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Finite Deformation Elastography and Topology Optimization Workflow 
 
Generally, the finite deformation elastography workflow was solved using finite element method software 
(Abaqus, version 2017) 38 and optimization software (Tosca, version 2017; Dassault Systèmes) 40, to iteratively 
update the stiffness of each element representing the material. As illustrated in the main text, the stiffness 𝐸! of 
each element k was designed to be proportional to the relative element density by SIMP method in equation (3). 
To solve the optimization problem, we used the method of moving asymptotes 55,56. The approximation of the 
design function F of element density 𝜌 = (𝜌", 𝜌#, … , 𝜌$) around a given iteration point 𝜌% has the form: 
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where the number 𝑟1, 𝑠1, are chosen as 
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(𝜌%), 
and positive numbers 𝑈1, 𝐿1 give vertical asymptotes for the approximation of F and are updated heuristically in 
each iteration to make the iteration more efficient. 
 
Starting with a homogeneous initial stiffness distribution, the resulting displacements with boundary conditions 
were calculated. Then the difference of nodal displacements was determined between model and measured results. 
If only marginal improvement was found in the objective function value compared to the last iteration, such as 
improvement within 0.1% compared to last iteration by default, the optimization was assumed to be converged 
and the iterations were stopped. Otherwise, the density in elements was updated and the iterations were continued. 
To achieve the mesh-independency and computer efficiency, the sensitivity value of the design objective 𝐹 on 
the element density 𝜌! was filtered 57: 
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The mesh-independent convolution operator 𝐻91  which decays linearly with the distance from element k was 
written to be: 
 

𝐻91 = 𝑟<1$ − dist(𝑘, 𝑖),				(dist(𝑘, 𝑖) ≤ 𝑟<1$)           ( 3 ) 
 
where rmin was a user-defined filtering radius. Depending on the element sizes, the filter radius was generally 
chosen to be twice the mean element edge length. Compared to results obtained by a local gradient constraint, the 
sensitivity filter provided very similar results and required little extra computational time 38. To further regularize 
the problem, measured displacements were also filtered to suppress outliers. Direct filtering on the 
density/stiffness was also achieved by adding constraints of displacement smoothness for neighboring nodes or 
customizing weight factors in the objective function to force a smooth distribution. 
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Supplemental Figure 1. Comparison showing local regression smoothing performs better in terms of 
preserving values at boundaries, with lower overall precision and bias. (A) Ideal gradient maps in horizontal 
and vertical direction were generated in a narrow mask and smoothed using Gaussian smoothing and local 
regression smoothing. While Gaussian smoothing exhibited bias values at boundaries, local regression smoothing 
did not. (B) Monte Carlo simulation was used to calculate precision and bias of both smoothing techniques. An 
indented rectangular 2D model was simulated in Abaqus and the displacement fields were used. Experimental 
level of random noise was generated 100 times and their smoothed results were compared to the input simulated 
displacements. It is important to note that the iteration is a Gaussian smoothing parameter and the span is the pixel 
considered in each local regression smoothing. In that last plot, precision and bias of both methods were 
combined. 
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Supplemental Figure 2. Various constitutive models are all capable of inverse modeling within our finite 
deformation elastography framework. Displacement was measured in an unconfined loading test with a 
homogeneous, cylindrical hydrogel. An axisymmetric model was created in Abaqus with linear elastic and hyper 
elastic models and forward simulations was executed. With a relative compressibility (Poisson’s ratio in linear 
elastic) of 0.5, showing nearly incompressible material, the difference of displacements between simulation and 
experiment demonstrated that the hydrogel behaved as an incompressible material and the effect of different 
material models was considered negligible. 
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Supplemental Figure 3. Map of stiffness bias using Monte Carlo simulations. Bias was concentrated around 
the layer interface and near the fixed (bottom) edges. 
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Supplemental Figure 4. Noninvasive mapping of xyz displacements measured in contiguous 13 slices to for 
3D inverse modeling. Displacements were directly measured in volumetric (i.e. 2D multislice) images, enabling 
3D stiffness mapping. 
 


