Cell Host & Microbe, Volume 27

# **Supplemental Information**

# Identification of Human Single-Domain

## Antibodies against SARS-CoV-2

Yanling Wu, Cheng Li, Shuai Xia, Xiaolong Tian, Yu Kong, Zhi Wang, Chenjian Gu, Rong Zhang, Chao Tu, Youhua Xie, Zhenlin Yang, Lu Lu, Shibo Jiang, and Tianlei Ying

### **Supplemental Information**

Figure S1. Analytical SEC-HPLC for eight human germline IGHV alleles with high yield and the SARS-CoV-2-specific single-domain neutralizing antibodies (n3088, n3130, n3086, n3113). Related to Figure 1.

**Figure S2.** Competition of single-domain antibodies with ACE2, or the antibody CR3022 for SARS-CoV-2 RBD binding were measured by BLI. (A) Immobilized SARS-CoV-2 RBD was first saturated with the testing single-domain antibodies. The capacity of ACE2 binding to RBD was monitored by measuring further shifts after injecting the ACE2 in the presence of the testing single-domain antibody. The grams show binding patterns of ACE2 to SARS-CoV-2 RBD with (green curve) or without (purple curve) prior incubation with each testing single-domain antibody. (B) Immobilized SARS-CoV-2 RBD was first saturated with CR3022 and the capacity of single-domain antibody to bind RBD was monitored by measuring further shifts after incubating with the tested single-domain antibody in the presence of CR3022. Grams show binding patterns of single-domain antibody to SARS-CoV-2 RBD with (green curve) or without (purple curve) CR3022. Related to Figure 2.

**Figure S3. Epitope mapping of the representative single-domain antibodies in competition groups A, D and E on SARS-CoV-2 RBD, as measured by ELISA.** (A) Binding capacity of representative single-domain antibody n3021 in competition group A and antibody n3130 in competition group D to wild-type and variants of SARS-CoV-2 RBD, as measured by ELISA. The mutations are shown in red box, ACE2-binding sites are shown in cyan, and the epitopes of CR3022 are shown in yellow. The critical residues for the RBD binding of n3021 and n3130 are highlighted by red star and blue star, respectively. (B) Sequence alignment of three SARS-CoV-2 clinical isolates (nCoV-SH01, SZTH-004 and IDF0372) in which the mutations are highlighted in red box; binding capacity of neutralizing single-domain antibodies (group D antibody n3088 and group E antibody n3113) to RBD of three SARS-CoV-2 clinical isolates, as

measured by ELISA, with an irrelevant protein (Tim-3) as control. Related to Figure 3.

Figure S1



# Figure S2



Β



n3088 vs CR3022

n3130 vs CR3022

n3086 vs CR3022

n3113 vs CR3022



<sup>55</sup> <sup>56</sup> + CR3022 <sup>56</sup> + CR3022 <sup>56</sup> + CR3022 <sup>56</sup> + CR3022 <sup>56</sup> - n3113 + CR3022 <sup>56</sup> 0.2 0.1 0.1 0.0 0.1 0.0 0.1 0.0 0.200 300 Time (s) <sup>56</sup> - CR302

Figure S3



RVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASESTEKCYGVSPT KLNDLCETNVYADSFVIRGDEVRQIAPGQTGKIADYNYKLPDDETGCVIAWNSNNLDSKVGGNYNY LYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSFELL \*\*\*



| Primer       | Nomo | Security                                                                               |         |  |  |  |
|--------------|------|----------------------------------------------------------------------------------------|---------|--|--|--|
| description  | Name | Sequence                                                                               | Froduct |  |  |  |
| H1 sense     | H1F  | CTGAGACTCTCCTGTGCAGCC TCT                                                              |         |  |  |  |
| H1 antisense | H1R  | TGGAGCCTGGCGGACCCAGCT CAT                                                              |         |  |  |  |
| H2 sense     | H2F1 | ATGAGCTGGGTCCGCCAGGCTCCAGGACAASGSCTTGAGTGG                                             |         |  |  |  |
|              | H2F2 | ATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGCCCTGGAGTGG                                             |         |  |  |  |
|              | H2F3 | ATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGNCTRGAGTGG                                             |         |  |  |  |
| H2 antisense | H2R1 | ATTGTCTCTGGAGATGGTGACCCTKYCCTGRAACTY                                                   | CDDA    |  |  |  |
|              | H2R2 | 2 ATTGTCTCTGGAGATGGTGAATCGGCCCTTCACNGA<br>3 ATTGTCTCTGGAGATGGTGACTMGACTCTTGAGGGA       |         |  |  |  |
|              | H2R3 |                                                                                        |         |  |  |  |
|              | H2R4 | ATTGTCTCTGGAGATGGTGACSTGGCCTTGGAAGGA                                                   |         |  |  |  |
|              | H2R5 | ATTGTCTCTGGAGATGGTAAACCGTCCTGTGAAGCC                                                   |         |  |  |  |
| H3 sense     | H3F1 | H3F1 AGCCTGAGAGCCGAGGACACRGCYTTRTATTACTGT<br>H3F2 AGCCTGAGAGCCGAGGACACAGCCAYRTATTACTGT |         |  |  |  |
|              | H3F2 |                                                                                        |         |  |  |  |
|              | H3F3 | AGCCTGAGAGCCGAGGACACRGCYGTRTATTACTGT                                                   | CDK3    |  |  |  |
| H3 antisense | H3R  | GTGGCCGGCCTGGCCACTTGAGGAGACGGTGACC                                                     |         |  |  |  |

Table S1 Primers used for amplification of heavy-chain CDR1, CDR2, andCDR3 from naïve antibody libraries.Related to Figure 1.

Table S2 List of binding kinetic parameters of human single-domain antibodies. Association-rate ( $k_{on}$ ), dissociation-rate ( $k_{off}$ ) and affinity (K<sub>D</sub>) are shown. Representative single-domain antibodies in each of competition groups are shown in colors which correspond to the competition group designation in Figure 2A. Related to Figure 2.

|                  | Antibody | K <sub>D</sub> (M)                    | kon (Ms <sup>-1</sup> )       | $k_{\rm off}$ (s <sup>-1</sup> )                 | R <sup>2</sup> value |
|------------------|----------|---------------------------------------|-------------------------------|--------------------------------------------------|----------------------|
|                  | n3001    | $1.20 	imes 10^{-8}$                  | $9.10\times10^4$              | $1.09 	imes 10^{-3}$                             | 0.98                 |
|                  | n3002    | $1.46 	imes 10^{-8}$                  | $1.22\times 10^5$             | $1.78\times10^{\text{-3}}$                       | 0.97                 |
|                  | n3003    | $3.34\times10^{\text{-8}}$            | $8.65 	imes 10^4$             | $2.89\times10^{\text{-3}}$                       | 0.97                 |
|                  | n3004    | $1.48 	imes 10^{-8}$                  | $1.17 	imes 10^5$             | $1.73 	imes 10^{-3}$                             | 0.97                 |
|                  | n3008    | $3.05 	imes 10^{-8}$                  | $6.30 	imes 10^4$             | $1.92\times10^{\text{-3}}$                       | 0.99                 |
|                  | n3009    | $1.69 	imes 10^{-8}$                  | $1.41 	imes 10^5$             | $2.38\times10^{\text{-3}}$                       | 0.96                 |
|                  | n3010    | $7.16 	imes 10^{-8}$                  | $2.13 	imes 10^4$             | $1.53\times10^{\text{-}3}$                       | 0.99                 |
|                  | n3011    | $9.94 	imes 10^{-9}$                  | $1.04 	imes 10^5$             | $1.03 	imes 10^{-3}$                             | 0.97                 |
|                  | n3014    | $1.17 	imes 10^{-8}$                  | $1.02 	imes 10^5$             | $1.20 	imes 10^{-3}$                             | 0.98                 |
| 3                | n3020    | $4.71\times10^{\text{-8}}$            | $4.28 	imes 10^4$             | $2.01\times10^{\text{-3}}$                       | 0.99                 |
| -V0              | n3021    | $6.32\times10^{10}$                   | $7.97 	imes 10^5$             | $\textbf{5.04} \times \textbf{10}^{\textbf{-4}}$ | 0.99                 |
| S-C<br>RBI       | n3025    | $1.18 	imes 10^{-8}$                  | $1.20 	imes 10^5$             | $1.41 	imes 10^{-3}$                             | 0.97                 |
| AR               | n3026    | $1.60 	imes 10^{-8}$                  | $1.59 	imes 10^5$             | $2.53\times10^{\text{-3}}$                       | 0.95                 |
| $\mathbf{x}$     | n3047    | $2.20\times10^{\text{-8}}$            | $8.79\times10^4$              | $1.78 	imes 10^{-3}$                             | 0.97                 |
|                  | n3051    | $2.06\times10^{\text{-8}}$            | $1.58 	imes 10^5$             | $3.24\times10^{\text{-3}}$                       | 0.96                 |
|                  | n3055    | $2.09\times10^{\text{-8}}$            | $9.70 	imes 10^4$             | $2.03 	imes 10^{-3}$                             | 0.98                 |
|                  | n3063    | $\textbf{2.93}\times\textbf{10^{-8}}$ | $\pmb{8.94\times10^3}$        | $2.62 	imes 10^{-4}$                             | 0.98                 |
|                  | n3065    | $2.22\times10^{\text{-8}}$            | $1.32 	imes 10^5$             | $2.92\times10^{\text{-3}}$                       | 0.97                 |
|                  | n3088    | $3.25\times10^{\text{-8}}$            | $7.34\times10^4$              | $2.38\times10^{\text{-3}}$                       | 0.96                 |
|                  | n3130    | $1.26\times 10^{\text{-8}}$           | $2.72 	imes 10^5$             | $3.42\times10^{\text{-3}}$                       | 0.97                 |
|                  | n3086    | $1.15 	imes 10^{-6}$                  | $1.57 	imes 10^5$             | 0.18                                             | 0.99                 |
|                  | n3113    | $1.90\times10^{\text{-}6}$            | $6.81 	imes 10^4$             | 0.13                                             | 0.99                 |
|                  | n3072    | N.A.                                  | N.A.                          | N.A.                                             | N.A.                 |
| 7                | n3088    | 3.70 × 10 <sup>-9</sup>               | <b>7.63</b> × 10 <sup>4</sup> | $2.82 	imes 10^{-4}$                             | 0.99                 |
| SARS-CoV-2<br>S1 | n3130    | $5.54\times10^{\text{-8}}$            | $1.01 	imes 10^4$             | $5.62 	imes 10^{-4}$                             | 0.99                 |
|                  | n3086    | $8.90\times\mathbf{10^{-8}}$          | $7.42 \times 10^3$            | <b>6.60</b> × 10 <sup>-4</sup>                   | 0.99                 |
|                  | n3113    | $5.70\times\mathbf{10^{-8}}$          | $1.26 \times 10^4$            | $7.21 	imes 10^{-4}$                             | 0.99                 |
|                  | n3072    | $5.06\times10^{\text{-8}}$            | $1.21 	imes 10^4$             | $6.11 	imes 10^{-4}$                             | 0.99                 |

| Human single-domain<br>antibody | Competition<br>group | HCDR3<br>length | HCDR3 sequence        |
|---------------------------------|----------------------|-----------------|-----------------------|
| n3021                           | А                    | 9               | VRDWLRFDY             |
| n3063                           | В                    | 11              | AKDLLPGGADV           |
| n3010                           | С                    | 20              | ARHQPPDYYDSSGKPYYFDY  |
| n3088                           | D                    | 21              | ARVREYYDILTGYSDYYGMDV |
| n3130                           | D                    | 13              | ATRSPYGDYAFSY         |
| n3086                           | Е                    | 10              | ARDFNWGVDY            |
| n3113                           | Е                    | 12              | VSNWASGSTGDY          |

**Table S3 HCDR3 characteristics of the representative single-domain antibodiesin each of competition groups.** Related to Figure 2.