
CYP2C9	No	Yes	Yes	Yes	Yes	No	Yes	No	Yes	No
inhibitor										
CYP2D6	No	Yes	No	No	Yes	No	No	Yes	No	No
inhibitor										
CYP3A4	No	Yes	No	No	Yes	Yes	No	No	No	Yes
inhibitor										
log Kp (cm/s)	-5.38	-5.57	-5.14	-5.36	-5.77	-5.95	-4.85	-5.16	-5.07	-6.37
Bioavailability	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55
Score										
Synthetic	2.74	2.87	2.73	2.76	3.00	2.77	3.17	2.55	3.05	3.29
Accessibility										

Table S4: Predicted data of pharmacokinetics, drug likeness and medicinal chemistry of the designed compound

Table S5: Predicted data of cardiotoxicity of compounds ${\bf 2a}{\textbf -}{j}^4$

Compound	Prediction /	Confidence	Applicability	Probabilty Map
	Potency		domain (AD)	
2a	Weak or	50%	No	
	Moderate		(Value= 0.24 and	
	Potential		limit = 0.26)	TXXXX
	cardiotoxic (+)			An all
2b	Weak or	60%	Yes	2
	Moderate		(Value= 0.26 and	
	Potential		limit = 0.26)	
	cardiotoxic (+)			
2c	Weak or	60%	No	
	Moderate		(Value= 0.24 and	
	Potential		limit = 0.26)	
	cardiotoxic (+)			
2d	Weak or	50%	No	
	Moderate		(Value= 0.24 and	Contraction of the second
	Potential		limit = 0.26)	REAL REAL REAL REAL REAL REAL REAL REAL
	cardiotoxic (+)			

2e	Weak or Moderate Potential cardiotoxic (+)	50%	No (Value= 0.23 and limit = 0.26)	
2f	Weak or Moderate Potential cardiotoxic (+)	50%	No (Value= 0.22 and limit = 0.26)	
2g	Weak or Moderate Potential cardiotoxic (+)	60%	No (Value= 0.23 and limit = 0.26)	
2h	Weak or Moderate Potential cardiotoxic (+)	60%	Yes (Value= 0.27 and limit = 0.26)	
2i	Non- cardiotoxic (-)	60%	No (Value= 0.24 and limit = 0.26)	
2j	Non- cardiotoxic (-)	60%	No (Value= 0.20 and limit = 0.26)	HZIN HZ

Table S6: Predicted data of toxicity of compounds $2a-j^5$

	2a	2b	2c	2d	2e	2f	2g	2h	2i	2j
Predicted LD50:	2647	2647	2647	2647	2000	2647	2400	1600	2000	400
mg/kg										
Prediction accuracy:	68.07	68.07	68.07	67.38	67.38	67.38	54.26	68.07	67.38	54.26
%										
Organ Toxicity										
Hepatotoxicity	0.70	0.68	0.60	0.53	0.76	0.72	0.55	0.56	0.70	0.57
(Probability)										
Toxicity end points										
Carcinogenicity	0.55	0.52	0.51	0.56	0.57	0.55	0.69	0.51	0.55	0.54
Immunotoxicity	0.55	0.95	0.85	0.90	0.98	0.88	0.67	0.72	0.77	0.84
Mutagenicity	0.57	0.51	0.50	0.54	0.51	0.51	0.56	0.70	0.57	0.65
Cytotoxicity	0.64	0.73	0.63	0.69	0.88	0.76	0.69	0.69	0.64	0.65
Nuclear receptor sign	alling pat	hways								

Aryl hydrocarbon Receptor (AhR)	0.59	0.65	0.62	0.54	0.59	0.59	0.53	0.58	0.59	0.66
Androgen Receptor	0.93	0.92	0.94	0.95	0.94	0.95	0.98	0.97	0.93	0.95
(AR)										
Androgen Receptor	0.95	0.97	0.91	0.91	0.88	0.95	0.92	0.98	0.95	0.94
Ligand Binding										
Domain (AR-LBD)										
Aromatase	0.68	0.78	0.59	0.68	0.92	0.83	0.69	0.82	0.68	0.81
Estrogen Receptor	0.52	0.53	0.77	0.78	0.83	0.68	0.72	0.57	0.52	0.57
Alpha (ER)										
Estrogen Receptor	0.92	0.88	0.90	0.91	0.98	0.97	0.87	0.83	0.92	0.80
Ligand Binding										
Domain (ER-LBD)										
Peroxisome	0.93	0.95	0.77	0.75	0.96	0.93	0.80	0.95	0.93	0.90
Proliferator										
Activated Receptor										
Gamma (PPAR-										
Gamma)										
Stress response path	ways									
Nuclear factor	0.88	0.86	0.76	0.76	0.83	0.88	0.64	0.74	0.88	0.82
(erythroid-derived										
2)-like 2/antioxidant										
responsive element										
(nrf2/ARE)										
Heat shock factor	0.88	0.86	0.76	0.76	0.83	0.88	0.64	0.74	0.88	0.82
response element										
(HSE)										
Mitochondrial	0.58	0.60	0.52	0.52	0.64	0.61	0.59	0.51	0.58	0.55
Membrane										
Potential (MMP)										
Phosphoprotein	0.65	0.63	0.51	0.52	0.67	0.63	0.62	0.51	0.65	0.69
(Tumor Suppressor)										
p53										
ATPase family AAA	0.80	0.72	0.88	0.88	0.82	0.80	0.87	0.84	0.80	0.74
domain containing										
protein 5 (ATAD5)										
Toxicity Target	Amine	Amine	Amin	Amin	Amin	Amin	-	Amin	Amin	-
	Oxidas	Oxidas	е	е	е	е		е	е	
	e A	e A	Oxida	Oxida	Oxida	Oxida		Oxida	Oxida	
			se A	se A	se A	se A		se A	se A	

Weak Active, Strong Active, Weak Inactive, Strong Inactive

	Rilpivirine	Dolutegravir	Glecaprevir	Grazoprevir	Paritaprevir
Predicted LD50: mg/kg	2450	1600	68	68	200
Prediction accuracy: %	67.38	54.26	23	54.26	54.26
Organ Toxicity	·	·		•	·
Hepatotoxicity	0.55	0.76	0.56	0.59	0.51
(Probability)					
Toxicity end points			-	1	
Carcinogenicity	0.69	0.62	0.58	0.58	0.63
Immunotoxicity	0.94	0.98	0.96	0.99	0.99
Mutagenicity	0.60	0.56	0.64	0.62	0.63
Cytotoxicity	0.76	0.62	0.50	0.54	0.54
Nuclear receptor signalling path	nways				
Aryl hydrocarbon Receptor (AhR)	0.66	0.89	0.90	0.87	0.90
Androgen Receptor (AR)	0.99	0.94	0.94	0.92	0.95
Androgen Receptor Ligand Binding Domain (AR-LBD)	0.98	0.97	0.91	0.93	0.93
Aromatase	0.82	0.88	0.83	0.92	0.94
Estrogen Receptor Alpha (ER)	0.61	0.84	0.87	0.88	0.89
Estrogen Receptor Ligand Binding Domain (ER-LBD)	0.95	0.95	0.95	0.97	0.97
Peroxisome Proliferator Activated Receptor Gamma (PPAR-Gamma)	0.98	0.97	0.92	0.85	0.88
Stress response pathways					
Nuclear factor (erythroid- derived 2)-like 2/antioxidant responsive element (nrf2/ARE)	0.96	0.95	0.88	0.88	0.92
Heat shock factor response element (HSE)	0.96	0.95	0.88	0.88	0.92
Mitochondrial Membrane Potential (MMP)	0.81	0.76	0.62	0.61	0.73
Phosphoprotein (Tumor Suppressor) p53	0.84	0.76	0.85	0.85	0.87
ATPase family AAA domain containing protein 5 (ATAD5)	0.83	0.94	0.92	0.95	0.95

Table S7: Predicted data of toxicity of some FDA approved anti-viral drugs⁵

References

- Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J.Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- Daina, A.; Michielin, O.; Zoete, V., SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, *Scientific Reports*, 2017, 7, 42717
- 3. Sousa; S. F.; Fernandes, P. A.; Ramos, M. J. Protein-ligand docking: current status and future challenges. Proteins. **2006**, *65*, 15-26.
- 4. http://predherg.labmol.com.br/
- 5. http://tox.charite.de/protox_ll/index.php?site=compound_input