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Reviewer reports: 

 

We would like to thank the reviewers for carefully reading our manuscript and for their valuable comments 

which we addressed point-by-point as listed below. 

 

Reviewer #1: [Overall comment] 

I'd like to appreciate the author's effort to improve the manuscript. Overall, the manuscript was edited in a 

clear way.  

Background were remarkably improved by adding detail examples from the previous studies.  

Conclusion section helps readers understand major challenges better.  

I'd like to suggest minor comments and ask simple questions.  

 

[Major comment] 

Configuration of the manuscript 

There are four main points for computational melanoma models; (1) Melanoma heterogeneity, (2) Melanoma-

type specificity, (3) the balance between simplicity and thoroughness, and (4) Melanoma data integration and 

evidence. They were not highlighted well in the manuscript. I think the configuration of the manuscript is 

required to reveal the four challenges.  

In addition, it doesn't need to be numerated because section 3 has only one subsection.  

Section 4 has 10 subsections which are too many subsections compared to other sections.  

For example, I think section 4 can be divided into three subsections such as 4.1-4.3, 4.4-4.6, 4.7-4.10. I 

suggest to consider the configuration of the manuscript especially for section 3-4 to highlight the main results. 

Thank you very much for this advice. We restructured the paper accordingly and provide a better and more 

evenly spaced review. We also adjusted introducing and summarizing sentences. The main purpose of the 

review is to get an overview on melanoma-specific computational models to stimulate improvements in all 

parts. We feel that the reviewed problem-tailored research work should be valued individually in their specific 

context. All four mentioned challenges apply to any chapter in the maintext. While the main text follows 

closely model structures along the respective medical perspective, the discussion opens an additional 

dimension to crosslink the reviewed article according quality and interdisciplinary challenges. We thus 

abstained from re-iterating again in the discussion on each model which would make the discussion too lengthy 

from our point of view. The review is now structured as follows: 



  

 

[M inor comment] 

1. The Melanoma Gene Database (MGDB) was addressed in section 1 for the first time. Reference [175] can be 

cited in P2 line 52.  

We corrected this accordingly. 

2. In section 2, melanoma-specific modeling studies were introduced. I think it's better to describe why 

melanoma-specific modeling is important as authors explained from the reference [163] in Discussion in P9 line 

5-10. 

There is a difference between the first and the latter. The frequently occurring term “melanoma-specific” 

generally describes the larger group of melanocytic tumours and is the level of most reviewed research work. 

It is basically explained by the title of the review. In contrast, we used the term  “melanoma-type specific” in 

the discussion because we believe that most papers do not tackle an actual disease but rather a group of many 

diseases. Now, it is not reasonable to take parameter from disease A, the initial condition from disease B, and 

to compare this with data of disease C.  

3. In P3 line 56-60, authors described that "the interactions with the environment, the restriction to only one 

cell line, … in decision-making [42]." It's not clear why physicians might feel difficult to be supported in 

decision-making.   

We agree. We also found that the sentence is rather fits into the discussion and thus removed it here. 

The answer to this question has many facets and depends on how far each modelling discipline currently is. Of 

course, experts know all the details of their subject and do not need help from outside. However, it might be 

beneficial to hardcode the expertise and see whether it aligns quantitatively with data and to proof that an 



understanding/research hypothesis is predictive. Integrating data to get predictive models becomes especially 

important if new evidence accumulates faster that experts can assess and evaluate or if interdependencies 

become too numerous. However, as long as the expertise is not sufficiently considered and models are not set 

up fast enough in sufficient quality, models will not be very useful for decision-making.  

4. In P4 line 48, the role of "Akaike information criterion" was not clearly written. It is well known that a 

model selection procedure can be applied by using Akaike information criterion (AIC). I'd like to ask to 

describe how AIC was used.  

Thank you very much for pointing this out. We removed the hint to the AIC to avoid distraction from the scope 

of the review.  Moreover, the problem was rather that neither AIC nor a similar approach had been used. Thus, 

AIC was suggested as one of many ways to improve model quality. However, naming only one way without 

giving a whole picture might unintentionally overlook important research work on model selection procedures 

and might not live up to the expectations of the reader.  

 

Reviewer #2: I am satisfied with revision made by the reviewers. I think their paper will be a good addition to 

TBMM. 

 

Response to the reviewers: 

- The following change made me confused: "The unique oxygen patterns in skin, the tendency of melanocytes 

to proliferate better in mild hypoxic conditions, the strong oxygen consumption of melanoma cells, or the 

importance of driver mutations found a rare propagation in the modeling community, […]" Why is it a rare 

propagation in the modeling community? For example, one the latest papers of "Lahouel et al Vogelstein, 

Geman, Tomasetti 2019 Revisiting the tumorigenesis timeline with a data-driven generative model PNAS" and 

recently published "Rozhok deGregori 2019 A generalized theory of age-dependent carcinogenesis eLife" are 

both in between modeling and data, with implementation of concept of driver mutations. I agree it can be 

viewed a bit distant from approaches of systems biology to carcinogenesis, but the authors could be careful in 

choosing their words and not to call it "rare". 

Thank you very much for this comment. We rephrased the assessment accordingly: 

͞The unique oxygen patterns in skin [], the tendency of melanocytes to proliferate better in mild 

hypoxic conditions [], the strong oxygen consumption of melanoma cells  [], or the importance of 

driver mutations in this highly mutated cancer type [] are further factors, which might find more 

consideration by modelers of melanoma. might find also more consideration  found a rare 

propagation in the modeling community, which too often copies 

Minor:  

- I recommend to re-phrase the title a bit, because "approaches" may be the verb, and every time I read it I 

stop in the middle with some confusion. Maybe "Approaches of systems biology...". But then, approaches to 

what exactly? 

We rephrased the title to “Computational Models of Melanoma” 

- L12: I would recommend to rephrase "their melanoma research questions", because it sounds like research 

questions regarding melanoma of a reader. 



We rephrased to: ͞ […] to addƌess theiƌ ƌeseaƌĐh ƋuestioŶs aďout ŵelaŶoŵa͟ 
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Computational Models of Melanoma
Marco Albrecht1, Philippe Lucarelli1, Dagmar Kulms2 and Thomas Sauter1*

Abstract

Genes, proteins, or cells influence each other and consequently create patterns, which can be increasingly

better observed by experimental biology and medicine. Thereby, descriptive methods of statistics and

bioinformatics sharpen and structure our perception. However, additionally considering the interconnectivity

between biological elements promises a deeper and more coherent understanding of melanoma. For instance,

integrative network-based tools and well-grounded inductive in silico research reveal disease mechanisms,

stratify patients, and support treatment individualization. This review gives an overview of different modeling

techniques beyond statistics, shows how different strategies align with the respective medical biology, and

identifies possible areas of new computational melanoma research.

Keywords: melanoma; systems biology; physical oncology; tumor growth

1 Background
Melanoma is a neoplasm of the skin and originates
from transformed melanocytes. It causes the loss of
1.6 million disease-adjusted life-years worldwide, and
the incidence rate will increase in the next decades [1].
Since the discovery of the high prevalence of mutations
in b-Raf proto-oncogene (BRAF) and NRAS proto-
oncogene, GTPase (NRAS) [2, 3], small-molecule in-
hibitors such as dabrafenib and vemurafenib were de-
veloped. More recently, immunotherapies, with anti-
bodies binding immune receptors like the cytotoxic T-
lymphocyte associated protein 4 (CTLA4) or the pro-
grammed cell death 1 (PDCD1), have proven clinically
effective [4]. However, many drug resistance mech-
anisms occurred and represent a major problem in
both targeted therapy and immunotherapy [5, 6, 7].
As a result, life expectancy remains low. The two-
year survival rate is 53.5% for combined BRAF +
mitogen-activated protein kinase kinases (MAP2K) in-
hibitors and 63% for combined CTLA4 + PDCD1 im-
munotherapy [8]. Consequently, a deeper understand-
ing of disease mechanisms is still demanded.
An approach to better understand causative rela-
tions, to check hypothesis consistency, but also to
reveal missing qualitative information is construct-
ing evidence-based models of these biological sys-
tems [9]. Models depict several interconnected biolog-
ical elements with a structure, which is derived from
the current understanding, and parameters, which are

*Correspondence: thomas.sauter@uni.lu
1Systems Biology Group, Life Science Research Unit, University of

Luxembourg, 6, avenue du Swing, 4367 Belval, Luxembourg

Full list of author information is available at the end of the article

based on data. While many life-scientists still rely
on straight-forward relationships between observation
and insight to extend their knowledge, leading sci-
entists report that the direct link between observa-
tion and insight seems to fade [10]. Thus, experimen-
tally proven relationships are increasingly transferred
into the language of mathematics to enhance our un-
derstanding of experimental findings and underlying
causes.
Cancer scientists can benefit from well-designed com-
putational models, whereby systems biologists deliver
models of cancer biochemistry, and physical oncolo-
gists provide models of tissues. Systems biology helps
understanding how biochemical pathways change dur-
ing melanoma cell proliferation, invasiveness, survival,
and drug resistance based on network structure and
dynamic behavior [11]. By contrast, physical oncology
helps understanding how transport, growth, and defor-
mations in tissues occur and is characterized by prin-
ciples of geometry and mechanics [12, 13].
In this review, we tried to gather all published com-
putational models of melanoma and describe them re-
garding their contribution to the field. In particular,
we focus on the interconnection of system elements or
network characteristics while omitting classical statis-
tics and bioinformatics of melanoma. By sorting mod-
els and methods around the topic of melanoma, we
intend to support readers in finding the most appropri-
ate mathematical models to address their melanoma-
specific research questions. Additionally, the review
shall describe potentials for improvement, encourage
readers to discover potential extensions, and create
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awareness of wholly missing melanoma topics to be
tackled in the next decade. However, even if some
models seem simplistic in biology, they often repre-
sent technically challenging stepping-stones for more
biologically meaningful models in the future. Conse-
quently, reviewing the currently existing models shall
help to push forward the modeling and computational
characterization of melanoma.
The review is structured as follows: Network-based
approaches are explained in section two and contem-
plated by melanoma-specific repositories. The com-
plex interaction between molecular players requires
network-based approaches to suggest novel key inter-
vention strategies, to stratify patients, and to individ-
ualize patient treatment. In section three, the dynamic
changes in cell count of different melanoma cell types,
immune cells, and fibroblasts are modeled and con-
templated by stimulating or inhibiting effects between
cells. Such cellular models represent another way to
achieve therapy individualization and patient stratifi-
cation. Section four leads to geometrical effects which
will be augmented by the mechanics of melanoma in
section five. Further aspects of oxygen, nutrient, and
drug transport are presented in section six. The con-
fined, spatial, and physiological tissue environment
is relevant for tumor growth prognosis, drug deliv-
ery, surgery, and dermoscopic pattern recognition. All
available computational melanoma models are listed
in Supplemental Table 1 and organized, as shown in
Figure 1.

2 Molecular networks
Molecular networks represent larger sets of molecules
in an interconnected manner and go beyond the sta-
tistical significance of single features and the gene-set
enrichment analysis paradigm [20]. Network science
shows how biological functions emerge from the in-
teractions between the components of living systems
and how these emergent properties enable and con-
strain the behavior of those components [9]. In order
to explore this rich information source, system biol-
ogy provides frameworks tailored to each commonly
known -omics data type. Melanoma-specific -omics
data can be obtained from genomic [21, 22] and pro-
teomic studies [23] but also from the secretome [24]
or the metabolome [25, 26]. Because multiple -omics
data are rarely integrated with a systems-centered ap-
proach [27], the following studies and repositories are
only a starting point.

2.1 Repositories to inform network models

Published knowledge in the form of structured and
centralized searchable databases facilitates model de-
velopment. Beside general sources for system biologists

[15], melanoma-specific databases are available (Table
1). The Melanoma Molecular Map Project (MMMP)
is an open-access, participative project that struc-
tures published knowledge about molecules, genes,
and pathways to enable translational perspectives [16].
The MelGene project provides an easily searchable
database of genetic association studies of cutaneous
melanoma, as well as a meta-analysis for many poly-
morphisms [17]. The MelanomaDB database lists pub-
lished genomic datasets, including clinical and molec-
ular information, and allows the creation of gene lists
by merging selected studies [18]. The Melanoma Gene
Database (MGDB) provides extensive entries about
527 melanoma-associated genes (422 protein-coding),
including epigenetic and drug-related evidence [175].
Attention is required when using these databases,
which accumulate data from multiple sources, some-
times in an automated manner, and are thus suscep-
tible to perpetuate the biases and errors of the data
source [19].

2.2 Models for melanoma genomics

The melanoma-specific repositories contain mainly ge-
netic data with not yet fully identified patterns. The
mutation pattern within the genome of metastatic
melanoma can be used to find mutually exclusive gene
modules [28]. If two proteins are related in an inter-
action network and their genes are mutated in a way
that one gets amplified while the other gets deleted or
only one gets modified without the other, one could
presume that this happens to intensify cancer path-
ways at the protein level under given pathophysiolog-
ical pressure. Consequently, one can conclude that a
protein inhibits or activates the other in a known inter-
action network. The pathophysiologic pressure on can-
cer protein pathways selects mutation patterns with
survival benefits. One analysis of The Cancer Genome
Atlas (TCGA) melanoma samples integrated somatic
mutations with copy number alterations and found
concomitant deregulation of the G-protein and MAPK
signaling pathways [29]. Similarly, integrated genomic
and epigenomic analyses have been used to classify
melanoma brain metastases in different mutually ex-
clusive molecular subtypes [30].

2.3 Models for melanoma transcriptomics

The melanoma transcriptome is more context-specific
than the genome and easier to measure than the pro-
teome. The pattern changes can be used to strat-
ify patients or to identify drug targets. Beyond this,
they can give an impression of the re-wiring of path-
ways. Barter et al. applied three different strategies
(single genes, gene sets, and network analysis) to 47
melanoma microarray datasets. They concluded that
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network methods do not perform better overall, that
these different approaches tend not to classify pa-
tients consistently, and that the optimal method might
have to be identified patient-specifically [31]. Wang
et al. performed 45 siRNA screens of the A375 cell
line, whole-genome sequencing, and Bayesian gene net-
work interference to enable directional and synergistic
conclusions. Similar to Barter’s findings, the network
hubs alone were not sufficient to better stratify pa-
tients. However, if the network hubs are contextual-
ized with cell-cycle and deoxyribonucleic acid (DNA)-
repair function, the prediction of an individual progno-
sis is possible [32]. The concept of pathway re-wiring is
based on the following reasoning. Some mutations can
cause modified protein structures, which in turn can
alter the links between the proteins without a change
in protein concentration levels. Two proteins are in-
teracting if the transcript level change of one protein
correlates or anti-correlates with the transcript level
change of another protein. When co-expression gets
lost, the connection gets lost, and the connectivity re-
duces. When two unrelated proteins show a new co-
expression in the next progression stage, the connec-
tivity increases, and a pathway re-wiring can be as-
sumed. This network analysis can be performed in-
dependent of significantly changed differential expres-
sion and fold changes. Kaushik et al. followed this
strategy and meta-analyzed 632 melanoma microar-
ray samples with melanoma progression stages: nor-
mal skin, non-metastatic (radial and vertical growth
phase), metastatic, and lymph node metastases [33].
They diversified the clinical relevant groups by pool-
ing the data of tissue samples with untreated and
cisplatin-treated melanoma cell lines and melanocytes.
The extracted re-wired pathway hubs were subse-
quently checked for drugability, which is important as
many promising targets cannot be influenced pharma-
cologically [34].

2.4 Models for melanoma proteomics

The proteome directly mirrors cellular function. Ge-
nomic and transcriptomic data do not show the post-
transcriptional, translational, and further epigenetic
changes and are thus limited in their representation of
final physical processes. Proteomic data is, e.g., very
beneficial for modeling the signal transduction such
as MAPK or phosphatidylinositol-4,5-bisphosphate 3-
kinase catalytic subunit alpha (PIK3CA) pathway
[35]. In the context of melanoma, most studies aim
either at understanding resistance mechanisms or at
the responses to particular compounds.
For example, it was possible to predict with high ac-
curacy the apoptosis susceptibility of 11 melanoma
cell lines to TRAIL and dacarbazine (DTIC) using 17

protein measurements. This was achieved by grouping
measurements in pathway-inspired functional groups
and using these in multivariate statistical analysis [36].
Resistance in melanoma cell lines was studied with
data-driven modeling and multivariate statistics. 21
phosphoproteins were measured over time in a panel of
10 cell lines subjected to different doses of five different
RAF/MAP2K inhibitors [37]. This led to the identi-
fication of an early down-regulation of the mitogen-
activated protein kinase 8 (MAPK8)[1]/jun proto-
oncogene, AP-1 transcription factor subunit (JUN)
pathway upon RAF/MAP2K inhibition, but an up-
regulation in six cell lines at later time points. This
study showed that a fraction of treated cells become
quiescent and apoptosis-resistant. The same group fur-
ther validated these results and suggested targeting
MAPK8, protein tyrosine kinase 2 (PTK2), or SRC
proto-oncogene, non-receptor tyrosine kinase (SRC) to
inhibit this particular drug-resistant phenotype [38].
Bernardo-Faura et al. used Fuzzy Logic to investigate
the temporal network re-wiring in A375 cells in re-
sponse to different kinase inhibitors. The authors used
a prior-knowledge network to simulate the behavior of
the cells over time, and detected discrepancies at spe-
cific time-points between the model predictions and
the measurements. This work, as well, underlines the
importance of the MAPK8 pathway in early drug-
induced changes in signaling pathways [39].
Del Mistro et al. studied the signaling network changes
in phosphor-proteomic data due to underlying resis-
tance of mutated BRAF melanoma cell lines to sub-
lethal tumor necrosis factor related apoptosis induc-
ing ligand (TRAIL) receptor-targeted agonist IZI1551.
Systemic network analysis with Dynamic Bayesian
modeling identified X-linked inhibitor of apopto-
sis (XIAP) and interleukin 21 (IκBα) as potential
drug targets. Consequently, targeting these nodes in
the subsequent experimental validation led to a re-
sensitization of the cell lines [40].
Another comprehensive study is about the impact
of MYC proto-oncogene, bHLH transcription factor
(MYC) on the proteome and drug resistance, which
lead to the identification of a co-targeting strategy
[41].

2.5 Models for melanoma metabolomics

The metabolic state is the consequence of proteomic
function and environmental conditions such as nutri-
ent and oxygen shortages. Metabolite concentrations
can be obtained with robust measurements, and well-
established methods are available (Antoniewicz, 2015).
Notably, Scott et al. used metabolic flux analysis to
characterize the response of seven melanoma cell lines

[1]Also known as c-Jun N-terminal kinases JNK
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to hypoxia [43]. They showed the crucial roles of both
Warburg and Pasteur effects in melanoma and paved
the way for the therapeutic targeting of metabolism.
While the Pasteur effect describes reduced glycolysis
with increased oxygen, the Warburg effect refers to
cancer cells performing glycolysis despite the presence
of oxygen [44]. Future studies might further combine
metabolic modeling with other omics-data.

2.6 Mechanistic network models for melanoma

Completely validated mechanistic network models of
melanoma seem not been published yet, but a valid
Boolean model of melanogenesis covers both ker-
atinocyte and melanocyte signaling. Lee et al., thereby,
imposed increasing ultraviolet B (UVB) light intensity
and modeled the cellular response to it. The simulated
profiles of the protein levels were individually com-
pared to literature to check qualitative plausibility.
Lee et al. demonstrated the central role of catenin
beta 1 (CTNNB1) in the regulation of both melano-
genesis and apoptosis. This prediction was then val-
idated using UVB-exposed reconstituted human skin
equivalents [45]. Moreover, a system of ordinary differ-
ential equations (ODE) was used to model the MAPK,
PIK3CA/AKT serine/threonine kinase 1 (AKT1), and
other pathways with 48 species and 48 biochemical re-
actions [46]. The model was an extension of the model
of PC-12 (rat adrenal gland) cells and [47] shows that
increasing dabrafenib concentrations cause declining
pERK concentration but in unphysiological ranges.
Future ODE-based modeling of melanoma signaling
would ideally improve the balance between model size
and melanoma-specific data to enable robust predic-
tions. Sensitivity analyses and a model selection pro-
cedure might help to suggest key mechanisms and in-
tervention strategies.

As described in this section, the network informa-
tion can be used to stratify patients, to find druggable
targets, and to understand the impact of therapy on
the biochemical pathways. The next section describes
models to inter-connect cells instead of molecules. Cell
population models are used to find coherencies be-
tween cell culture and clinical patient populations or
to understand the immune system at the whole-body
level.

3 Cell population models: bridging cell
culture to clinics

Melanoma cells are not isolated entities and inter-
act with keratinocytes, fibroblasts, and immune cells.
Moreover, melanoma cells might be divided into sub-
types or phenotypes. Population models often describe
the interaction between them, e.g., how the abundance

of one cell population influences the abundance of an-
other cell population. A subset of these models inte-
grate cell culture data; another subset of these models
are experimentally adjusted with human or murine in

vivo data.

3.1 Melanoma models can mimic the interplay of cell

types

Flach et al. studied the interplay of melanoma cells,
stromal fibroblasts, and stromal fibronectin. In their
interpretation, free melanoma cells at the stromal in-
terface activate fibroblasts to get mechanical support.
The mechanically supported cells proliferate until they
become blocked due to space limitations, albeit the
space limitation is simplified to state values in this
ODE network model [48]. Accordingly, several studies
point to the crucial role of extracellular matrix (ECM)
remodeling, fibronectin, and PTK2 signaling in driv-
ing resistance to BRAF inhibitors [49, 50]. This con-
ceptual model of Flach et al. has been refined, vali-
dated, and extended to BRAFi and PTK2i therapy
[51]. The results allowed a deeper understanding of the
role of stroma during acquired resistance and its po-
tential role during targeted therapy in drug-resistant
patients [48, 51]. The same group worked on a dynamic
autophagy model with AKT1i therapy for melanoma
[52]. After cell culture and clinical patient data had
been integrated into the autophagy model and key
stratification parameters were identified. Stratification
parameters could either accompany clinical trials or
support treatment choice. Another melanoma cell pop-
ulation model is provided by Sun et al. with an excel-
lent description of the parameter origin. The consid-
ered cell types are BRAFi sensitive, BRAFi resistant,
and may or may not enter the metastatic cell state af-
ter the initiation of drug treatment. Cells grow until a
maximum cell burden. The set of stochastic differen-
tial equations with 19 parameters is experimentally ad-
justed via circulating tumor cell DNA and melanoma
cell line data. Progression-free survival is set equal with
the melanoma cell concentration for simplicity [53],
whereby more data might allow a more clinical rele-
vant linkage between these two. Future models with
integrated pharmacokinetic elements might consider
clinically relevant pharmacokinetic models [54].

3.2 Cell interplay is studied for melanoma immunology

Cell population models for the interplay of melanoma
cells with immune cells are helpful as melanomas are
highly immunogenic tumors [55]. This high immuno-
genicity is the reason for the success of therapies
based on immune activation in this tumor type. In-
deed, melanoma was the first cancer type for which an
immune checkpoint inhibitor and an oncolytic virus
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were approved [56, 57]. As such, several computa-
tional models have been specially developed to study
the interplay between immune and melanoma cells.
For example, several ODE systems were devised to
model melanoma with Th1 and Th2 helper lympho-
cytes [58], with natural killer cell (NK) cells in the
context of interleukin 21 (IL21) therapy [59], with M1
and M2 macrophages [60], or both macrophages and
helper lymphocytes [61]. Also, vaccine strategies based
on dendritic cell therapy for melanoma were modeled
with a multi-compartment ODE system to define ade-
quate doses and schedules [62]. However, one drawback
of these models is that the patients’ intrinsic variables,
key determinants in immune-related therapies, are not
taken into account [63]. One study took into account
the genetic signatures being associated with resistance
to immunotherapies. The parameterized ODE model
suggested co-adjuvants for successful vaccine therapies
[64]. In another study, Pappalardo et al. implemented
an on-grid cellular automaton model of melanoma, in
which melanoma cells interact with macrophages, T
cells, and dendritic cells in different cellular states.
Pappalardo et al. highlighted the role of TNF recep-
tor superfamily member 9 (TNFRSF9) for successful
therapy and adjusted their model with experimental
mice data of activated or resting OT1 T-cells and anti-
TNFRSF9 antibodies in B16 melanoma [65]. Given
the size of the model, additionally experimental data
would further improve model parameterization and ro-
bustness [66].

In summary, cell-population models can combine clin-
ical and cell culture data and might support the deter-
mination of an individualized drug regimen based on
cellular dynamics. While these models are suitable for
freely acting cells, tumors are frequently restricted by
the ECM and anatomical space limitations. These ef-
fects were simplified by three models mentioned above
[48, 65, 51]. While one refers to three-dimensional (3D)
spheroid growth in collagen gel, two refer to tumor size
in mice. Tumor growth is more complex and requires
spatial, mechanical, and physiological characteristics
being addressed in the following three sections.

4 Spatial models for melanoma
The spatial tumor expansion in tissue has played a
subsidiary role heretofore. In the following, spatially
distributed factors of lesion and environment are ad-
dressed. For instance, spatial patterns in dermoscopic
pictures can be used to classify a particular lesion to
obtain hints for prospective growth and the necessity
of surgical intervention. Subsequently, combining cell-
population models with geometry provide insights into
the success of surgical therapy. When focussing on the

cellular level, the collocation of cells can partly point
to factors with the most control cell mass expansion.
However, a more in-depth look at histological features
of skin and other host tissues reveal that solely geomet-
rical solutions may not be sufficient as mechanical cues
significantly impact deformation and development.

4.1 Pattern recognition of melanoma

The pattern of naevi and melanoma in situ are the
physical consequence of biochemical processes in the
epidermis and are usually assessed and classified in
dermatology to initiate early therapy. The related pat-
terns can be modeled in two dimensions using a mix-
ture theory model [101]. The study shows how dif-
ferent patterns of malignant cells can form within a
healthy cell environment. two-dimensional (2D) pat-
terns of naevi and melanoma can also be subjected
to planar linear transformations using two subsequent
dermoscopy pictures. Those pictures allow the classi-
fication of melanoma growth rates and naevi symme-
try [141]. The ABCD criteria for melanoma have been
mathematically considered too [142]. Automated op-
tical classification of naevi and melanomas is a fast-
growing field and employs machine learning methods
for image recognition. The sensitivity and specificity of
these models matched the decision quality of derma-
tologists [143, 144, 145]. Specific features in 2D der-
moscopy pictures can also be used to determine the
Breslow depth with specificity and sensitivity of almost
100%, which has direct prognostic value [146]. further-
more, the depth of invasion is an important prognos-
tic marker for patient survival, and the Breslow in-
dex can be determined manually or automatically from
histopathological images [144, 147].

4.2 Models of surgical treatment

Surgical treatment is the consequence of early identi-
fied melanomas. Wide excision of primary melanoma
can have counter-intuitive ramifications according to
the reaction-diffusion model of Eikenberry et al.. The
surgical resection of primary melanomas might include
tumor-associated immune cells, which lead to an ac-
celerated outgrowth of local metastasis due to reduced
immune suppression [148]. Computational models are
also used to assist image-guided and computer-assisted
surgery, mainly for the brain [149]. The brain, besides
lung and lymph nodes, is a preferred host tissue for
metastatic melanoma [75].

4.3 Dissecting parameters in spatial models is a

challenge

Fully experimentally validated models of melanoma
expansion are still limited to simple Petri dish ex-
periments. In a series of reports, Treloar et al. use a
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lattice cellular automaton model and an experimental
approach to identify different parameters of MM127
colony growth where cell motility, cell–to–cell adhe-
sion, and cell proliferation influence the same: the ex-
pansion of the cell colony [67, 68]. These parameters
were also estimated using a Bayesian framework cou-
pled with a stochastic model of 2D melanoma growth
[69]. Using melanoma and fibroblast monocultures as
well as different co-culture systems, Haridas et al. have
parameterized a partial differential equations (PDE)
model of the interactions of cancer cells and fibroblasts
[70]. Continuous modeling of melanoma cells under dif-
ferent osmotic pressures was performed with a 2D lat-
tice model to simulate scratch assays [71]. The aim
was to distinct migration/invasion between primary
and metastatic cells. New vertex modeling strategies
[72] and scratch assay analysis tools [73] might further
improve this approach.

4.4 Spatial organization of skin and confined spaces

The previously described spatial parameter determina-
tion strategy for cell lines is especially helpful for the
epidermal skin layer. However, the skin is more com-
plex and also contains irregular fibrous tissue beneath
the epidermal layer separated by a collagenous base-
ment membrane [74]. At the dermal-epidermal junc-
tion, keratinocytes are generated and migrate through
the epidermis up to the skin surface, where they ker-
atinize to the stratified protective barrier called stra-
tum corneum. The epidermal layer is also the most
common location for melanoma initiation. Residing
melanocytes can become benign neoplasms and ap-
pear as innate or acquired naevi [75]. Further changes
and appearing atypical cells constitute the first malig-
nant stage: the radial growth phase. From the clinical
perspective and the perspective of modeling, the base-
ment membrane is crucial. Invasion through the base-
ment membrane indicates the vertical growth phase,
which may require adjuvant therapy besides surgical
treatment. Pharmacological therapy is indicated for
metastatic growth in secondary tissues. In contrast to
the epidermis, the dermis layer is streaked with colla-
gen and elastin fibers synthesized by fibroblasts [76],
and these ECM fibers restrict tumor expansion [77].
Using colony growth in 2D cell culture experiments
does not lead to quantitative parameters for spatial
models representing stromal processes. For example,
migration velocity depends on the ECM fiber geom-
etry [78], the migration process is fundamentally dif-
ferent in confined structures [79], and depend on the
paxillin (PXN) and transforming growth factor beta
1 induced transcript 1 (TGFB1I1) balance related to
PTK2 [80]. Moreover, BRAF inhibition promotes ma-
trix metalloproteinases (MMP) activity and cell mi-
gration in three dimensions [81]. A consequent experi-
mental parameterization of realistic melanoma growth

models is difficult to find and is aggravated by the
diversity of parameter origin and their mutual depen-
dency, as shown by Treloar et al. [67, 68]. The model-
ing of the tumor microenvironment has to consider ad-
ditional factors like extracellular matrix stiffness and
topography, oxygen and nutrients gradients, and inter-
stitial fluid pressure [162].

5 Mechanical models of melanoma
Mechanical cues in the environment influence directly
important biochemical cancer pathways and have a
complex impact on tumour progression [87, 14]. Conse-
quently mechanical models become more attention and
three methods will be presented in the following such
as mixture theory, the thermodynamically constrained
averaging theory (TCAT), and the discrete ansatz with
cross-linked elastic cells. These three methodologies
can mimic the growth in tissues, while a tissue without
any malignant contortions is already a complex mod-
elling task [107]. As the integration and measurement
of mechanical cues is not yet widely used, a summary
of experimental methods is given.

5.1 Impact of mechanoregulation

In three dimensions, additional factors impair drug
sensitivity [49, 82] and increase or decrease the tu-
mor growth rate [83]. The stromal environment causes
non-genetic phenotype switches between proliferative
and mesenchymal stages [84, 85], and environmen-
tal melanoma-associated fibroblasts are suspected of
playing an essential role in melanoma progression
[86]. Fibroblast activity is closely linked to ECM
and thus biomechanics, which is now recognized as
a central pillar of tumor progression and metastasis
[87, 14]. Mechanical melanoma models consider the
growth-induced deformation of the ECM rich envi-
ronment. The more the proliferating mass expands,
the more counterforce is generated by the connected
ECM fibers. The elastic energy is conserved and ge-
ometry dependent [77]. The mechanical deformation
of tissues and mechanical stress influence intracellular
signaling by mechano-sensors like PTK2 [88] or YY1
associated protein 1 (YY1AP1)/tafazzin (TAZ) [89],
which are discussed as drug resistance mechanism for
BRAF-mutant melanoma cells [38, 49, 90] or progres-
sion marker for cutaneous and G protein subunit al-
pha q (GNAQ) mutant uveal melanoma [91, 92, 93].
Proximity to mechano-regulating fibroblasts can in-
duce pathway changes to PIK3CA/mechanistic target
of rapamycin kinase (MTOR) and switch the pheno-
type of melanoma cells to the mesenchymal state [94].
Consequently, melanoma cells reduce the inherent stiff-
ness to facilitate invasion [95, 96]. However, our knowl-
edge of mechanosensitive pathways is far from com-
plete [97, 98, 99, 96], and mechanical phenomenons
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require computational models to comprehend.
Additionally, the skin, being the primary site for cu-
taneous melanoma, is a mechano-sensitive organ. Skin
can grow when it is stretched, and rete ridges, projec-
tions of the epidermis into the dermis, were recently
suspected to form according to mechanical character-
istics [76]. The skin has inspired many computational
models describing dermal transport processes as well
as providing a mechanical understanding of the skin’s
optical, functional, and structural characteristics [100].

5.2 Mixture theory

Two mixture theory models exist. One describes the
skin surface, and one mimics the vertical section
[101, 102]. Balois et al. consider interstitial fluid pres-
sure, a mechanically optimal cell density, and fric-
tion between the melanocytic lesion and the surround-
ing. Ciarletta et al. represent melanoma in the radial
growth phase in the ECM free epidermis as a viscous
fluid sliding on a basement membrane with friction de-
pendent growth velocity. In a second step, this friction
is neglected and instead considered between the base-
ment membrane and an additional keratinocyte repre-
senting fluid. Melanoma cell and keratinocyte fluid are
adjacent to each other, and the tumor front between
them is a moving interface/ free boundary problem
subjected to stability analysis.

5.3 TCAT theory

TCAT models [103] represent a multi-phase approach,
which is different from mixture theory and circumvents
the free boundary problem. TCAT models do not have
a defined tumor boundary at the macro-scale, but the
ECM spans the whole tissue, with a higher concen-
tration at the basement membrane. The interstitial
fluid, the healthy, and the malignant cells squeeze via
local rules through the solid but deformable porous
ECM network. Averaging of local properties causes
a macroscale behavior that resembles the distortion
of the tissue and the invasion of the basement mem-
brane. By adjusting the cancer cell plasticity but not
ECM integrity, the model changes from solid to inva-
sive growth [104].

5.4 Disordered lattice model

The discrete model [105] describes individual cells on a
2D disordered lattice. Cells are represented as spheres,
which are connected via breakable springs. The springs
mimic ECM and cell-cell contacts. Melanoma induced
MMP activity is modeled by a higher probability of
spring breaking near melanoma cells. Despite the sim-
ple mechanical and geometrical laws, the simulation re-
sults give a realistic impression. Because discrete mod-
els are more computationally demanding than contin-
uous models, they allow only limited upscaling. How-
ever, the benefit of this single-cell modeling approach is

the potential discrimination between compressive and
tensile stress, which can differ strongly across the ECM
biopolymer types [106] and tumor locations [77]. The
model by Taloni et al. was validated with 2D experi-
ments. The experiments were performed under osmotic
pressure without fibronectin, which is an important
linker between mechanics and intracellular signaling.

5.5 Experimental methods for mechanical melanoma

models

Although modeling promises to become more and more
prominent in melanoma research, and continuous im-
provements in computational power make more com-
plex and realistic models accessible, experimentally
validated parameterization remains a crucial bottle-
neck. To produce high-quality mathematical models,
quantitative data under standardized operating proce-
dures are required [150, 151].
Tumor spheres and spheroids in general [152], and
organotypic in vitro models for melanoma [153] in
particular offer more realistic experimental conditions.
Fully functional organotypic skin constructs [154] can
mimic all melanoma progression stages. 3D constructs
are not only a carrier of cells; they modify the experi-
mental outcome. Thus, quantification of the hydrogel
system parameter, such as the shear or Young’s mod-
ulus becomes standard. The shear modulus G of the
gel system, or the roughly three times higher Young’s
modulus E, is stated with the unit kPa (E=2G(1+ν);
ν: Poisson’s ratio) [49, 98, 88]. Knowing the impact of
mechanical cues in the modeling process prevents com-
mon data integration problems. For example, the fre-
quently used matrigel for invasion assays has an elas-
tic modulus of 0.45 kPa and is consequently a weaker
obstacle than the basement membrane reaching 250-
500 kPa [155, 156]. Additionally, the impact of stress
relaxation should be not underestimated as it has a
decisive impact on further development [157]. A range
of hydrogel systems is available [158] and can also be
used for automated drug testing [159] albeit questions
of standardisation of 3D cell culture models remain
[160].
Mechanical parameters are difficult to measure and
span up to 5 log steps depending on tissue mois-
ture and experimental setting [108]. Experimental
mechano-sensors enable the measurement of sub-
molecular force transmissions [109], and fluorescent oil
microdroplets allow the measurement of anisotropic
stress fields in 3D tissues [110]. Tunable alginate mi-
crocapsules can be used to determine the mechanical
growth-pressure of spheroids [111], and high through-
put mechanical testing of cells is possible with optical
deformation of cells [112]. If the direct measurement
of stiffness is not possible, the lamin A/C (LMNA) to
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lamin B1/2 (LMNB1/2) ratio serves as an appropriate
biomarker [113].
The clinical imaging technology elastography gives di-
rect access to the tissue stiffness fields and thus tumor
locations in vivo [114]. Elastography can also be used
for the in vivo staging of melanoma [115]. The integra-
tion of elastography and melanoma mechano-signaling
could highlight stiff areas where mechano-sensors in-
fluence melanoma pathways. This could facilitate the
translation of these research models into clinically rel-
evant predictive models.
The complexity of tumor cell environment interac-
tions requires a step-wise understanding with a mul-
titude of experimental techniques [161] and related
computational efforts (Figure 1). Computational sci-
entists must incorporate the experimental context to
develop meaningful computational melanoma progres-
sion models.

6 Transport of oxygen and drugs
Several models describe how oxygen and drugs move
from the source to a melanocytic lesion as the presence
of oxygen and nutrients control the viability of can-
cerous and healthy tissues. Thereby, multiple oxygen
sources as well as vascular and pericellular transport
routes matter as described in the following.

6.1 Oxygenation of melanoma in skin and brain

Impaired oxygen and nutrient delivery cause necrotic
cores, which is a widespread assumption. A necrotic
core can be modelled explicitly [103] or indirectly
via nutrient concentration reduction [102]. However,
Thibaut Balois & Martine Ben Amar question the exis-
tence of necrotic cores in epidermal melanoma and take
the atmospheric oxygen source into account [116, 101].
If oxygen came only from the dermal vasculature, the
oxygen partial pressure would drop to around eight
mmHg at the skin surface [117]. Mild hypoxic con-
ditions are present around the basement membrane,
promoting melanocyte proliferation [118] as well as
melanoma progression [119]. Interestingly, the brain, a
common location for metastasized melanoma, has also
a low tissue oxygen concentrations reaching 35 mmHg
[120].

6.2 Experimental aspects of oxygen

Most established melanoma cell lines are cultured un-
der atmospheric oxygen and are therefore evolution-
arily adjusted to these artificial conditions. Molecular
oxygen sensors for 3D settings [121] are as possible as
advanced hypoxia sensors [122] to improve the vali-
dation of computational models. Oxygen consumption
rates of cells can be obtained with the Seahorse tech-
nology [123] and were determined for melanocytes and
melanoma cell lines [124].

6.3 Models of melanoma-associated vascularization

The tumor-associated vascularization is influenced by
oxygen limitations and mechanical cues [125, 126].
Mathematical blood vessel models define an indepen-
dent computational research field [127]. Notably, Wel-
ter and Rieger combined the discrete modeling of vas-
culature remodeling with the continuous gradients of
melanoma cells, oxygen, nutrients, and drugs [128].
They used melanoma-specific data for the vascula-
ture [129]. This excellent model is useful to simulate
blood flow and to study the impact of space limita-
tions on simple drug diffusion and nutrient supply.
Wang et al. created an agent-based model with both
melanoma and endothelial cells with a focus on an-
giogenesis. They tested the combined effect of doxoru-
bicin chemotherapy and kinase insert domain recep-
tor (KDR)[2] inhibition with sunitinib [130]. It might
be interesting to see a follow-up model with improved
use of biological data for parameter, synergy, and vali-
dation. Dzwinel et al. coupled several continuous sub-
models of melanoma growth to increase modeling qual-
ity and efficiency. They used a single phase continuum
for growth accompanied by angiogenesis, vascular re-
modeling, and tumor ECM interactions. The model
was embedded in a realistic virtual skin structure, and
the melanoma progression resembled nodular, lentigo
maligna, and acral lentiginous melanoma [131]. The
same group extended the model by a discrete vascu-
larization dynamic, which was coupled intermittently
[132]. The used approach, called ”super-modeling” by
the authors, is a theory on model synchronization
[133]. However, the connection coefficients seem un-
trained in comparison to non-biological application ar-
eas, and the coupling remains weak [133]. This model-
ing group is very active in melanoma, refines the model
continuously, and also uses particle automata models
to produce visually realistic models [134, 135].
In general, while these models provide valuable in-
sight into the vasculature, much work is needed to
ensure adequate melanoma-specific parametrizations
and validations. Einar Rofstads’ group provides excel-
lent data sets on melanoma-associated vascularization
and might be considered for further modeling projects
[136].

6.4 Drug delivery models

Blood vessels are an essential route for drugs to the lo-
cation of action, and pharmacokinetics is studied to de-
termine the drug concentration in local blood plasma.
However, the transport from the blood vessels or skin
surface to the melanoma cells depends on the diffusion

[2]Also known as vascular endothelial growth factor re-
ceptor 2 (VEGFR)
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coefficient of the microanatomical structure. Drug de-
livery models are available for both the penetration of
spherical tumors with melanin-binding antibodies for
radioimmunotherapy [137] and SPACE-EGF mediated
transdermal delivery of MYC siRNA [138]. However,
the impact of biomechanics and tumor physiology on
drug delivery is not considered by those models but
discussed for MU89 Melanoma in mice [139, 140]. A
proliferating mass makes fibrous tissue crowded and
compressed. This might lead to a reduced interstitial
fluid volume fraction and thus impaired drug trans-
port. Such a phenomenon might be best modeled with
the multi-phase flow in porous media [103].

7 Discussion
The creation of a mechanistic and predictive model
is a serious and work-intensive endeavor that forces
all participants to think deeper [9]. Ultimately, the re-
ward is more aim-tailored research but also the discov-
ery of hidden causalities, which would otherwise have
rendered explorative research inconclusive or contra-
dictory. Recent progress in devising experimental pro-
cedures for parameter determination has fueled the
work of several computational groups. Conversely, cer-
tain phenomena can only be understood with compu-
tational methods, such as computational mechanics.
Mathematical modeling of melanoma presents several
specificities ranging from the high mutation load and
cell plasticity to oxygen uptake at the skin surface.
Nevertheless, most of the current models of melanoma
are not yet sufficiently adapted to the requirements in
biology and medicine. The recurring problems in al-
most all reviewed research can be expressed in four
challenges and are discussed accordingly.

7.1 First challenge: tumor heterogenity

The first challenge is the biochemical heterogeneity.
The high mutation load, signaling network plasticity,
and cell line heterogeneity makes the fitting of mech-
anistic ODE systems or straightforward network in-
ference from patients’ biopsies difficult. Instead, most
studies focus on well-characterized cell line collections
to carefully extract specific regulatory network motifs
with multivariate statistics. The cell line-specific mod-
els are suitable for modeling and understanding drug
testing. Notable works used systems biology to inves-
tigate the impact of new compounds such as TRAIL
[36, 40], while others focus on identifying potential tar-
gets by perturbating the biological system with several
kinase inhibitors [39, 37].

7.2 Second challenge: melanoma type specifity

The second challenge is melanoma type specific mod-
eling. Melanocytic tumors occur in various forms at

different locations and are based on different etiolo-
gies [163]. A few important types are lentigo maligna
melanoma, superficial spreading melanoma, and acral
lentiginous melanoma. Nonetheless, computational pa-
pers often refer to a general term of melanoma, albeit
each melanoma type can substantially differ in treat-
ment, environment, and growth pattern. In computa-
tional biology, mechanistic links between growth pat-
terns and melanoma-type specific biochemical mark-
ers could prospectively find the same importance as in
pathology [75, 163]. In contrast to constructing mod-
els around a few abstract mathematical parameters
and retrospectively allocate histopathological sections
to a given simulation outcome, modelers might em-
phasize the pathological causality and relevant bio-
chemical root-causes leading to a melanoma-type spe-
cific growth outcome. A deeper examination of cancer
pathology, anatomy, and physiology might also prevent
unjustified assumptions. Some authors set initial le-
sions at positions, where they rarely project from such
as the epidermal stratum corneum, albeit the stratum
basale is often the location of initial lesions [163]. The
unique oxygen patterns in skin [116, 117], the ten-
dency of melanocytes to proliferate better in mild hy-
poxic conditions [118], the strong oxygen consumption
of melanoma cells [124], or the importance of driver
mutations in this highly mutated cancer type [21, 22]
are further factors, which might find more considera-
tion by modelers of melanoma. Not all concepts, model
structures, and parameters can be ingenuously taken
from models of other cancer types. Future melanoma
models might represent more melanoma type spe-
cific characteristics and parameters, whereby attention
should also be drawn to the respective histopathology
and the host tissue in which the simulated melanoma
is thought to be simulated. Eventually, context and
tissue-specific modeling of certain melanoma types is
more insightful than generic cancer or melanoma mod-
els.

7.3 Third challenge: complexity

The third challenge is the appropriate level of com-
plexity as neither very small and simple nor exten-
sive models can deliver reliable predictions. Models
that are as simple as possible are the gold standard
in modeling, as perfectly shown by Kim or Picco et al.

[52, 51]. However, if models neglect major effects, or
the remaining model elements are too abstract to be
interpreted, the result will be of little use. For example,
careful work was performed to determine mutually de-
pendent parameters of a cell colony [70]. However, the
impact of the mechanical environment on these param-
eter values [14], such as migration [78], exacerbates the
transfer of these parameters to complex 3D models.
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On the contrary, especially large scale models which
have been set-up [46, 130] will benefit from sufficient
and appropriate melanoma-specific data, to further in-
crease the validity of their conclusions. The same can
be observed in physical oncology. Mixture theory al-
lows easier models and fewer parameters. Still, it is dif-
ficult to measure abstract parameters or to biologically
interpret the equations as they pool too many biolog-
ical sub-systems to homogeneous entities. In contrast,
Sciumé et al. accurately differentiates between cells, fi-
brous compounds, and interstitial fluid. This makes ex-
perimental parameter determination easier and aligns
better with medical and biological lines of thinking.
However, the model requires many parameters, which
must still be biologically characterized. Best interdis-
ciplinary communication is reached with agent-based
models, were cells are separately depicted. However,
the computational demand for simulating individual
cells is substantial. More experience is necessary to
find the right level of complexity that can be of prac-
tical use and allow both computationally feasible and
biologically sound models.

7.4 Fourth challenge: correct data integration

The fourth challenge is the accurate integration of ev-
idence. Experimental fact and assumed fiction are dif-
ficult to distinguish in many publications, and it is
of little use if an extensive biological section is writ-
ten independently of the computational part but is
hardly reflected by the equations at the end [102]. To
enable scrutiny by melanoma experts and to facilitate
evidence-based model extensions or improvements, it
seems necessary that each element of a model struc-
ture is biologically explained, interpreted, and refer-
enced only within the degree of factual implementa-
tion, even if this requires extensive supplemental in-
formation. The reasoning behind modeling decisions
should be accountable. At least, the behavior of all
system elements might be checked for plausibility as
done in one work [45].
Besides the verifiability of the model structure, pa-
rameters are very ambiguous in most papers, and
only a few papers provided supplemental information
about data extraction and conversion [53]. Unfortu-
nately, many publications work with uncurated pa-
rameter lists, and interested readers are recommended
to trace back parameter values to the primary source
to judge the validity. We found that data indicated
as melanoma-specific were based on other diseases
and tissue origins such as glioblastoma or the adrenal
gland. Other estimated or assumed parameters are ref-
erenced in subsequent papers as if they are experimen-
tally determined values. Moreover, the context of ex-
perimental origin often do not fit the intended model

context, or whole parameter sets are normalized in an
original paper and then carried over several computa-
tional paper generations regardless of studied biology.
In order to bring models closer to biological evidence,
parameters should be referenced only to the original
experimental publications, and information should be
given on the experimental context and potential pa-
rameter conversions.
Most likely, not all required data will be available, but
transparency on evidence is generally lacking. It re-
mains to be debated to which extend a model must
contain melanoma-specific data to be considered a
melanoma model or how close a model must match
medical evidence to be seen as a valuable contribution
to melanoma research.

7.5 Lack of interdisciplinary is the root cause

The four challenges reflect the most persistent prob-
lem of melanoma-specific modeling: interdisciplinarity.
Computational models require close collaboration be-
tween experimental, clinical, and computational sci-
entists in an iterative procedure. Modeling generates
hypotheses, which can be tested in vitro, and experi-
mental results inform the design of better models and
allow the falsification of theories [164]. However, a gen-
eral problem in the interdisciplinary work in biology
and medicine is that the more demanding the neces-
sary mathematical and physical framework becomes,
the more disconnected it becomes from the experi-
mental and theoretical knowledge in biology, medicine,
and pharmacology. On the one hand, computational
groups cannot reproduce and test the diverse param-
eter sources in their labs, lacking the time and ex-
pertise to embrace the whole complexity of biologi-
cal relationships and experimental methods. On the
other hand, biologists and clinicians find it difficult to
help, as the more developed computational procedures
are likewise difficult to comprehend. Therefore, better
quality standards between and in both computational
[165] and biomedical research [166] need to be devel-
oped and adopted. A more sophisticated way might
be the stepwise model development accompanied by
advanced cell culture strategies, as suggested by Fig-
ure 1. The gap between the different disciplines is not
closed yet, which leads to conceptual problems in the
models and inappropriate parameter choices.

Conclusion
Cancer is a highly complex, heterogeneous disease,
characterized by a series of genetic, metabolic, and
functional changes at the cellular and tissue level [167].
Melanoma-specific dynamics along tumor progression
stages in both plasticity [95] and genetics [168] high-
light the need for integrative models to better under-
stand disease mechanisms of melanoma. The model-
building community works across different scales and
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comprises studies centered on signaling pathways and
gene regulation [15], metabolism [169, 170], epithelial
tissue mechanics [171], tumor physiology [172], or the
immune system [173]. Four challenges for computa-
tional melanoma models have been discussed:
• Melanoma heterogeneity,
• Melanoma-type specificity,
• The balance between simplicity and thoroughness,
and

• Melanoma data integration and evidence.
Consequently, interdisciplinarity and clinical relevance
remain a bottleneck if it comes to the practical use of
melanoma-specific systems biology and physical oncol-
ogy models. However, if all disciplines improve inter-
disciplinary collaboration, the future promises us an
unmatched insight.
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All biomolecule names in this thesis are approved by the HUGO Gene

Nomenclature Committee (HGNC) of the Human Genome

Organisation (HUGO).

2D two-dimensional

3D three-dimensional

AKT1 AKT serine/threonine kinase 1

BRAF b-Raf proto-oncogene

CTLA4 cytotoxic T-lymphocyte associated protein 4

CTNNB1 catenin beta 1

DTIC dacarbazine

DNA deoxyribonucleic acid

ECM extracellular matrix

GNAQ G protein subunit alpha q

HGNC HUGO Gene Nomenclature Committee

HIF1A hypoxia inducible factor 1 subunit alpha

HUGO Human Genome Organisation

IκBα interleukin 21

IL21 interleukin 21

JUN jun proto-oncogene, AP-1 transcription factor subunit

KDR kinase insert domain receptor

LMNA lamin A/C

LMNB1/2 lamin B1/2

MAP2K mitogen-activated protein kinase kinases

MAPK1 mitogen-activated protein kinase 1

MAPK8 mitogen-activated protein kinase 8

MGDB Melanoma Gene Database

MMMP Melanoma Molecular Map Project

MMP matrix metalloproteinases

MTOR mechanistic target of rapamycin kinase

MYC MYC proto-oncogene, bHLH transcription factor

NR1I2 NR1I2 nuclear receptor subfamily 1 group I member 2

NK natural killer cell

NRAS NRAS proto-oncogene, GTPase

ODE ordinary differential equations

PDCD1 programmed cell death 1

PDE partial differential equations

PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic

subunit alpha

PTEN phosphatase and tensin homolog

PTK2 protein tyrosine kinase 2

PXN paxillin

RAS RAS type GTPase family

SRC SRC proto-oncogene, non-receptor tyrosine kinase

TAZ tafazzin

TCAT thermodynamically constrained averaging theory

TCGA The Cancer Genome Atlas

TRAIL tumor necrosis factor related apoptosis inducing ligand

TGFB1I1 transforming growth factor beta 1 induced transcript 1

TNFRSF9 TNF receptor superfamily member 9

UVB ultraviolet B

XIAP X-linked inhibitor of apoptosis

YY1AP1 YY1 associated protein 1
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Figures

Figure 1 Computational and experimental approaches to
understand cancer. Experimental approaches span from 2D
cell culture to clinical data and are often correlated directly.
Possible intermediate steps can delineate the response of cells
to certain characteristics of the environment. Cells on gel
sense the rigidity of the substratum, spheroids in hanging
drops can develop a necrotic core, spheroid growing in alginate
capsules reveal the growth pressure at which the capsule burst,
spheroids in gel reveal the cellular response to a confined
environment, spheroids in a tissue construct shows interactions
with fibroblasts and host cells in a confined environment, and
organotypic constructs and histological sections emphasize the
behavior in a realistic anatomical structure. Computational
models change accordingly in scale and approach. Methods
are classified counter-clockwise, beginning at the top left
corner. Descriptive methods of statistics and bioinformatics
focus on the identification of single features. Often groups are
compared, or the explanatory power of certain factors is
investigated. Systems biologists increasingly connect different
elements, focus on network information, and study dynamic
effects. The network topology in steady-state is the first step
but can also be extended to time dynamic and directed
interactions. The networks might be compartmentalized to
study communication across different cells, but the cells
themselves can also represent network nodes, which is
common in immunological studies. If interconnections between
cells, with or without ECM, are studied and spatially
distributed, on-grid and off-grid cellular automatons, vertex
models, and reaction-diffusion models become relevant.
Deformed tissue structures and anatomical obstacles require
the integration of mechanical information. The more the
approaches move from cell data to clinical images, the more
pattern recognition becomes relevant. The functioning of the
blood vessel system often depends on the pattern of the vessel
network. Clinical images, such as from dermoscopy, might be
linked via artificial intelligence to various pathologies. At the
top right, computational methods of pharmacokinetics and
pharmacodynamics relate drug dose to the concentration in
blood plasma and then to the mode of action. The upper half
of the figure pronounce the statistical significance; the bottom
half of the figure shows models, which pronounce the
importance of physical and mechanistic dependencies. In
conclusion, a direct correlation between in vitro and in vivo
data might be straight-forward, but might be also too
simplistic. The laborious indirect way with step-wise
experimental and computational extension of knowledge might
be harder and more expensive, but more insightful in the long
term and can enrich meaningful model development.

Table 1 Data bases containing melanoma data.

Databases Information Last update Source

Melanoma Molecular Map
Project

Information about single molecules molecular
profiles and molecular pathways involved in
melanoma progression

2015 [16]

MelGene 83,343 CM cases and 187,809 controls and re-
ported on 1,114 polymorphisms in 280 different
genes

2016 [17, 174]

MelanomaDB Published melanoma genomic datasets including
clinical and molecular information

20 May 2013 [18]

Melanoma Gene Database Relationship between melanoma protein-coding
genes, microRNAs and lncRNAs

02 Nov 2016 [175]

Additional Files

Supplementary Table 1:

Melanoma model overview. Appreviation: C=cellular, CP= cell population,

T=tissue, O=organ, PP=patient population, 0D-3D : zero to three

dimensional.
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Databases: Source Available data/information updated

Melanoma Molecular Map Project Mocellin and Rossi, 2008 single molecules, molecular profiles, molecular pathways 2010

MelGene 
Antonopoulou et al., 2014; 

Chatzinasiou et al., 2011

192 Studies, 1114 polymorphisms and 280 different genes, 79 

meta analysis 79.
2014

MelanomaDB Trevarton et al., 2013 genes 2013

Melanoma Gene Database Zhang et al., 2015 mutation,interaction, pathway, drug, expression, methylation 2016



 Source Model type Special player aim  treatment Exp. source and validation scales  spatial mechanical  Network coupling

Guan et al., 2015 Searches network motives in  mutations Deregulation of melanogenesis by G-protein and cyclin pathway Cancer Genome Atlas (TCGA),303 metastatic melanomas T 0D no yes

Barter et al., 2014 Searches network motives in transcriptome GSE53118 T 0D no yes

Kaushik et al., 2015 Pathway rewiring  in trascriptome Divers microarrays of tissues and cell lines with or without treatment C, T 0D no yes

Scott et al. 2011 Metabolic flux balance analysis

Actate, Alanine,  Glycine, Proline, Fumarate,  Serine,  Malate,  Aspartate, Glutamate, Citrate,Lactate, 

Pyruvate, Alanine Warburg and Pasteur effect normoxia, hypoxia, U-13C-glucose WM35, Mel501, UACC903, WM793, Lu1205,  MeWo C 0D no yes

Passante et al., 2013 Multivariate statistical analysis with network fragments apoptosis signaling (BCL, XIAP) Accurate cell death susceptibility determination TRAIL, dacarbazine PM-WK, RPM-MC, RPM-EP, MM-RU, MM-AN,  MM-LH, A375, MeWo, SK-Mel-30, IGR-37, IGR, Preyer C 0D no yes

Fallahi-Sichani et al., 2015 Multivariate statistical analysis , partial least square regression JNK/cJUN, pS6, Kip1, Histone H3, PARP, Bim, NFKB, HSP27, p-38, cJun, AMPK, mTor, AKT, p90RSPUnderstand drug resistance PLX4720, Vemurafenib, SB590885, AZ628, AZD6244 C32, COLO858, MZ7MEL, MMACSF, RVH421, SKMEL28, WM115, WM1552C, PLX4720 C 0D no yes

Bernardo-Faura et al., 2014 Fuzzy logic MAPK signaling pathway (JNK) Plasticity of the MAPK signaling pathway DMSO, U0126, AZD6244, Sorafenib A375 C 0D no yes

Lee et al., 2015 Boolean Keratinocytes, Melanocytes interplay (b-catenin ) Study melanogenesis UVB Keratinocytes, Melanocytes C 0D no yes

Pappalardo et al. , 2016 ODE MAPK, PI3K, AKT  pERK Dabrafenib rat adrenal gland PC12 cells for  protein level and A375 gene expression C 0D no yes

Ciarletta et al., 2011 Mixture theory, multi-phases, linear stability analysis adherent junctions, basement membrane, nutrient, indirect necrotic core radial growth phase no literature T 2D yes no

Balois et al., 2014 Two-phase mixture, physical Interstitial fluid, oxygen, keratinocytes Pigmented lesion shape no literature, tissue slide, dermoscopy T 2D yes no

Sciumè et al., 2014 PDE, TCAT, multi-phase, porous ECM, basement membrane (BM), Interstitial fluid, oxygen, necrosis (not observed for melanoma) Basement membrane interruption no compared to tissue slides, no melanoma specific parameters CP,T,O 2D,3D yes no

Taloni et al., 2014 Interwired single cells osmotic pressure, MMP, ECM, growth no IgR39, IgR37, tissue slides CP,O,T 2D yes no

Mendes et al., 2016 Planar linear transformations nevi shape growth no Clinical, dermoscopy O 2D no no

Arasi et al., 2017 Artificial neural networks nevi diagnostic no Clinical, dermoscopy O 2D no no

Satheesha et al., 2017 Multiclass classifier nevi diagnostic no Clinical, dermoscopy O 2D no no

Dzwinel et al., 2016,Łoś et al., 2017; Dzwinel et al., 2016)Super modelling, coupled ODE and PDE sub-modules, single-phase, lattice tumour growth with vasculature growth no literature O 2D, 3D no no

Wang et al., 2013 agent-based glucose, angiogenesis, Cell cycle melanoma angiogenesis interplay doxorubicin, Sunitinib literature C,CP,T 3D no yes

Welter and Rieger, 2010 hybrid model blood vessel around melanoma drug flow simulation no literature T 3D no no

Treloar et al. , 2013; on lattice cellular automaton Adhesion, proliferation, motility Experimental parameter improvement Mitomycin-C (stops proliferation) MM127 C 2D no no

Treloar et al. , 2014 on lattice cellular automaton, descrete random walk simulation Adhesion, proliferation Experimental parameter improvement no MM127 C 2D no no

Vo et al., 2015 on lattice cellular automaton, approximate Bayesian Computation Adhesion, proliferation, motility Experimental parameter improvement Mitomycin-C (stops proliferation) MM127 C 2D no no

Haridas et al., 2017 PDE, discrete lattice Adhesion, proliferation, motility cell colony expansion Mitomycin-C (stops proliferation) MM127/fibroblasts, SK-MEL-28 C, CP 2D no no

La Porta et al., 2015 PDE  proliferation, motility osmotic pressure impact on growth Dextran (osmotic pressure), FBS IgR37, IgR39 C 2D yes no

Flach et. Al., 2011 ODE, compartment model fibroblasts cell adhesion mediated drug resistance (CAMDR) cisplatin WM793,1205Lu,WM1366, FF2441 CP 0D no no

Picco et al., 2017 ODE, compartment model fibroblasts intrinsic versus environmental resistance BRAFi (PLX4720) ; FAKi (PF562271) 5555, 4434 CP 0D no no

Kim et al., 2016 ODE, compartment model autophagy autophagy MK2206 AKT inhibitor M257,WM3918 CP 0D no no

Ouellet et al., 2014 compartment model Dabrafenib Pk Dabrafenib clinical data PP 0D no no

Sun et al., 2016 stochastic differential equations Connecting cancer mechanisms to population survival rates drug-induced resistance factors,PFS, tumour cell numberDabrafenib,  Trametinib, clinical data, 54 patients CP,PP 0D no no

Kogan et al., 2013 ODE, phase plane analysis CTL, DC, IL-10, IFNγ, Th1, Th2, NK adjust immunotherapy IL-12 based on not cited published data CP 0D no no

Eftimie and Hamam, 2017 ODE Th1/Th2 amd Macrophages M1,M2 adjust immunotherapy literature, B16 Melanoma CP 0D no no

den Breems and Eftimie, 2016 ODE Th1/Th2 amd Macrophages M1,M2 adjust immunotherapy literature, B16 Melanoma CP 0D no no

Depillis et al., 2013 DDE CTL, DC (spleen, blood) adjust immunotherapy DCs infusion literature CP 0D no no

Castillo-Montiel et al., 2015 DDE CTL, DC TGF-β, adjust immunotherapy DCs infusion mice, http://dx.doi.org/10.1155/2014/158980 CP 0D no no

Santos et al., 2016 DDE,ODE cytotoxic T cells, natural killer cells, vaccine, HLA immunotherapy anti-MAGE-A3 ; IL-2, IFNα clinical data (gene signature) CP,PP 0D no no

Pappalardo et al., 2011 cellula automaton  on  hexagonal lattice, model size too huge for data, Gompertz lawCD137 CD137 anti-CD137,  resting and activated OT1  T cells B16-OVA, C57 BL/6 female mice CP 2D no no

Eikenberry et al., 2009 PDE blood vessel, oxygen, necrosis, basement membrane, immune celles, immune attracting factor (IAF) aggressive metastasis after excision surgery literature O 3D no no

Schweitzer et al., 2007 PDE 188-rhenium-labeled monoclonal antibody, melanin antibody penetration radioimmunotherapy literature, C57BL6 mice T 3D no no

Liu et al., 2017 PDE Target delivery via the skin Target delivery via the skin siRNA literature O 2D, 3D no no

Ramírez-Torres et al., 2017 PDE, diffusion equation Tumor modeling, anisotropic growth, stress, hyperelasticity Melanoma (MU89) T 2D yes no

Appreviation C=cellular, CP= cell population, T=tissue, O=Organ , B=Body;  PP=patient population
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{Background} 

Melanoma is a neoplasm of the skin and originates from transformed 

melanocytes. It causes the loss of 1.6 million disease-adjusted life-years 

worldwide, and the incidence rate will increase in the next decades  

\cite{karimkhani2017global}. AfterSince the discovery of the high 

prevalence of mutations in \ac{braf} and \ac{nras} mutations in melanoma 

\cite{kunz2014oncogenes, omholt2003nras}, small-molecule inhibitors such as 

dabrafenib and vemurafenib were developed. More recently, immunotherapies, 

with antibodies binding immune receptors like the \ac{CTLA4} or the 

\ac{PDCD1}, have proven clinically effective \cite{aris2015combining}. 

However, many drug resistance mechanisms have developedoccurred and 

represent a major problem in both targeted therapy and immunotherapy 

\cite{amaral2017mapk, amaral2017mitogen, sharma2017primary}. As a result, 

life expectancy remains low. The two-year survival rate is 53.5\% for 

combined \ac{braf} + \ac{mek} inhibitors and 63\% for combined \ac{CTLA4} + 

\ac{PDCD1} immunotherapy \cite{ugurel2017survival}. Consequently, a deeper 

understanding of disease mechanisms is still demanded.   \\ 

An approach to better understand causative relations, to check hypothesis 

consistency, but also to reveal missing qualitative information is  

constructing evidence-based models of these biological systems 

\cite{wolkenhauer2014model}. Irrespective of that,Models depict several 

interconnected biological elements with a structure, which is derived from 

the current understanding, and parameters, which are based on data. While 

many life-scientists still rely on straight-forward relationships between 

observation and insight to extend their knowledge of systems and their  

ability to manipulate them. However, since, leading scientists report that 

the direct link between observation and insight seems to fade  

\cite{weinberg2014coming},}. Thus, experimentally proven relationships are 

increasingly transferred into the language of mathematics to enhance our 

understanding of experimental findings and underlying causes. Extensive 

simulation studies can show where an implemented hypothesis diverges from 

observations and can guide experiments based on \textit{in silico} if-then 

scenarios. \\ 

Computational support tools are being developed for cancer Cancer 

scientists can benefit from well-designed computational models, whereby 

systems biologists focus on the deliver models of cancer biochemistry, and 

physical oncologists try to representprovide models of tissues. Systems 

biology helps understanding how biochemical pathways change during melanoma 

cell proliferation, invasiveness, survival, and drug resistance based on 

network structure and dynamic behavior \cite{kolch2015dynamic}. By 

contrast, physical oncology helps understanding how transport, growth, and 

deformations in tissues occur and is characterized by principles of 

geometry and mechanics \cite{mitchell2017engineering, 

hatzikirou2012integrative}. Mechanics is especially important to understand 

metastatic melanoma, where cell plasticity and motility depend on 

mechanical characteristics of the environment \cite{ju2018role}. 

Consequently, the study of complex biological systems with several 

interconnected elements, such as melanoma, can benefit from implementing 

the research hypothesis in a mathematical form. \\ 

In this review, we tried to gather all published computational models of 

melanoma and describe them regarding their contribution to the field. In 

particular, we focus on the interconnection of system elements or network 

characteristics while omitting classical statistics and bioinformatics of 

melanoma. By sorting models and methods around the topic of melanoma, we 

intend to support readers in finding the most appropriate mathematical 

models to address their melanoma research questions. Even-specific research 

questions. Additionally, the review shall describe potentials for 

improvement, encourage readers to discover potential extensions, and create 

awareness of wholly missing melanoma topics to be tackled in the next 

decade. However, even if some models seem simplistic in biology, they often 

represent technically challenging stepping-stones for more biologically 

meaningful models in the future. Readers will likely find potential 

extensions, improvements, or even wholly missing melanoma topics to be 



tackled in the next decade. Consequently, reviewing the currently existing 

models shall help to push forward the modeling and computational 

characterization of melanoma.  \\ 

Melanoma-specific databases are briefly mentioned in section 1, and 

networkThe review is structured as follows: Network-based approaches are 

explained in section 2two and contemplated by melanoma-specific 

repositories. The complex interaction between molecular players requires 

network-based approaches to suggest novel key intervention strategies, to 

stratify patients, and to individualize patient treatment. In section 

3three, the dynamic changes in cell count of different melanoma cell types, 

immune cells, and fibroblasts represent a model class integratingare 

modeled and contemplated by stimulating or inhibiting effects between 

cells. Such cellular models represent another way to achieve therapy 

individualization and patient stratification. Section four leads to 

geometrical effects which will be augmented by the mechanics of melanoma in 

section five. Further aspects of oxygen, nutrient, and drug transport are 

presented in section six. The confined, spatial, and physiological tissue 

environment is relevant for tumor growth prognosis, drug delivery, surgery, 

and dermoscopic pattern recognition and will be discussed as topic 4.. All 

available computational melanoma models are listed in Supplemental Table 1 

and organized, as shown in Figure 1.  

\section{Molecular networks} 

Molecular networks represent larger sets of molecules in an interconnected 

manner and go beyond the statistical significance of single features and 

the gene-set enrichment analysis paradigm \cite{subramanian2005gene}. 

Network science shows how biological functions emerge from the interactions 

between the components of living systems and how these emergent properties 

enable and constrain the behavior of those components 

\cite{wolkenhauer2014model}. In order to explore this rich information 

source, system biology provides  frameworks tailored to each commonly known 

-omics data type. Melanoma-specific -omics data can be obtained from 

genomic \cite{akbani2015genomic, loftus2018next} and proteomic studies 

\cite{mittal2016proteomics} but also from the secretome 

\cite{liberato2018signatures} or the metabolome \cite{fischer2018metabolic, 

ratnikov2017metabolic}. Because multiple -omics data are rarely integrated 

with a systems-centered approach \cite{emmert2012statistical}, the 

following studies Tools and repositories are only a  starting point.  

\subsection{Repositories to inform network models} 

Published knowledge in the form of structured and centralized searchable 

databases facilitates model development. Beside general sources for system 

biologists \cite{werner2014cancer}, melanoma-specific databases are 

available (Table \ref{tab: database}). The \ac{MMMP} is an open-access, 

participative project that structures published knowledge about molecules, 

genes, and pathways to enable translational perspectives 

\cite{mocellin2008melanoma}. The MelGene project provides an easily 

searchable database of genetic association studies of cutaneous melanoma, 

as well as a meta-analysis for many polymorphisms 

\cite{antonopoulou2015updated}. The MelanomaDB database lists published 

genomic datasets, including clinical and molecular information, and allows 

the creation of gene lists by merging selected studies 

\cite{trevarton2013melanomadb}. The \ac{MGDB} provides extensive entries 

about 527 melanoma-associated genes (422 protein-coding), including 

epigenetic and drug-related evidence. \cite{zhang2015mgdb}. Attention is 

required when using these databases, which accumulate data from multiple 

sources, sometimes in an automated manner, and are thus susceptible to 

perpetuate the biases and errors of the data source  

\cite{reinhold2013commentary}. 

\section{Molecular networks and pathway modules} 

Molecular networks represent larger sets of molecules in an interconnected 

manner and go beyond the statistical significance of single features and 

the gene-set enrichment analysis paradigm \cite{subramanian2005gene}. 

Network science shows how biological functions emerge from the interactions 

between the components of living systems and how these emergent properties 



enable and constrain the behavior of those components 

\cite{wolkenhauer2014model}. In order to explore this rich information 

source, system biology provides  frameworks tailored to each commonly known 

-omics data type. Melanoma-specific -omics data can be obtained from 

genomic \cite{akbani2015genomic, loftus2018next} and proteomic studies 

\cite{mittal2016proteomics} but also from the secretome 

\cite{liberato2018signatures} or the metabolome \cite{fischer2018metabolic, 

ratnikov2017metabolic}. Because multiple -omics data are rarely integrated 

with a systems-centered approach \cite{emmert2012statistical}, the 

following studies are only a  starting point. We present melanoma-specific 

modeling studies across the omics-data types and begin with an approach 

based on genomic data. 

\subsection{Models for melanoma genomics} 

The melanoma-specific repositories contain mainly genetic data with not yet 

fully identified patterns. The mutation pattern within the genome of 

metastatic melanoma can be used to find mutually exclusive gene modules 

\cite{ciriello2012mutual}. If two proteins are related in an interaction 

network and their genes are mutated in a way that one gets amplified while 

the other gets deleted or only one gets modified without the other, one 

could presume that this happens to intensify cancer pathways at the protein 

level under given pathophysiological pressure. Consequently, one can 

conclude that a protein inhibits or activates the other in a known 

interaction network. The pathophysiologic pressure on cancer protein 

pathways selects mutation patterns with survival benefits. One analysis of 

\ac{TCGA} melanoma samples integrated somatic mutations with copy number 

alterations and found concomitant deregulation of the G-protein and MAPK 

signaling pathways \cite{guan2015cancer}. Similarly, integrated genomic and 

epigenomic analyses have been used to classify melanoma brain metastases in 

different mutually exclusive molecular subtypes \cite{marzese2014dna}.  

\subsection{Models for melanoma transcriptomics} 

The melanoma transcriptome is more context-specific than the genome and 

easier to measure than the proteome. The pattern changes can be used to 

stratify patients or to identify drug targets. Beyond this, they can give 

an impression of the re-wiring of pathways. Barter \textit{et al.} applied 

three different strategies (single genes, gene sets, and network analysis) 

to 47 melanoma microarray datasets. They concluded that network methods do 

not perform better overall, that these different approaches tend not to  

classify patients consistently, and that the optimal method might have to 

be identified patient-specifically  \cite{barter2014network}. Wang 

\textit{et al.} performed 45 siRNA screens of the A375 cell line, whole-

genome sequencing, and Bayesian gene network interference to enable 

directional and synergistic conclusions. Similar to Barter’s findings, the 
network hubs alone were not sufficient to better stratify patients. 

However, if the network hubs are contextualized with cell-cycle and 

\ac{dna}-repair function, the prediction of an individual prognosis is 

possible \cite{wang2012cell}. The concept of pathway re-wiring is based on 

the following reasoning. Some mutations can cause modified protein 

structures, which in turn can alter the links between the proteins without 

a change in protein concentration levels. Two proteins are interacting if 

the proteintranscript level change of one protein correlates or anti-

correlates with the transcript level change of another protein. When this 

co-expression gets lost, the connection gets lost, and the connectivity 

reduces. When two unrelated proteins show a new co-expression in the next 

progression stage, the connectivity increases, and a pathway re-wiring can 

be assumed. This network analysis can be performed independent of 

significantly changed differential expression and fold changes. Kaushik 

\textit{et al.} followed this strategy and meta-analyzed 632 melanoma 

microarray samples with melanoma progression stages: normal skin, non-

metastatic (radial and vertical growth phase), metastatic, and lymph node 

metastases \cite{kaushik2015gene}. They diversified the clinical relevant 

groups by pooling the data of tissue samples with untreated and cisplatin-

treated melanoma cell lines and melanocytes. The extracted re-wired pathway 

hubs were subsequently checked for drugability, which is important as many 



promising targets cannot be influenced pharmacologically  

\cite{dang2017drugging}.  

\subsection{Models for melanoma proteomics} 

The proteome directly mirrors cellular function. Genomic and transcriptomic 

data do not show the post-transcriptional, translational, and further 

epigenetic changes and are thus limited in their representation of final 

physical processes. Proteomic data is, \textit{e.g.}, very beneficial for 

modeling the signal transduction such as MAPK or \ac{PI3K} pathway 

\cite{saez2015modeling}. In the context of melanoma, most studies aim 

either at understanding resistance mechanisms or at the responses to 

particular compounds. \\ 

For example, it was possible to predict with high accuracy the apoptosis 

susceptibility of 11 melanoma cell lines to TRAIL and \ac{DTIC} using 17 

protein measurements. This was achieved by grouping measurements in 

pathway-inspired functional groups and using these in multivariate 

statistical analysis \cite{passante2013systems}. \\ Resistance in melanoma 

cell lines was studied with data-driven modeling and multivariate 

statistics. 21 phosphoproteins were measured over time in a panel of 10 

cell lines subjected to different doses of five different RAF/\ac{mek} 

inhibitors \cite{fallahi2015systematic}. This led to the identification of 

an early down-regulation of the \ac{jnk}\footnote{Also known as c-Jun N-

terminal kinases JNK}/\ac{jun} pathway upon RAF/\ac{mek} inhibition, but an 

up-regulation in six cell lines at later time points. This study showed 

that a fraction of treated cells become quiescent and apoptosis-resistant. 

The same group further validated these results and suggested targeting 

\ac{jnk}, \ac{fak}, or \ac{src} to inhibit this particular drug-resistant 

phenotype \cite{fallahi2017adaptive}. \\ Bernardo-Faura \textit{et al.} 

used Fuzzy Logic to investigate the temporal network re-wiring in A375 

cells in response to different kinase inhibitors. The authors used a prior-

knowledge network to simulate the behavior of the cells over time, and 

detected discrepancies at specific time-points between the model 

predictions and the measurements. This work, as well, underlines the 

importance of the \ac{jnk} pathway in early drug-induced changes in 

signaling pathways \cite{bernardo2014data}. \\ Del Mistro \textit{et al.} 

studied the signaling network changes in phosphor-proteomic data due to 

underlying resistance of mutated \ac{braf} melanoma cell lines to sublethal 

\ac{trail} receptor-targeted agonist IZI1551. Systemic network analysis 

with Dynamic Bayesian modeling identified \ac{xiap} and \ac{ikba} as 

potential drug targets. Consequently, targeting these nodes in the 

subsequent experimental validation led to a re-sensitization of the cell 

lines \cite{del2018systemic}. \\ Another comprehensive study studiedis 

about the impact of \ac{myc} on the proteome and drug resistance, which 

lead to the identification of a co-targeting strategy 

\cite{korkut2015perturbation}. Especially this paper raised some interest. 

However, the interactions with the environment, the restriction to only one 

cell line, and the limited appropriateness of the used drugs for clinical 

purposes show that it is still a long way to support physicians in 

decision-making \cite{levesque2015perturbing}. 

\subsection{Models for melanoma metabolomics} 

The metabolic state is the consequence of proteomic function and 

environmental conditions such as nutrient and oxygen shortages. Metabolite 

concentrations can be obtained with robust measurements, and well-

established methods are available (Antoniewicz, 2015).  Notably, Scott 

\textit{et al.} used metabolic flux analysis to characterize the response 

of seven melanoma cell lines to hypoxia \cite{scott2011comparative}. They 

showed the crucial roles of both Warburg and Pasteur effects in melanoma 

and paved the way for the therapeutic targeting of metabolism. While the 

Pasteur effect describes reduced glycolysis with increased oxygen, the 

Warburg effect refers to cancer cells performing glycolysis despite the 

presence of oxygen \cite{koppenol2011otto}. Future studies might further 

combine metabolic modeling with other omics-data.  

\subsection{Mechanistic network models for melanoma} 



Completely validated mechanistic network models of melanoma seem not been 

published yet, but a valid Boolean model of melanogenesis covers both 

keratinocyte and melanocyte signaling. Lee \textit{et al.}, thereby, 

imposed increasing \ac{uvb} light intensity and modeled the cellular 

response to it. The simulated profiles of the protein levels were 

individually compared to literature to check qualitative plausibility. Lee 

\textit{et al.} demonstrated the central role of \ac{Bcat} in the 

regulation of both melanogenesis and apoptosis. This prediction was then 

validated using \ac{uvb}-exposed reconstituted human skin equivalents 

\cite{lee2015systems}. Moreover, a system of \ac{ode} was used to model the 

MAPK, \ac{PI3K}/\ac{act}, and other pathways with 48 species and 48 

biochemical reactions \cite{pappalardo2016computational}. The model was an 

extension of the model of PC-12 (rat adrenal gland) cells from Brown 

\textit{et al.}and  \cite{brown2004statistical}. The model} shows that 

increasing dabrafenib concentrations cause declining pERK concentration but 

in unphysiological ranges. Future \ac{ode}-based modeling of melanoma 

signaling would ideally improve the balance between model size and 

melanoma-specific data (Akaike information criterion) to enable robust 

predictions. Sensitivity analyses and a model selection procedure might 

help to suggest key mechanisms and intervention strategies.  \\ 

\ \\ 

As described in this section, the network information can be used to 

stratify patients, to find druggable targets, and to understand the impact 

of therapy on the biochemical pathways. The next section describes models 

to inter-connect cells instead of molecules. Cell population models are 

used to find coherencies between cell culture and clinical patient 

populations or to understand the immune system at the whole-body level. 

\section{Cell population models: bridging cell culture to clinics}  

Melanoma cells are not isolated entities and interact with keratinocytes, 

fibroblasts, and the various cells of the immune systemcells. Moreover, 

melanoma cells might be divided into subtypes or phenotypes. Population 

models often describe the interaction between them, \textit{e.g.}, how the 

abundance of one cell population influences the abundance of another cell 

population. A subset of these models integrate cell culture data; another 

subset of these models are experimentally adjusted with human or murine 

\textit{in vivo} data.   

\subsection{Melanoma models can mimic the interplay of cell types} 

Flach \textit{et al.} studied the interplay of melanoma cells, stromal 

fibroblasts, and stromal fibronectin. It is rather a simple \ac{ode} model 

of spheroid growth. In their interpretation, free melanoma cells at the 

stromal interface activate fibroblasts to get mechanical support. The 

mechanically supported cells proliferate then until they become blocked due 

to space limitations, albeit the space limitation is simplified to state 

values in this ODE network model \cite{flach2011fibroblasts}. Accordingly, 

several studies point to the crucial role of \ac{ecm} remodeling, 

fibronectin, and \ac{fak} signaling in driving resistance to \ac{braf} 

inhibitors \cite{hirata2015intravital, fedorenko2016fibronectin}. This 

conceptual model of Flach \textit{et al.} has been refined, validated, and 

extended to \ac{braf}i and \ac{fak}i therapy \cite{picco2017integrating}. 

TheseThe  results allowed a deeper understanding of the role of stroma 

during acquired resistance and its potential role during targeted therapy 

in drug-resistant patients \cite{flach2011fibroblasts, 

picco2017integrating}. The same group worked on a dynamic autophagy model 

with \ac{act}i therapy for melanoma \cite{kim2016phase}. After cell culture 

and clinical patient data had been integrated into the autophagy model, and 

key stratification parameters were identified. Stratification parameters 

could either accompany clinical trials or support treatment choice. Another 

melanoma cell population model is provided by Sun \textit{et al.} with an 

excellent description of the parameter origin. The considered cell types 

are primary  \ac{braf}i sensitive, and \ac{braf}i resistant, and which may 

or may not enter the metastatic cell state after the initiation of drug 

treatment. Cells grow until a maximum cell burden. The set of stochastic 

differential equations with 19 parameters is experimentally adjusted via 



circulating tumor cell \ac{dna} and melanoma cell line data. Progression-

free survival is set equal with the melanoma cell concentration for 

simplicity  \cite{sun2016mathematical}, whereby more data might allow a 

more clinical relevant linkage between these two. Future models with 

integrated pharmacokinetic elements might consider clinically relevant 

pharmacokinetic models \cite{ouellet2014population}.  

\subsection{Cell interplay is studied for melanoma immunology} 

Cell population models for the interplay of melanoma cells with immune 

cells are helpful as melanomas are highly immunogenic tumors 

\cite{herzberg2016metastatic}. This high immunogenicity is the reason for 

the success of therapies based on immune activation in this tumor type. 

Indeed, melanoma was the first cancer type for which an immune checkpoint 

inhibitor and an oncolytic virus were approved \cite{hodi2010improved, 

andtbacka2015talimogene}. As such, several computational models have been 

specially developed to study the interplay between the immune and melanoma 

cells. For example, several \ac{ode} systems were devised to model the 

tumor relationshipmelanoma with Th1 and Th2 helper lymphocytes 

\cite{kogan2013mathematical}, with \ac{NK} cells in the context of 

\ac{IL21} therapy \cite{cappuccio2006cancer}, with M1 and M2 macrophages 

\cite{den2016re}, or both macrophages and helper lymphocytes 

\cite{eftimie2017modelling}. Also, vaccine strategies based on dendritic 

cell therapy for melanoma were modeled with a multi-compartment \ac{ode} 

system to define adequate doses and schedules \cite{depillis2013model}. 

However, one drawback of these models is that the patients’ intrinsic 
variables, key determinants in immune-related therapies, are not taken into 

account \cite{pizzurro2015dendritic}. One study took into account the 

genetic signatures being associated with resistance to immunotherapies, 

which helped the parameterization of an. The parameterized \ac{ode} model 

and suggested co-adjuvants for successful anticancer vaccine therapies 

\cite{santos2016model}. In another study,  Pappalardo \textit{et al.} 

implemented an on-grid cellular automaton model of melanoma, in which 

melanoma cells interact with macrophages, T cells, and dendritic cells in 

different cellular states. Pappalardo \textit{et al.} highlighted the role 

of \ac{CD137} for successful therapy and adjusted their model with 

experimental mice data of activated or resting OT1 T-cells and anti-

\ac{CD137} antibodies in B16 melanoma \cite{pappalardo2011simb16}. Given 

the size of the model, additionally experimental data would further improve 

model parameterization and robustness \cite{altrock2015mathematics}. \\ 

\ \\ 

In summary, cell-population models can combine clinical and cell culture 

data and might support the determination of an individualized drug regimen 

based on cellular dynamics. While these models are suitable for freely 

acting cells, tumors are frequently restricted by the \ac{ecm} and 

anatomical space limitations. These effects were simplified by three models 

mentioned above \cite{flach2011fibroblasts, pappalardo2011simb16, 

picco2017integrating}. While the firstone refers to \ac{3d} spheroid growth 

in collagen gel, the latter two refer to tumor size in mice. Tumor growth 

is more complex and will berequires spatial, mechanical, and physiological 

characteristics being addressed in the next section.following three 

sections.  

\section{Spatial models for melanoma} 

Revealing the molecular networks within cells is a crucial step to develop 

appropriate drug combination therapies for melanoma. Cell population models 

are an additional way to stratify patients and to individualize the 

therapeutic regimen. However, the spatial tumor expansion in tissue has 

played a subsidiary role heretofore, and physical barriers modify the 

expansion rate. Consequently, the biological interactions with spatially 

distributed environmental factors are addressed in the following. 

The spatial tumor expansion in tissue has played a subsidiary role 

heretofore. In the following, spatially distributed factors of lesion and 

environment are addressed. For instance, spatial patterns in dermoscopic 

pictures can be used to classify a particular lesion to obtain hints for 

prospective growth and the necessity of surgical intervention. 



Subsequently,  combining cell-population models with geometry provide 

insights into the success of surgical therapy. When focussing on the 

cellular level, the collocation of cells can partly point to factors with 

the most control cell mass expansion. However, a more in-depth look at 

histological features of skin and other host tissues reveal that solely 

geometrical solutions may not be sufficient as mechanical cues 

significantly impact deformation and development.  

\subsection{Pattern recognition of melanoma} 

The pattern of naevi and melanoma \textit{in situ} are the physical 

consequence of biochemical processes in the epidermis and are usually 

assessed and classified in dermatology to initiate early therapy. The 

related patterns can be modeled in two dimensions using a mixture theory 

model \cite{balois2014morphology}. The study shows how different patterns 

of malignant cells can form within a healthy cell environment. \ac{2d} 

patterns of naevi and melanoma can also be subjected to planar linear 

transformations using two subsequent dermoscopy pictures. Those pictures 

allow the classification of melanoma growth rates and naevi symmetry 

\cite{mendes2016geometric}. The ABCD criteria for melanoma have been 

mathematically considered too  \cite{lee2017mathematical}. Automated 

optical classification of naevi and melanomas is a fast-growing field and 

employs machine learning methods for image recognition. The sensitivity and 

specificity of these models matched the decision quality of dermatologists 

\cite{esteva2017dermatologist, haenssle2018man, marchetti2018results}. 

Specific features in \ac{2d} dermoscopy pictures can also be used to 

determine the Breslow depth with specificity and sensitivity of almost 

100\%, which has direct prognostic value \cite{satheesha2017melanoma}. 

furthermore, the depth of invasion is an important prognostic marker for 

patient survival, and the Breslow index can be determined manually or 

automatically from histopathological images \cite{haenssle2018man, 

xu2017computerized}. 

\subsection{Models of surgical treatment} 

Surgical treatment is the consequence of early identified melanomas. Wide 

excision of primary melanoma can have counter-intuitive ramifications 

according to the reaction-diffusion model of Eikenberry \textit{et al.}. 

The surgical resection of primary melanomas might include tumor-associated 

immune cells, which lead to an accelerated outgrowth of local metastasis 

due to reduced immune suppression \cite{eikenberry2009tumor}.  

Computational models are also used to assist image-guided and computer-

assisted surgery,  mainly for the brain \cite{payan2012soft}. The brain, 

besides lung and lymph nodes, is a  preferred host tissue for metastatic 

melanoma \cite{shain2016melanocytes}.  

\subsection{Dissecting parameters in spatial models is a challenge} 

Fully experimentally validated models of melanoma expansion are still 

limited to simple Petri dish experiments. In a series of reports, Treloar 

\textit{et al.} use a lattice cellular automaton model and an experimental 

approach to identify different parameters of MM127 colony growth where cell 

motility, cell–to–cell adhesion, and cell proliferation influence the same: 
the expansion of the cell colony \cite{treloar2014assessing, 

treloar2013multiple}. These parameters were also estimated using a Bayesian 

framework coupled with a stochastic model of \ac{2d} melanoma growth 

\cite{vo2015melanoma}. Using melanoma and fibroblast monocultures as well 

as different co-culture systems, Haridas \textit{et al.} have parameterized 

a \ac{pde} model of the interactions of cancer cells and fibroblasts 

\cite{haridas2017quantifying}. Continuous modeling of melanoma cells under 

different osmotic pressures was performed with a \ac{2d} lattice model to 

simulate scratch assays \cite{la2015osmotic}. The aim was to distinct 

migration/invasion between primary and metastatic cells. New vertex 

modeling strategies \cite{barton2017active} and scratch assay analysis 

tools  \cite{stichel2017individual} might further improve this approach.  

\subsection{Spatial organization of skin and confined spaces} 

The previously described spatial parameter determination strategy for cell 

lines is especially helpful for the epidermal skin layer. However, the skin 

is more complex and also contains  irregular fibrous tissue beneath the  



epidermal layer separated by a collagenous basement membrane 

\cite{breitkreutz2013skin}. At the dermal-epidermal junction, keratinocytes 

are generated and migrate through the epidermis up to the skin surface, 

where they keratinize to the stratified protective barrier called stratum 

corneum. The epidermal layer is also the most common location for melanoma 

initiation. Residing melanocytes can become benign neoplasms and appear as 

innate or acquired naevi \cite{shain2016melanocytes}. Further changes and 

appearing atypical cells constitute the first malignant stage: the radial 

growth phase. From the clinical perspective and the perspective of 

modeling, the basement membrane is crucial. Invasion through the basement 

membrane indicates the vertical growth phase, which may require adjuvant 

therapy besides surgical treatment. Pharmacological therapy is indicated 

for metastatic growth in secondary tissues. In contrast to the epidermis, 

the dermis layer is streaked with collagen and elastin fibers synthesized 

by fibroblasts \cite{evans2013epithelial}, and these \ac{ecm} fibers 

restrict tumor expansion \cite{nia2016solid}. Using colony growth in 

\ac{2d} cell culture experiments does not lead to quantitative parameters 

for spatial models representing stromal processes. For example, migration 

velocity depends on the \ac{ecm} fiber geometry 

\cite{tozluouglu2013matrix}, the migration process is fundamentally 

different in confined structures \cite{paul2017cancer},  and depend on the 

\ac{PXN} and \ac{hic5} balance related to \ac{fak} 

\cite{deakin2011distinct}. Moreover, \ac{braf} inhibition promotes \ac{mmp} 

activity and cell migration in three dimensions  

\cite{leight2015multifunctional}. A consequent experimental 

parameterization of realistic melanoma growth models is difficult to find 

and is aggravated by the diversity of parameter origin and their mutual 

dependency, as shown by Treloar \textit{et al.}  

\cite{treloar2014assessing, treloar2013multiple}. The modeling of the tumor 

microenvironment has to consider additional factors like extracellular 

matrix stiffness and topography, oxygen and nutrients gradients, and 

interstitial fluid pressure \cite{holle2016vitro}. \\ 

\ \\ 

Not only the parameterization is challenging, but also the computational 

framework is tedious if the correct physiological  modeling of the host 

tissues is required. Physical models are used to understand the progression 

of melanoma, the contortion of the tumor tissue, and the drug penetration 

of tumor tissue. Physical models are also used in image-guided surgery. 

\section{Mechanical models of melanoma} 

Mechanical cues in the environment influence directly important biochemical 

cancer pathways and have a complex impact on tumour progression 

\cite{hutchenreuther2018target, ju2018role}. Consequently mechanical models 

become more attention and three methods will be presented in the following 

such as mixture theory, the \ac{tcat}, and the discrete ansatz with cross-

linked elastic cells. These three methodologies can mimic the growth in 

tissues, while a tissue without any malignant contortions is already a 

complex modelling task \cite{lanir2017multi}. As the integration and 

measurement of mechanical cues is not yet widely used, a summary of 

experimental methods is given.  

\subsection{Impact of mechanoregulation} 

In three dimensions, additional factors impair drug sensitivity 

\cite{hirata2015intravital, shao2010akt3} and increase or decrease the 

tumor growth rate \cite{ambrosi2017solid}. The stromal environment causes 

non-genetic phenotype switches between proliferative and mesenchymal stages 

\cite{levesque2017metastatic, hoek2008vivo}, and environmental melanoma-

associated fibroblasts are suspected of playing an essential role in 

melanoma progression \cite{izar2016bidirectional}. Fibroblast activity is 

closely linked to ECM and thus biomechanics, which is now recognized as a 

central pillar of tumor progression and metastasis 

\cite{hutchenreuther2018target, ju2018role}. Mechanical melanoma models 

consider the growth-induced deformation of the \ac{ecm} rich environment. 

The more the proliferating mass expands, the more counterforce is generated 

by the connected \ac{ecm} fibers. The elastic energy is conserved and 



geometry dependent \cite{nia2016solid}. The mechanical deformation of 

tissues and mechanical stress influence intracellular signaling by mechano-

sensors like \ac{fak} \cite{paszek2005tensional} or \ac{YAP}/\ac{taz} 

\cite{halder2012transduction}, which are discussed as drug resistance 

mechanism for \ac{braf}-mutant melanoma cells \cite{fallahi2017adaptive, 

hirata2015intravital, kim2016actin} or progression marker for cutaneous and 

\ac{GNAQ} mutant uveal melanoma \cite{feng2014hippo, sanchez2014hippo, 

nallet2014pro}. Proximity to mechano-regulating fibroblasts can induce 

pathway changes to \ac{PI3K}/\ac{mtor} and switch the phenotype of melanoma 

cells to the mesenchymal state \cite{seip2016fibroblast}. Consequently,  

melanoma cells reduce the inherent stiffness to facilitate invasion 

\cite{weder2014increased, wei2016forcing}. However, our knowledge of 

mechanosensitive pathways is far from complete  \cite{ringer2017sensing, 

northey2017tissue, charras2018tensile, wei2016forcing}, and mechanical 

phenomenons require computational models to comprehend. \\ 

Additionally, the skin, being the primary site for cutaneous melanoma,  is 

a mechano-sensitive organ. Skin can grow when it is stretched, and rete 

ridges, projections of the epidermis into the dermis, were recently 

suspected to form according to mechanical characteristics 

\cite{evans2013epithelial}. The skin has inspired many computational models 

describing dermal transport processes as well as providing a mechanical 

understanding of the skin’s optical, functional, and structural 
characteristics \cite{querleux2014computational}.  

\subsection{Mechanical models of melanoma} 

Mechanical models of melanoma are build up with the mixture theory, the 

\ac{tcat}, or the discrete ansatz with cross-linked elastic cells.  

\subsubsection{Mixture theory} 

Two mixture theory models exist. One describes the skin surface,  and one 

mimics the vertical section  

\cite{balois2014morphology,ciarletta2010radial}. Balois \textit{et al.} 

consider interstitial fluid pressure, a mechanically optimal cell density, 

and friction between the melanocytic lesion and the surrounding. Ciarletta 

\textit{et al.} represent melanoma in the radial growth phase in the ECM 

free epidermis as a viscous fluid sliding on a basement membrane with 

friction dependent growth velocity. In a second step, this friction is 

neglected and instead considered between the basement membrane and an 

additional keratinocyte representing fluid. Melanoma cell and keratinocyte 

fluid are adjacent to each other, and the tumor front between them is a 

moving interface/ free boundary problem subjected to stability analysis.   

\subsubsectionsubsection{TCAT theory} 

TCAT models \cite{sciume2014tumor}, however,} represent a multi-phase 

approach, which is different from mixture theory and circumvents the free 

boundary problem. \ac{tcat} models do not have a defined tumor boundary at 

the macro-scale, but the \ac{ecm} spans the whole tissue, with a higher 

concentration at the basement membrane. The interstitial fluid, the 

healthy, and the malignant cells squeeze via local rules through the solid 

but deformable porous \ac{ecm} network. Averaging of local properties 

causes a macroscale behavior that resembles the distortion of the tissue 

and the invasion of the basement membrane. By adjusting the cancer cell 

plasticity but not \ac{ecm} integrity, the model changes from solid to 

invasive growth \cite{albrecht2016thermodynamically}.  

\subsubsection\subsection{Disordered lattice model} 

The discrete model \cite{taloni2014mechanical} describes individual cells 

on a \ac{2d} disordered lattice. Cells are represented as spheres, which 

are  connected via breakable springs. The springs mimic ECM and cell-cell 

contacts. Melanoma induced \ac{mmp} activity is modeled by a higher 

probability of spring breaking near melanoma cells. Despite the simple 

mechanical and geometrical laws, the simulation results give a realistic 

impression. Because discrete models are more computationally demanding than 

continuous models, they allow only limited upscaling. However, the benefit 

of this single-cell modeling approach is the potential discrimination 

between compressive and tensile stress, which can differ strongly across 

the \ac{ecm} biopolymer types \cite{pritchard2014mechanics} and tumor 



locations \cite{nia2016solid}. The model by Taloni \textit{et al.} was 

validated with \ac{2d} experiments. The experiments were performed under 

osmotic pressure without fibronectin, which is an important linker between 

mechanics and intracellular signaling.  

\subsubsection{Difficulties in determiningsubsection{Experimental methods 

for mechanical parametersmelanoma models} 

Although modeling promises to become more and more prominent in melanoma 

research, and continuous improvements in computational power make more 

complex and realistic models accessible, experimentally validated 

parameterization remains a crucial bottleneck. To produce high-quality 

mathematical models, quantitative data under standardized operating 

procedures are required \cite{silk2014model, stanford2015evolution}. \\ 

Tumor spheres and spheroids in general \cite{weiswald2015spherical}, and 

organotypic \textit{in vitro} models for melanoma \cite{kulms2018vitro} in 

particular offer more realistic experimental conditions. Fully functional 

organotypic skin constructs  \cite{vorsmann2013development} can mimic all 

melanoma progression stages.  \ac{3d} constructs are not only a carrier of 

cells; they modify the experimental outcome. Thus, quantification of the 

hydrogel system parameter, such as the shear or Young’s modulus becomes 
standard. The shear modulus G of the gel system, or the roughly three times 

higher Young’s modulus E, is stated with the unit kPa  (E=2G(1+$\nu$); 
$\nu$: Poisson's ratio) \cite{hirata2015intravital, northey2017tissue, 

paszek2005tensional}. Knowing the impact of mechanical cues in the modeling 

process prevents common data integration problems. For example, the 

frequently used matrigel for invasion assays has an elastic modulus of 0.45 

kPa and is consequently a weaker obstacle than the basement membrane 

reaching 250-500 kPa \cite{halfter2015new, soofi2009elastic}. Additionally, 

the impact of stress relaxation should be not underestimated as it has a 

decisive impact on further development \cite{chaudhuri2016hydrogels}. A 

range of hydrogel systems is available \cite{caliari2016practical} and can 

also be used for automated drug testing \cite{rimann2014automation} albeit 

questions of standardisation of \ac{3d} cell culture models remain 

\cite{verjans2018three}. \\  

Mechanical parameters are difficult to measure, and tissue is already 

complex without any malignant contortions \cite{lanir2017multi}. Mechanical 

tissue parameters and span up to 5 log steps depending on tissue moisture 

and experimental setting \cite{derler2012tribology}. Some recent 

developments in experimental strategies are hardly known by experimental 

and computational scientists but can inform computational models. 

Experimental mechano-sensors enable the measurement of sub-molecular force 

transmissions \cite{grashoff2010measuring}, and fluorescent oil 

microdroplets allow the measurement of anisotropic stress fields in \ac{3d} 

tissues \cite{campas2014quantifying}. Tunable alginate microcapsules can be 

used to determine the mechanical growth-pressure of spheroids 

\cite{alessandri2013cellular}, and high throughput mechanical testing of 

cells is possible with optical deformation of cells \cite{otto2015real}. If 

the direct measurement of stiffness is not possible, the \ac{LMNA} to 

\ac{LMNB} ratio serves as an appropriate biomarker \cite{swift2013nuclear}. 

\\ 

The clinical imaging technology elastography gives direct access to the 

tissue stiffness fields and thus tumor locations \textit{in vivo} 

\cite{kim2016application}. Elastography can also be used for the \textit{in 

vivo} staging of melanoma  \cite{jid2015doppler}. The integration of 

elastography and melanoma mechano-signaling could visualize thehighlight 

stiff areas where mechano-sensors influence melanoma pathways. This could 

facilitate the translation of these research models into clinicalclinically 

relevant predictive models. \\ 

The complexity of tumor cell environment interactions requires a step-wise 

understanding with a multitude of experimental techniques 

\cite{peela2017advanced} and related computational efforts (Figure 1). 

Computational scientists must incorporate the experimental context to 

develop meaningful computational melanoma progression models. 

\section{Transport of oxygen and drugs} 



Several models describe how oxygen and drugs move from the source to a 

melanocytic lesion as the presence of oxygen and nutrients control the 

viability of cancerous and healthy tissues. Thereby, multiple oxygen 

sources as well as vascular and pericellular transport routes matter as 

described in the following. 

\subsection{Oxygenation of melanoma in skin and brain} 

Impaired oxygen and nutrient delivery cause necrotic cores, which is a 

widespread assumption. A necrotic core can be modelled explicitly 

\cite{sciume2014tumor} or indirectly via nutrient concentration reduction  

\cite{ciarletta2010radial}. However, Thibaut Balois \& Martine Ben Amar 

question the existence of necrotic cores in epidermal melanoma and take the 

atmospheric oxygen source into account \cite{stucker2002cutaneous, 

balois2014morphology}. If oxygen came only from the dermisdermal 

vasculature, the oxygen partial pressure would drop to around eight mmHg at 

the skin surface\footnote{Skin surface was sealed with paraffin oil} 

\cite{wang2003oxygen}. Mild hypoxic conditions are present around the 

basement membrane, promoting melanocyte proliferation  

\cite{horikoshi1990effects} as well as melanoma progression 

\cite{hanna2013hif1alpha}. Interestingly, the brain, a common location for 

metastasized melanoma, has also a low tissue oxygen concentrations reaching 

35 mmHg \cite{carreau2011partial}.  

\subsection{Experimental aspects of oxygen} 

Most established melanoma cell lines are cultured under atmospheric oxygen 

and are therefore evolutionarily adjusted to these artificial conditions. 

Molecular oxygen sensors for \ac{3d} settings \cite{dmitriev2015versatile} 

are as possible as advanced hypoxia sensors \cite{erapaneedi2016novel} to 

improve the validation of computational models. Oxygen consumption rates of 

cells can be obtained with the Seahorse technology 

\cite{brand2011assessing} and were determined for melanocytes and melanoma 

cell lines \cite{hall2013dysfunctional}.  

\subsection{Models of melanoma-associated vascularization} 

The tumor-associated vascularization is a consequence of influenced by 

oxygen limitations and influenced by mechanical cues 

\cite{chwalek2014glycosaminoglycan, balcioglu2016tumor}. Mathematical blood 

vessel models define an independent computational research field 

\cite{scianna2013review}. Notably, Welter and Rieger combined the discrete 

modeling of vasculature remodeling with the continuous gradients of 

melanoma cells, oxygen, nutrients, and drugs \cite{welter2010physical}. 

They used melanoma-specific data for the vasculature 

\cite{dome2002vascularization}. This excellent model is useful to simulate 

blood flow and to study the impact of space limitations on simple drug 

diffusion and nutrient supply. Wang \textit{et al.} created an agent-based 

model with both melanoma and endothelial cells with a focus on 

angiogenesis. They tested the combined effect of doxorubicin chemotherapy 

and \ac{VEGFR}\footnote{Also known as vascular endothelial growth factor 

receptor 2 (VEGFR)} inhibition with sunitinib \cite{wang2013multi}. It 

might be interesting to see a follow-up model with improved use of 

biological data for parameter, synergy, and validation. Dzwinel \textit{et 

al.} coupled several continuous sub-models of melanoma growth to increase 

modeling quality and efficiency. They used a single phase continuum for 

growth accompanied by angiogenesis, vascular remodeling, and tumor \ac{ecm} 

interactions. The model was embedded in a realistic virtual skin structure, 

and the melanoma progression resembled nodular, lentigo maligna, and acral 

lentiginous melanoma \cite{dzwinel2016supermodeling}. The same group 

extended the model by a discrete vascularization dynamic, which was coupled 

intermittently \cite{los2017application}. The used approach, called "super-

modeling" by the authors, is a theory on model synchronization 

\cite{duane2017introduction}. However, the connection coefficients seem 

untrained in comparison to non-biological application areas, and the 

coupling remains weak \cite{duane2017introduction}. This  modeling group is  

very active in melanoma, refines the model continuously, and also uses 

particle automata models to produce visually realistic models 

\cite{klusek2019efficient, panuszewska2018pam}. \\ 



In general, while these models provide valuable insight into the 

vasculature, much work is needed to ensure adequate melanoma-specific 

parametrizations and validations. Einar Rofstads’ group provides excellent 
data sets on melanoma-associated vascularization and might be considered 

for further modeling projects \cite{gaustad2012sunitinib}.  

\subsection{Drug delivery models} 

Blood vessels are an essential route for drugs to the location of action, 

and pharmacokinetics is studied to determine the drug concentration in 

local blood plasma. However, the transport from the blood vessels or skin 

surface to the melanoma cells depends on the diffusion coefficient of the 

microanatomical structure. Drug delivery models are available for both the 

penetration of spherical tumors with melanin-binding antibodies for 

radioimmunotherapy \cite{schweitzer2007computational} and SPACE-EGF 

mediated transdermal delivery of \ac{myc} siRNA \cite{liu2017theoretical}. 

However, the impact of biomechanics and tumor physiology on drug delivery 

is not considered by those models but discussed for MU89 Melanoma in mice 

\cite{stylianopoulos2012causes, ramirez2017influence}. A proliferating mass 

makes fibrous tissue crowded and compressed. This might lead to a reduced 

interstitial fluid volume fraction and thus impaired drug transport. Such a 

phenomenon might be best modeled with the multi-phase flow in porous media 

\cite{sciume2014tumor}.   

\subsection{Pattern recognition of melanoma} 

The pattern of naevi and melanoma \textit{in situ} are the physical 

consequence of the above-described processes in the epidermis and are 

usually assessed and classified in dermatology. The regular differentiation 

between harmless naevi and potential melanomas by a dermatologist enables 

early therapy. The related patterns can be modeled in two dimensions using 

a mixture theory model \cite{balois2014morphology}. The study shows how 

different patterns of malignant cells can form within a healthy cell 

environment. \ac{2d} patterns of naevi and melanoma can also be subjected 

to planar linear transformations using two subsequent dermoscopy pictures. 

Those pictures allow the classification of melanoma growth rates and naevi 

symmetry \cite{mendes2016geometric}. The ABCD criteria for melanoma have 

been mathematically considered too  \cite{lee2017mathematical}. Automated 

optical classification of naevi and melanomas is a fast-growing field and 

employs machine learning methods for image recognition. The sensitivity and 

specificity of these models matched the decision quality of dermatologists 

\cite{esteva2017dermatologist, haenssle2018man, marchetti2018results}. 

Specific features in \ac{2d} dermoscopy pictures can also be used to 

determine the Breslow depth with specificity and sensitivity of almost 

100\%, which has direct prognostic value \cite{satheesha2017melanoma}. The 

depth of invasion is an important prognostic marker for patient survival, 

and the Breslow index can be determined manually or automatically from 

histopathological images \cite{haenssle2018man, xu2017computerized}. 

\subsection{Models of surgical treatment} 

Surgical treatment is the consequence of early identified melanomas. Wide 

excision of primary melanoma can have counter-intuitive ramifications 

according to the reaction-diffusion model of Eikenberry \textit{et al.}. 

The surgical resection of primary melanomas might include tumor-associated 

immune cells, which lead to an accelerated outgrowth of local metastasis 

due to reduced immune suppression \cite{eikenberry2009tumor}.  

Computational models are also used to assist image-guided and computer-

assisted surgery,  mainly for the brain \cite{payan2012soft}. The brain, 

besides lung and lymph nodes, is a  preferred host tissue for metastatic 

melanoma \cite{shain2016melanocytes}.  

\subsection{Spatial melanoma models need specific experiments} 

Although modeling promises to become more and more prominent in melanoma 

research, and continuous improvements in computational power make more 

complex and realistic models accessible, experimentally validated 

parameterization remains a crucial bottleneck. To produce high-quality 

mathematical models, quantitative data under standardized operating 

procedures are required \cite{silk2014model, stanford2015evolution}. Tumor 

spheres and spheroids in general \cite{weiswald2015spherical}, and 



organotypic \textit{in vitro} models for melanoma \cite{kulms2018vitro} in 

particular offer more realistic experimental conditions. Fully functional 

organotypic skin constructs  \cite{vorsmann2013development} can mimic all 

melanoma progression stages. \ac{3d} constructs are not just a carrier of 

cells; they modify the experimental outcome. Thus, quantification of the 

hydrogel system parameter, such as the shear or Young’s modulus becomes 
standard. The shear modulus G of the gel system, or the roughly three times 

higher Young’s modulus E, is stated with the unit kPa  (E=2G(1+$\nu$); 
$\nu$: Poisson's ratio) \cite{hirata2015intravital, northey2017tissue, 

paszek2005tensional}.  For example, the frequently used matrigel for 

invasion assays has an elastic modulus of 0.45 kPa and is consequently a 

weaker obstacle than the basement membrane reaching 250-500 kPa 

\cite{halfter2015new, soofi2009elastic}. Additionally, the impact of stress 

relaxation should be not underestimated \cite{chaudhuri2016hydrogels}. A 

range of hydrogel systems is available \cite{caliari2016practical} and can 

also be used for automated drug testing \cite{rimann2014automation} albeit 

questions of standardisation of \ac{3d} cell culture models remain 

\cite{verjans2018three}. The complexity of tumor cell environment 

interactions requires a step-wise understanding with a multitude of 

experimental techniques \cite{peela2017advanced} and related computational 

efforts. Computational scientists must incorporate the experimental context 

to develop meaningful computational melanoma progression models. \\ 

\ \\ 

This section showed that spatially resolved models can give us further 

insight into surgical interventions, drug delivery, and interactions 

between melanoma cells and stroma. Tissues can promote and constrain tumor 

progression via the extracellular matrix or the blood vessel system. {The 

modeling of the tumor microenvironment has to consider additional factors 

like extracellular matrix stiffness and topography, oxygen and nutrients 

gradients, and interstitial fluid pressure \cite{holle2016vitro}. How 

difficult the parameter determination can be, has been shown with the 

colony growth \cite{treloar2013multiple} and with the section on mechanical 

cues. Parameters are crucial to have a falsifiable test hypothesis for 

model selection. Only in this way, a deeper understanding of the complex 

relationships can be achieved. Unfortunately, many publications work with 

uncurated parameter lists, and interested readers are recommended to trace 

back parameter values to the primary source to judge the validity. At the 

moment, the field of physical oncology is still in transition. Modelers 

focus on computational frameworks creating patterns, which are 

qualitatively comparable with \textit{in vivo} observations. A more 

sophisticated way might be the stepwise model development accompanied by 

advanced cell culture strategies, as suggested by Figure 1.  

\section*{Discussion} 

The creation of a mechanistic and predictive model is a serious and work-

intensive endeavor that forces all participants to think deeper 

\cite{wolkenhauer2014model}. Ultimately, the reward is more aim-tailored 

research but also the discovery of hidden causalities, which would 

otherwise have rendered explorative research inconclusive or contradictory. 

Recent progress in devising experimental procedures for parameter 

determination has fueled the work of several computational groups. 

Conversely, certain phenomena can only be understood with computational 

methods, such as  computational mechanics. Mathematical modeling of 

melanoma presents several specificities ranging from the high mutation load 

and cell plasticity to the oxygen-delivery uptake at the skin surface. 

Therefore,Nevertheless, most of the current models of melanoma are not yet 

sufficiently adapted to the requirements in biology and medicine. The 

recurring problems in almost all reviewed research can be expressed in four 

challenges became apparent. \\and are discussed accordingly.  

\subsection{First challenge: tumor heterogenity} 

The first challenge is the biochemical heterogeneity. The high mutation 

load, signaling network plasticity, and cell line heterogeneity makes the 

fitting of mechanistic \ac{ode} systems or straightforward network 

inference from patients' biopsies difficult. Instead, most studies focus on 



well-characterized cell line collections to carefully extract specific 

regulatory network motifs with multivariate statistics. The cell line-

specific models are suitable for modeling and understanding drug testing. 

Notable works used systems biology to investigate the impact of new 

compounds such as TRAIL \cite{passante2013systems, del2018systemic}, while 

others focus on identifying potential targets by perturbating the 

biological system with several kinase inhibitors 

\cite{bernardo2014data,fallahi2015systematic}. \\ 

\subsection{Second challenge: melanoma type specifity} 

The second challenge is melanoma type- specific modeling. Melanocytic 

tumors occur in various forms at different locations and are based on 

different etiologies \cite{elder2018classification}. HoweverA few important 

types are lentigo maligna melanoma, superficial spreading melanoma, and 

acral lentiginous melanoma. Nonetheless, computational papers often refer 

often to a general term of melanoma, albeit each melanoma type can 

substantially differ in treatment, environment, and growth pattern. In 

computational biology, mechanistic links between growth patterns are rarely 

linked to and melanoma-type specific biochemical markers could 

prospectively find the same importance as in pathology 

\cite{shain2016melanocytes, elder2018classification}, depend only on one or 

two}. In contrast to constructing models around a few abstract mathematical 

parameters, and authors retrospectively allocate histopathological sections 

to theira given simulation outcome, modelers might emphasize the 

pathological causality and relevant biochemical root-causes leading to a 

melanoma-type specific growth outcome.  A deeper examination of cancer 

pathology, anatomy, and physiology might also prevent unjustified 

assumptions. Some authors set initial lesions at positions, where they 

rarely project from such as the epidermal stratum corneum, albeit the 

stratum basale is often the location of initial lesions 

\cite{elder2018classification}. The unique oxygen patterns in skin 

\cite{stucker2002cutaneous, wang2003oxygen}, the tendency of melanocytes to 

proliferate better in mild hypoxic conditions \cite{horikoshi1990effects}, 

the strong oxygen consumption of melanoma cells  

\cite{hall2013dysfunctional}, or the importance of driver mutations in this 

highly mutated cancer type \cite{akbani2015genomic, loftus2018next} found a 

rare propagation in the modeling communityare further factors, which too 

often copiesmight find more consideration by modelers of melanoma.  Not all 

concepts, model structures, and parameters can be ingenuously taken from 

models of other cancer types. Future melanoma models might represent more 

melanoma type- specific characteristics and parameters, whereby attention 

should also be drawn to the respective histopathology and the host tissue 

in which the simulated melanoma is thought to be simulated. Eventually, 

context and tissue-specific modeling of certain melanoma types is more 

insightful than generic cancer or melanoma models.\\. 

\subsection{Third challenge: complexity} 

The third challenge is the appropriate level of complexity as neither very 

small and simple nor extensive models can deliver reliable predictions. 

Models that are as simple as possible are the gold standard in modeling, as 

perfectly shown by Kim or Picco \textit{et al.} \cite{kim2016phase, 

picco2017integrating}. However, if models neglect major effects, or the 

remaining model elements are too abstract to be interpreted, the result 

will be of little use. For example, careful work was performed to determine 

mutually dependent parameters of a cell colony 

\cite{haridas2017quantifying}. However, the impact of the mechanical 

environment on these parameter values \cite{ju2018role}, such as migration, 

\cite{tozluouglu2013matrix},  exacerbates the transfer of these parameters 

to complex 3D models. On the contrary, especially large scale models which 

have been set-up  \cite{pappalardo2016computational, wang2013multi} will 

benefit from sufficient and appropriate melanoma-specific data, to further 

increase the validity of their conclusions. The same can be observed in 

physical oncology. Mixture theory allows easier models and fewer 

parameters. Still, it is difficult to measure abstract parameters or to 

biologically interpret the equations as they pool too many biological sub-



systems to homogeneous entities. In contrast, Sciumé \textit{et al.} 

accurately differentiates between cells, fibrous compounds, and 

interstitial fluid. This makes experimental parameter determination easier 

and aligns better with medical and biological lines of thinking. However, 

the model requires many parameters, which must still be biologically 

characterized. Best interdisciplinary communication is reached with agent-

based models, were cells are separately depicted. However, the 

computational demand for simulating individual cells is substantial. More 

experience is necessary to find the right level of complexity that can be 

of practical use and allow both computationally feasible and biologically 

sound models. \\ 

\subsection{Fourth challenge: correct data integration} 

The fourth challenge is the accurate integration of evidence. Experimental 

fact and assumed fiction are difficult to distinguish in many publications, 

and it is of little use if an extensive biological section is written 

independently of the computational part but at the end is nothardly 

reflected by the equations at the end \cite{ciarletta2010radial}.  To 

enable scrutiny by melanoma experts and to facilitate evidence-based model 

extensions or improvements, it seems necessary that each element of a model 

structure is biologically explained, interpreted, and referenced only 

within the degree of factual implementation, even if this requires 

extensive supplemental information. The reasoning behind modeling decisions 

should be accountable. At least, the behavior of all system elements might 

be checked for plausibility as done in one work \cite{lee2015systems}. \\ 

Besides the verifiability of the model structure, parameters are very 

ambiguous in most papers, and only a few papers provided supplemental 

information about data extraction and conversion 

\cite{sun2016mathematical}. Unfortunately, many publications work with 

uncurated parameter lists, and interested readers are recommended to trace 

back parameter values to the primary source to judge the validity. We found 

that data indicated as melanoma-specific turned out to bewere based on 

other diseases and tissue origins such as glioblastoma or the adrenal 

gland, that. Other estimated or assumed parameters are referenced in 

subsequent papers as if they are experimentally determined values, that. 

Moreover, the context of experimental origin often do not fit the intended 

model context, and thator whole parameter sets are normalized in an 

original paper and then carried over several computational paper 

generations regardless of studied biology. In order to bring models closer 

to biological evidence, parameters should be referenced only to the 

original  experimental publications, and information should be given on the 

experimental context and potential parameter conversions. \\ 

Most likely, not all required data will be available, but transparency on 

evidence is generally lacking, and it seems that readers have to trace back 

parameter values on their own to judge a computational work.. It remains to 

be debated to which extend a model must contain melanoma-specific data to 

be considered a melanoma model or evenhow close a model must match medical 

evidence to be seen as a valuable contribution to melanoma research.  \\ 

\subsection{Lack of interdisciplinary is the root cause} 

The four challenges reflect the greatestmost persistent problem of 

melanoma-specific modeling: interdisciplinarity. Computational models 

require close collaboration between experimental, clinical, and 

computational scientists in an iterative procedure.  Modeling generates 

hypotheses, which can be tested \textit{in vitro}, and experimental results 

inform the design of better models and allow the falsification of theories  

\cite{howard2014quantitative}. However, a general problem in the 

interdisciplinary work in biology and medicine is that the more demanding 

the necessary mathematical and physical framework becomes, the more 

disconnected it becomes from the experimental and theoretical knowledge in 

biology, medicine, and pharmacology.  On the one hand, computational groups 

cannot reproduce and test the diverse parameter sources in their labs, 

lacking the time and expertise to embrace the whole complexity of 

biological relationships and experimental methods. On the other hand, 

biologists and clinicians find it difficult to help, as the more developed 



computational procedures are likewise difficult to comprehend. Therefore, 

better quality standards between and in both computational 

\cite{waltemath2016modeling} and biomedical research 

\cite{begley2015reproducibility} need to be developed and adopted. A more 

sophisticated way might be the stepwise model development accompanied by 

advanced cell culture strategies, as suggested by Figure 1. The gap between 

the different disciplines is not closed yet, which leads to conceptual 

problems in the models and inappropriate parameter choices.  \\ 

The creation of a mechanistic and predictive model is a serious and work-

intensive endeavor that forces all participants to think deeper 

\cite{wolkenhauer2014model}. Ultimately, the reward is more aim-tailored 

research but also the discovery of hidden causalities, which would 

otherwise have rendered explorative research inconclusive or contradictory. 

Recent progress in devising experimental procedures for parameter 

determination has fueled the work of several computational groups. 

Conversely, certain phenomena can only be understood with computational 

methods, such as  computational mechanics. 

\section*{Conclusion} 

Cancer is a highly complex, heterogeneous disease, characterized by a 

series of genetic, metabolic, and functional changes at the cellular and 

tissue level \cite{hanahan2011hallmarks}. Melanoma-specific dynamics along 

tumor progression stages in both plasticity \cite{weder2014increased} and 

genetics \cite{shain2015genetic} highlight the need for integrative models 

to better understand disease mechanisms of melanoma better. The model-

building community works across different scales and comprises studies 

centered on signaling pathways and gene regulation \cite{werner2014cancer}, 

metabolism \cite{antoniewicz2015methods, pacheco2018fastcore}, epithelial 

tissue mechanics \cite{brodland2015computational}, tumor physiology 

\cite{cristini2017introduction}, or the immune system 

\cite{konstorum2017addressing}. Four challenges for computational melanoma 

models have been discussed: 

\begin{itemize} 

\item Melanoma heterogeneity, 

\item Melanoma-type specificity, 

\item The balance between simplicity and thoroughness, and 

\item Melanoma data integration and evidence. 

\end{itemize} 

Consequently, interdisciplinarity and clinical relevance remain a bottleneck if it comes to the 

practical use of melanoma-specific systems biology and physical oncology models. However, 
if all disciplines improve interdisciplinary collaboration, the future promises us an unmatched 

insight. 
 


