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Supplementary material to the Paper,"A topology-based network
tree for the prediction of protein-protein binding affinity changes

upon mutation"

Menglun Wang1, Zixuan Cang,1, and Guo-Wei Wei1,2,3, ∗

This document contains additional information about methods and discussion in the paper TopNetTree which
were not necessary to include in the central part of paper but might be of interest to readers. This supplementary
material contains the following sections:
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Supplementary Tables
A B Dis. Complex Dim.

Am ∩ Aele(E1) Amn(r) ∩ Aele(E2) Dmod Rips H0

Am ∩ Aele(E1) Amn(r) ∩ Aele(E2) De alpha H1, H2

AAb(r) ∩ Aele(E1) AAg(r) ∩ Aele(E2) Dmod Rips H0

AAb(r) ∩ Aele(E1) AAg(r) ∩ Aele(E2) De alpha H1, H2

Supplementary Table 1: Summary of topological descriptors. Choices for E1 and E2 are {C}, {N}, and {O}. The
barcodes are generated upon mutant and wild type complexes.

Supplementary Figures
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Supplementary Figure 1: Counts of mutation types in AB-Bind database. Reverse mutations are also counted in
the matrix.



Supplementary Discussion
S1131 dataset
The SKEMPI dataset1 contains 3047 binding free energy changes upon mutation, while 2317 of them are single-
point mutation data entries, denoted the SKEMPI S2317 set. Xiong et al. selected a subset of 1131 non-redundant
interface single-point mutations from the SKEMPI S2317 set2 , called set S1131. We applied our model to set
S1131 by the 10-fold cross-validation. Result is shown below.

10 5 0 5 10
Predicted G(kcal/mol)

10

5

0

5

10

Ex
p 

G(
kc

al
/m

ol
)

Pearson:0.85

Supplementary Figure 2: Performance evaluation on the 10-fold cross-validation on set S1131. TopNetTree model
was able to achieve the Rp of 0.85 and RMSE of 1.55 kcal/mol.



S4947, S4169 and S8338 datasets
The SKEMPI 2.03 database is the updated version of the SKEMPI database and contains new mutations collected
after the first version was released. There are 7085 mutations in the SKEMPI 2.0 dataset. We choose only
single-point mutations with full energy change information, called set S4947. Since binding energy changes upon
mutation (∆∆G) are not directly given in the SKEMPI 2.0 database, the following formula is used to obtain the
∆∆G value for each mutation with a given kd value:

∆G =
8.314

4184
× (273.15 + 25)× log(kd)

∆∆G = ∆GMT −∆GWT .

Set S4169 is directly adopted from mCSM-PPI24 paper, which is also derived from the SKEMPI 2.0 dataset.
Set S8338 is derived from the S4169 set by setting the reverse mutation energy change with a negative sign4 .
We tested our model on S4947 , S4169 and S8338 datasets. For set S4947, we carry out the regular 10-fold
cross-validation 10 times. For S4169 and S8338 sets, we follow the 10-fold stratified cross-validation used in
mCSM-PPI2 paper.4 The following is the result of our test.
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Supplementary Figure 3: Performance evaluation using 10-fold cross-validations. (a) Set S4947 with the Rp of
0.82 and RMSE of 1.11 kcal/mol. (b) Set S4168 with the Rp of 0.78 and RMSE of 1.13 kcal/mol. (c) Set S8338
with Rp of 0.85 and RMSE of 1.09 kcal/mol.



Blind test of an AB-Bind dataset based on the S4947 dataset
Since the SKEMPI 2.0 dataset includes entries from the AB-Bind dataset, we design a blind test based on AB-
Bind and SKEMPI 2.0 sets. From 24 protein complexes existing in both the AB-Bind dataset and the SKEMPI 2.0
dataset, we collect 787 single-point mutations, denoted set S787, as our test set. We construct a training set by
excluding set S787 from the SKEMPI 2.0 S4947 set. The results of this training and test are given below.
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Supplementary Figure 4: Performance evaluation of a blind prediction. The AB-Bind S787 set is the test. The
training is constructed from the SKEMPI 2.0 S4947 dataset, excluding the AB-bind S787 set. TopNetTree model
was able to achieve the average Rp of 0.53 and RMSE of 1.45 kcal/mol.



Protein level non overlapping test on the AB-Bind S645 set
To further test the predictive power of our model, we applied protein level non overlapping test on the AB-Bind S645
set. All the 645 mutations in the dataset could be separated into 24 different protein-protein complexes (we merged
the complex and its homology model as one category since they are very similar). To perform a non-overlapping
test, all the mutations in one specific protein complex are designed as the test set and all other mutations are
designed as the training set. By doing this training test splitting, protein complex in the test set is guaranteed to be
not in the training set. The result of non-overlapping test of 24 protein complexes is shown in Table 2

Name Counts Rp RMSE(kcal/mol)

1AK4 16 0.528 0.837
1BJ1 19 0.103 1.502
1CZ8 19 0.506 1.077
1DQJ 21 0.568 1.877
1DVF 26 0.553 1.163
1FFW 9 -0.043 1.052
1JRH 2 1 0.812
1JTG 5 0.757 0.549
1KTZ/HM_1KTZ 44 0.866 0.496
1MHP 68 0.505 3.216
1MLC 11 0.397 1.508
1N8Z 34 0.626 2.273
1VFB 41 0.689 1.653
1YY9/HM_1YY9 21 -0.068 1.531
2JEL 43 0.818 0.954
2NYY/HM_2NYY 53 0.589 1.238
2NZ9/HM_2NZ9 35 0.665 1.367
3BDY 34 0.615 0.692
3BE1 34 0.474 0.941
3BN9/HM_3BN9 43 0.368 1.743
3HFM 22 0.262 2.69
3K2M 7 0.705 1.416
3NGB 11 0.459 1.147
3NPS 27 0.242 0.953

Total 645
Average 27 0.508 1.362
Median 24 0.541 1.201

Supplementary Table 2: Result of non-overlapping protein level test on AB-Bind S645 set, including Pearson
correlation coefficient and RMSE in kcal/mol.



Protein level leave-one-out validation test
To further test the predicting power of our model, we applied protein-level leave-one-out cross-validation test on the
AB-Bind S645 set. All the 645 mutations in the dataset are separated into 24 different protein-protein complexes
(we merged the complex and its homology model as one category since they are very similar). Then mutations
in each protein complex are used in leave-one-complex-out cross-validation. The result of the test of 24 protein
complexes is shown in Table 3.

Name Counts Rp RMSE(kcal/mol)

1AK4 16 0.139 0.977
1BJ1 19 0.392 1.350
1CZ8 19 0.671 0.921
1DQJ 21 0.318 1.885
1DVF 26 -0.103 1.345
1FFW 9 0.149 0.512
1JRH 2 -1 0.13
1JTG 5 -0.998 0.689
1KTZ/HM_1KTZ 44 0.973 0.222
1MHP 68 0.145 3.432
1MLC 11 0.606 0.418
1N8Z 34 0.029 3.023
1VFB 41 0.533 1.755
1YY9/HM_1YY9 21 0.547 0.225
2JEL 43 0.707 0.968
2NYY/HM_2NYY 53 0.514 1.175
2NZ9/HM_2NZ9 35 0.121 1.732
3BDY 34 0.604 0.548
3BE1 34 0.054 1.077
3BN9/HM_3BN9 43 0.281 1.938
3HFM 22 -0.121 2.726
3K2M 7 -0.993 1.234
3NGB 11 0.411 1.186
3NPS 27 0.099 0.766

Total 645
Average 27 0.170 1.218
Median 24 0.215 1.027

Supplementary Table 3: Result of protein-level leave-one-complex-out-validation test on AB-Bind S645 set, includ-
ing average Pearson correlation coefficient and RMSE in kcal/mol.



Alanine mutation test of 1AK4

Supplementary Figure 5: Structure of protein complex 1AK4, chain A in blue and chain D in red

Interior Surface Rim Support Core All

Avg Var Avg Var Avg Var Avg Var Avg Var Avg Var

Arg 0.8435 0 1.7463 0.5962 1.6302 0 – – 1.5676 0 1.5466 0.4017
Asn 1.0064 0.1031 1.3790 1.2943 1.4870 0 1.6727 0 – – 1.2581 0.5352
Asp 1.0726 0.1059 0.8942 0.0837 – – – – – – 0.9707 0.1010
Cys 0.8236 0.0172 0.6246 0 – – – – – – 0.7739 0.0203
Gln – – 0.9425 0 – – 2.8500 0.0041 – – 2.2142 0.8114
Glu 0.8466 0.0174 1.2533 0.3848 – – – – – – 1.1794 0.3426
Gly 1.0956 0.4595 0.6091 0.1135 – – – – 1.3921 0 0.9322 0.3761
His 1.2941 0 1.1008 0 – – 1.7063 0.0410 – – 1.4519 0.0899
Ile 1.0031 0.1280 0.1595 0 – – 0.8719 0 – – 0.9056 0.1658

Leu 1.2601 0.1447 1.8473 0.8087 – – 1.5133 0 – – 1.4641 0.3798
Lys – – 0.6113 0.1443 – – – – – – 0.6113 0.1443
Met 2.2145 0.4070 0.9892 0 – – 1.9440 0.2721 – – 1.9153 0.4696
Phe 2.1307 0.9728 1.0778 0.0046 – – 1.7958 0.2721 – – 1.9457 0.8788
Pro 0.8306 0 0.7735 0.3486 – – – – – – 0.7831 0.2909
Ser 1.0374 0.1150 0.3301 0.0010 – – – – – – 0.8606 0.1803
Thr 1.1284 0.1641 0.8129 0.0432 1.1802 0 – – – – 0.9898 0.1205
Trp – – – – 1.3124 0 – – – – 1.3124 0
Tyr 2.5878 0 1.0924 0 – – – – – – 1.8401 0.5590
Val 1.0002 0.0229 0.4613 0 – – – – – – 0.9403 0.0490

Supplementary Table 4: Alanine mutation test on 1AK4 chain A, using TopNetTree model with AB-Bind training
data. All the ∆∆G values are in kcal/mol. In total there are 165 residues in the chain A of 1AK4. Results of the
alanine mutation are also separated into 5 region groups, interior, surface, rim, support, and core, respectively.



Supplementary Methods
Auxiliary features
As we mentioned in the feature generation part of in the main part of paper, element-specific and site-specific
persistent homology is able to embed chemical information into topological representations. However, there are
other important chemical and physical information that has not been incorporated into element-specific persistent
homology but could improve the predictive power of the present topological model. In this work, all none topological
features are named as auxiliary features. These features are appended into the machine learning model at the
last step of GBT training or the dense layer of a neural network. In general, auxiliary features are categorized into
atom-level features and residue-level ones.
Atom-level features
According to different criteria, atoms can be categorized into different groups for feature generation. First, with
respect to atom types, we divide atoms into 7 groups, i.e., C,N,O,S,H, all heavy atoms, and all atoms. Additionally,
with respect to distance to mutation site, atoms are grouped into 3 groups, namely, mutation site atoms, near
mutation site atoms (within 10Å of mutation site), and all atoms. Finally, similar to the treatment in topological
feature generation, 3 cases, i.e., wild type, mutant type, and their difference are considered, respectively.

• Surface areas Atom-level solvent excluded surface areas are computed through our in-house software
ESES.5 All atom areas within the same group are summed as one feature. In this manner, a total of 7*3*3 =
63 features is generated.

• Partial charges Partial charge of each atom is generated from pdb2pqr software6 using the amber force
field. After the procedure, the radius and the partial charge of each atom are calculated. The sum of the
partial charges and the sum of absolute values of partial charges for each atomic group are counted as
partial charge features. In this manner, a total of 7*3*3*2 =126 features is generated.

• Coulomb interactions Coulomb energy of the ith single atom is calculated as the sum of pairwise coulomb
energy with every other atom.

Ci =
∑
j,j 6=i

ke
qiqj
rij

. (1)

Here, ke is the Coulomb’s constant. Since multiplying the constant coefficient has no effect on machine
learning result, we use ke = 1 in our calculation.

In coulomb interaction feature generation, only 5 groups (C,N,O,S, and all heavy atoms) are counted. Both
coulomb interaction energy and absolute value are counted. In this manner, a total of 5*3*3*2 = 90 features
is generated.

• van der Waals interaction The van der Waals energy of the ith atom is modeled as the sum of pairwise
Lennard-Jones potentials with every other atom. Only 5 groups (C,N,O,S, and all heavy atoms) are counted.

Vi =
∑
j,j 6=i

ε

[(
ri + rj
rij

)12

− 2

(
ri + rj
rij

)6
]
. (2)

Here, ε is the depth of the potential well. Since multiplying the constant coefficient has no effect on machine
learning result, we use ε = 1 in our calculation. In this manner, a total of 5*3*3 = 45 features is generated.

• Electrostatic solvation free energy Electrostatic solvation free energy of each atom is calculated using
Poisson-Boltzmann model through our in-house software MIBPB.7–9 By summing up all the solvation free
energies in same atom groups, 7*3*3 = 63 features are generated.

Residue-level features
• Mutation site neighborhood amino acid composition The residues within 10 Å of the mutation site are

regarded as neighbor residues. Distances between residues are calculated using their alpha carbon atoms.
Amino acid residues are divided into 5 groups as hydrophobic, polar, positively charged, negatively charged
and special cases. The count and percentage of the 5 groups of amino acids in neighbor site are regarding
as the environment composition features of the mutation site, which leads to 5*2 = 10 features. Also, the



sum, average and variance of residue volumes, surface areas, weights and hydropathy scores are generated
as the environment chemical and physical features of a mutation site, which leads to 3*4 = 12 features. In
this manner, 10+12 = 22 features are generated.

• pKa shifts The pKa values of 7 ionizable amino acids, namely, ASP, GLU, ARG, LYS, HIS, CYS, and TYR,
are calculated using the PROPKA software.10 The difference of pKa values between a wild type and its
mutant type are calculated as pKa shifts. The maximum, minimum, sum, the sum of absolute values, the
minimum of absolute value of total pKa shifts are calculated, which leads to 5 features. Also, besides the
shifts of all groups, the sum and the sum of absolute value of pKa shifts based on the 7 ionizable amino acid
groups are calculated, which leads to 2*7=14 features. In this manner, 5+14 = 19 features are generated.

• Secondary structures Using SPIDER211 software, the probability score of mutation site residues to be coil,
helix or strand are calculated as well as torsion angles. The wild type, the mutant type and their difference
are calculated as secondary structure features. In this manner, 4*3 =12 features are generated.



Preprocessing of dataset
For the aforementioned databases, crystal structures of the wild type, mutation type, and binding affinity change
are given for each data entry. To calculate our structure-based topological feature, the structures of mutant type
are also needed. Scap utility in the Jackal package12 is used to generate mutant structures. This utility predicts
side-chain conformations on a given backbone. To fix the missing atoms and residues, the profix utility in the Jackal
package12 is applied to all raw pdb files.
Model parametrization and software used
The details of model parameters and software packages are given below.

TopGBT: Topology based GBT model

• H1 andH2 features. Element-specific persistent homologyH1 andH2 barcodes are constructed as described
in Table 1 with cutoff value r = 12Å. We consider a wide type and mutant complexes. For each barcode,
we extract birth death and persistence information. Statistical values, namely sum, min, max, mean, and
standard deviation are computed from these barcodes to generate H1 and H2 features, giving rise to a total
of 540 features.

TopCNN: Topology based CNN model

• H0 feature. The same as what described above, except for a finer bin size of 0.25 Å, which leads to a total of
1296 features for CNN.

• Four 1D convolutional layers and one dropout layer have been used in the CNN model.

TopNetTree: Topology based network tree model

• H0 features. Top 300 high-level CNN features are selected according to their feature importance.

• H1 and H2 auxiliary features are the same as those in the TopGBT model.

Model parameters

• CNN network structure and parameters are shown in Supplementary Figure 6

• GBT parameters n_estimators = 20000,max_depth = 6,minsamples_split = 3, and learning_rate = 0.001.

Software used

• GBT. The scikit-learn (version 0.18.1)13 is used for the gradient boost regressor function.

• CNN. The Keras (version 2.0.2)14 package is used for convolutional neural network model.

• Persistent homology feature: Javaplex15 is used to generate H0 barcodes and TDA package in R16 is used
to generate H1 and H2 barcodes.

Time and memory cost

• All the models are generated and tested on computer facilities at Michigan State University’s High perfor-
mance computing center (HPCC). 8 GB of memory and 5 cpu cores are requested for each feature genera-
tion job.

• Average running time for generating topological features for one sample is 1.01 min (time for generating
mutant structure is included).

• Average running time for generating auxiliary features is 9.21 min .



Supplementary Figure 6: Illustration of CNN parameters. This CNN network structure contains two 1D convolu-
tional layer of 64 channels and two 1D convolutional layer of 128 channels and 1 flatten layers. On the convolutional
dimension, 12 Åcut off and 0.25 Åbin size was chosen, so 48 bins are the size for that dimension. Other parameters
for the CNN are listed as follow: kernalinitializer =′ lecununiform

′ , optimizer = adam and epochs = 2000

Evaluation Criteria
• Two evaluation metrics, Pearson’s correlation coefficient (Rp) and root-mean-squared error (RMSE), are used

to assess the quality of predictions. Let x and y be the vector of predicted values and the ground truth of the
n samples, respectively. The definition of Rp is given by

Rp =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
, (3)

where x̄ and ȳ, the means of x and y, respectively. RMSE is computed as

RMSE =

√√√√ n∑
i=1

(xi − yi)2/n (4)

For cross validation, the Rp and RMSE of all folds are averaged.

• We use 10-fold cross validation on the AB-bind database for all of our models. Reported values are the
averages of 50 individual trials with different random seeds.



Supplementary Data Guide
Supplementary data are given in "SupplementaryData.xlsx". This supplementary file contains 5 spread sheets of
detailed dataset information mentioned in the paper, including AB_bind_6454, S1131, S4947, S4169, S8338 and
S787. PDBID, mutation type, mutation site, experiment ddg and predicted ddg are given in each spread sheet.
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