
Karalunas et al.  Supplement 
 

1 

Emotion-Cognition Interactions in Attention-Deficit/Hyperactivity Disorder: 
Increased Early Attention Capture and Weakened Attentional  

Control in Emotional Contexts 
 

SUPPLEMENTAL INFORMATION 
 
            Pages 
 
SUPPLEMENTAL METHODS 

Screening and Diagnosis        2-3 
LBA Methods          3-5 
Plausible Values Analysis        6 

 
SUPPLEMENTAL RESULTS 

Reaction Time and Accuracy        7-8 
Group Comparisons of LBA Parameters in Neutral Condition   8 
Parameter Recovery Study        8-10 

 
SUPPLEMENTAL TABLES          
 S1. Plausible Values Analysis: LBA and ERP measures    11 
 S2. Plausible Values Analysis: LBA and parent ratings    12 
 S3. Correlations between ERP and parent ratings     13 
 
SUPPLEMENTAL FIGURES          
 S1. Topographic plots         14 
 S2. Joint cumulative distribution function plots     15 
 S3. Results from the parameter recovery study     16 
 
SUPPLEMENTAL REFERENCES       17-19 

 

  



Karalunas et al.  Supplement 
 

2 

SUPPLEMENTAL METHODS 

Screening and Diagnosis 

After an initial screening phone call, a parent/guardian and teacher completed 

standardized rating scales, including the Conners’ Rating Scales, 3rd edition and the ADHD 

Rating Scale (ADHD-RS). The parent/guardian also completed a semi-structured clinical 

interview (Kiddie Schedule for Affective Disorders and Schizophrenia, K-SADS) administered 

by a Master’s-level clinician who had achieved research reliability. The parent/guardian reported 

on lifetime and current symptom levels, as well as age of onset and impairment. 

Total symptom counts were calculated by combining parent (K-SADS) and teacher 

(ADHD-RS) report using an “OR” algorithm. For the majority of cases (n= 104), children were 

assigned to the ADHD group if they had 6+ symptoms of inattention and/or 6+ symptoms 

hyperactivity-impulsivity, and met criteria for impairment and age of onset based on the K-

SADS. Those in the typically-developing control group were required to have 3 or fewer 

symptoms within each ADHD symptom domain and 4 or fewer total ADHD symptoms. 

For a minority of cases (n= 26), teacher ratings were not available at the time of data 

analysis to create the “OR” algorithm symptom counts. In these cases, the diagnosis assigned 

was based on review by a diagnostic team who reviewed cases for the larger longitudinal study 

(Karalunas et al., 2017; Nigg et al., 2018). This diagnostic team included a child psychiatrist and 

licensed child psychologist. Blind to one another’s ratings and to the cognitive test scores, they 

formed a diagnostic opinion based on all available information (parent ratings and clinical 

interview, self-report ratings, IQ and academic achievement testing, medication and 

developmental history). Their agreement rate was satisfactory (ADHD, kappa=.88). 

Disagreements were conferenced and consensus reached. Cases where consensus was not readily 
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achieved were excluded. Agreement between the two diagnostic approaches in cases where both 

were available was >90%. 

Exclusion Criteria. Adolescents were excluded from the current study if they were 

prescribed long-acting, non-stimulant psychotropic medications; had self-reported history of 

neurological impairment such as seizures or head injury with loss of consciousness; had a history 

of substance abuse; had prior diagnosis of intellectual disability, autism spectrum disorder, or 

psychosis; were currently experiencing a major depressive episode; or had estimated IQ < 70.  

Raw EEG data were resampled to 250 Hz and referenced offline to the average of all 

channels. EEG signals were filtered using an IIR filter with a bandwidth of .01–50 Hz. Eye 

artifacts were removed through independent component analysis (Jung et al., 2000). Epochs from 

-200 to 1000 ms were time-locked to the onset of the face stimuli. A 200 ms prestimulus period 

was used for baseline correction. Trials were discarded from the analyses if they contained 

baseline drift or movement artifacts greater than 90 μV. Based on a priori criteria, a participant’s 

data for a given condition were excluded from analyses if >50% of the total trials were rejected 

due to artifacts of any type (<2% of cases for any condition). 

LBA Methods 

The go/no-go implementation of the LBA is similar to the standard LBA for 2-choice 

tasks; however, because RTs for no-go choices are not observed, the calculation of likelihood for 

model-fitting is slightly different. The likelihood of go RTs given a set of model parameters is 

calculated in DMC using a standard method for 2-choice LBA tasks: assigning likelihood values 

to RTs given the “defective” probability density function for these responses predicted by the 

model (Turner, Sederberg, Brown, & Steyvers, 2013). The likelihood of no-go responses is 



Karalunas et al.  Supplement 
 

4 

calculated by integrating the “defective” probability density function for no-go responses, and 

assigning all no-go responses in a given condition the same likelihood value. 

In the current study, the mean of the drift rate distribution (v) was free to vary by type of 

stimulus (go, no-go), emotion condition (positive, negative, neutral), and type of response 

accumulator (correct, incorrect). After estimation, rates for the error accumulator were subtracted 

from those of the correct accumulator to obtain an index of overall efficiency in reaching the 

correct response, providing a drift rate parameter that is comparable to that of drift rate in the 

diffusion model. The boundary height parameter (b) was allowed to vary by type of response 

(go, no-go) and emotion condition (positive, negative, neutral). The non-decision time (t0) 

parameter was allowed to vary by emotion condition, and the drift variability (sv) parameter was 

allowed to vary by type of response accumulator (correct vs. incorrect). However, sv for the error 

accumulator was fixed to 1 as a scaling parameter (Donkin, Brown, & Heathcote, 2009). The 

start point variability (A) parameter was also fixed in the hierarchical model to the group average 

of this parameter from initial fixed-effects (single subject) fits (.85 for participants with ADHD 

and .67 for controls) because simulation studies conducted prior to model fitting suggested that 

this procedure allowed better parameter recovery for the hierarchical model.  

The hierarchical modeling method was used to estimate posterior distributions of LBA 

model parameters for individual participants, as well as group-level parameters which describe 

the group distributions of the Control and ADHD groups, separately. Group distributions were 

assumed to be normal distributions truncated at 0, and described by location (µ; approximates the 

group mean) and scale (σ; approximates the group standard deviation) hyper-parameters. Group 

hyper-parameters were fit to distributions of the individual-level parameters and simultaneously 

acted as priors for the individual parameters, preventing outlier estimates. We specified priors for 
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all group-level hyper-parameters, including exponential distributions with a scale of 1 for all σ 

parameters and the following truncated normal (TN) distribution priors for all µ parameters: 

b ~ TN(µ = 1, σ = .5, 0, ∞) 
vc ~ TN(µ = 2, σ = 1, 0, ∞) 
ve ~ TN(µ = 2, σ = 1, 0, ∞) 
svc ~ TN(µ = 1, σ = 1, 0, ∞) 
t0 ~ TN(µ = .5, σ = .5, .1, ∞) 
 
Markov chain Monte-Carlo simulations using the differential evolution method to address 

parameter correlation (DE-MCMC: Turner et al., 2013) were used to sample from posterior 

distributions of all group- and individual-level parameters. Start points for the simulations were 

drawn from initial fixed effects fits conducted at the individual-subject level, and sampling was 

run for a burn-in period until convergence was indicated both by a Gelman-Rubin statistic < 1.1 

for all parameters (Gelman & Rubin, 1992) and by visual inspection. After the burn-in period, 

4000 iterations of 66 chains, thinned by 20 to save file space, were retained for analysis (13,200 

samples in total for each group). 

Assessment of Model Fit. Posterior predictive plots (Gelman, Meng, & Stern, 1996) 

which displayed the joint cumulative distribution functions of empirical and predicted RT data at 

5 quantiles (.1, .3, .5, .7, and .9), were generated by averaging data across participants in each 

group (Figure S2). The plots suggested that the model provided an excellent description of the 

timing and probability of correct go (“hit”) and incorrect no-go (“false alarm”) responses, with 

some slight misfit in slower RT quantiles. As a result, we concluded that model fit was adequate.  

Calculation of Odds Ratios. Following previous work using hierarchical LBA analyses 

(Weigard, Huang-Pollock, & Brown, 2016; Winkel et al., 2016), we report evidence for effects 
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using odds ratios (ORs). ORs were calculated for all effects by subtracting the distribution of one 

condition from that of another, and determining the ratio of samples above vs. below 0, or vice 

versa in cases where the majority of samples were below 0. ORs were calculated for two-factor 

interaction effects by first calculating difference distributions for effects of the first factor at each 

level of the second factor, and then calculating an OR for differences between these difference 

distributions. We interpret ORs following Jeffreys’ (1961) recommendations for Bayes factors: 

ORs > 3:1 were considered “substantial” evidence of an effect, ORs > 10:1 were considered 

“strong” evidence, ORs > 30:1 were considered “very strong”, and ORs > 100:1 were considered 

“decisive”. 

Plausible Values Correlation Analysis 

We estimated correlation coefficients (Pearson’s r) for relationships between emotion-

related changes in LBA parameters of interest and corresponding changes in ERPs, as well as for 

relationships between changes in LBA parameters of interest and possible confounding factors 

that differed between groups (IQ and parental income, as reported in the main text). A “plausible 

values” analysis (Ly et al., 2017) was therefore conducted in DMC to estimate posterior 

distributions of the population’s r for these relationships. First, the posterior distribution for the 

sample’s r was calculated by assessing the correlation between the covariate and each individual-

level posterior sample for the LBA parameter of interest. Next, following methods outlined by 

(Ly, Marsman, & Wagenmakers, 2018), posterior distributions for the population’s r were 

calculated using a uniform prior which spanned r values from -1 to 1. Once population posterior 

distributions were estimated, 95% credible intervals, which represent the range in which there is 

a .95 probability that the true population r value falls, were estimated and used for inference 

(Table S1 and S2). 
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Covariates. Groups differed in sex, median income, and IQ (see Table 1 for sample 

description). There is general consensus that each of these reflect genuine differences in the 

population of adolescents with and without ADHD (Dennis et al., 2009; Miller et al., 2018) and 

are not due simply to sampling error. Nonetheless, each ERP model was initially run with these 

variables as covariates. None significantly interacted with the effects of interest. Similarly, each 

demographic variable was correlated with the significant effects from the LBA models using the 

plausible values correlation analyses described above (Ly et al., 2017) and no  relationships were 

found to be credibly different from 0. Given the conceptual concerns with using population-level 

differences as covariates (Dennis et al., 2009) and the lack of statistically-significant interactions 

between these demographic variables and the effects of interest, we report results without 

covariates as the primary analyses below. 

 

SUPPLEMENTAL RESULTS 

Reaction Time and Accuracy Results 

 For reaction time, a 3 (emotion) x 2 (diagnosis) repeated-measures ANOVA indicated a 

main effect of emotion (F[2, 250]= 21.3, p < .001, partial η2 = .15). Adolescents responded 

fastest in the positive condition, consistent with increased approach, and slowest in the negative 

condition, consistent with increased withdrawal. There was no main effect of diagnosis (F[1, 

125]= 1.5, p = .223, partial η2 = .01) and no diagnosis x emotion interaction (F[2, 250]= 0.50, p = 

.608, partial η2 = .00). 

 For no-go accuracy, a 3 (emotion) x 2 (diagnosis) repeated-measures ANOVA indicated 

a main effect of emotion (F[2, 250]= 6.7, p = .001, η2 = .05). Adolescents were most accurate in 

the positive condition as compared to negative or neutral. There was also a significant main 
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effect of diagnosis (F[1, 125]= 13.7, p < .001, η2 = .10); adolescents with ADHD were less 

accurate than those without ADHD. There was no diagnosis x emotion interaction a (F[2, 250]= 

1.3, p < .273, η2 = .01).  

LBA Results for Neutral Condition 

Drift rate. In the neutral condition, there was decisive evidence that adolescents with 

ADHD had slower drift rates than non-ADHD controls for go trials (OR=175.00) and substantial 

evidence for slower drift rates in ADHD for no-go trials (OR=5.63). Effects are consistent with 

prior literature using non-emotional tasks. 

Boundary. In the neutral condition, there was little evidence for group differences in 

boundary height for no-go responses (OR=2.94), consistent with prior literature using non-

emotional tasks. There was decisive evidence that adolescents with ADHD had lower boundary 

heights for go responses than their peers (OR=824.00), indicating a bias towards “going” that is 

also consistent with prior research using non-emotional tasks.  

Parameter Recovery Study 

 Sequential sampling models (SSMs) such as the LBA often display tradeoffs between 

mean drift rate (v) and response boundary (b) parameters, in which behavioral effects in one of 

these parameters are incorrectly attributed to the other parameter in recovered parameter 

estimates. These tradeoffs can sometimes compromise interpretability by preventing accurate 

recovery of v and b parameter values. As our primary effects of interest were in v and b 

parameters, we conducted a parameter recovery study based on previously-used methods 

(Lerche, Voss & Nagler, 2017; Ratcliff & Childers, 2015; White, Servant & Logan, 2018) in 

order to assess whether values of these parameters could be accurately recovered from data that 

had similar qualities to the empirical data included in the current study.  
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 First, we used the medians of the group-level µ and σ parameter posteriors obtained from 

our fits of the LBA to empirical data to generate simulated behavioral data from simulated 

ADHD and control groups, where individual-level parameters in these groups were drawn from 

the positive-truncated normal distributions specified by the µ and σ posterior medians. The 

groups were identical in size to the empirical ADHD and control groups, and had the same 

number of trials per condition and per subject. Next, we used methods identical to those 

described above to fit hierarchical Bayesian LBA models to data from each simulated group. 

Finally, following previous SSM parameter recovery studies (Lerche et al., 2017; Ratcliff & 

Childers, 2015; White et al., 2018), we assessed correlations between the individual-level values 

of our main parameters of interest (Δv and Δb for the positive and negative conditions relative to 

the neutral condition) that were used to simulate the data and the individual-level parameter 

values that were recovered from the data (posterior medians). As the goal of our study was to 

detect individual and group differences in parameter values, this method for assessing recovery is 

ideal because it indexes how reliably the model captures individual differences in relevant 

parameters (Lerche et al., 2017). We adopted the criteria outlined by White et al. (2018) for 

determining the quality of recovery: recovery was considered “poor/unacceptable” if r < .50, 

“fair” if .50 < r < .75, “good” of .75 < r < .90 and “excellent” if r > .90 

 Figure S3 displays scatterplots and correlation coefficients for the relationships between 

parameters used to simulate data and the parameters recovered from those data, separately for 

each simulated group. Although there was some variability in individuals’ recovered parameter 

estimates, especially for parameters from no-go trials (which would be expected given the lower 

number of these trials) correlations between simulated and recovered parameter values indicated 

“good” to “excellent” recovery for all parameters of interest. Inspection of the scatterplots also 
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indicated that there was no strong indication of a bias in parameter estimates, which would have 

been apparent if dots in the plot fell either mostly above or mostly below the diagonal line 

representing a perfect relationship. Therefore, we concluded that, although absolute parameter 

values are not recovered perfectly, the model is able to reliably estimate individual differences in 

parameter values, which suggests that our analyses of selective parameters’ ADHD-related 

differences and relationships with covariates can be interpreted. 
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SUPPLEMENTAL TABLES 

Table S1. Results from plausible values correlation analyses testing whether changes in LBA 
parameters in the positive relative to the neutral condition (Positive Δ) correlate with 
corresponding changes in ERPs in the positive relative to neutral condition. (We focus on the 
positive condition because this is where group-level effects for parameters were observed.) 
Median posterior values for the population correlation coefficient (Median r) represent the most 
likely value for this coefficient. Credible intervals represent the lower (2.5%) and upper (97.5%) 
bounds of the range in which there is a 95% chance that the true r value falls. No r values in this 
analysis were credibly different from 0.  

Relationship 

Control Group ADHD Group 

Median 
r 

Credible 
Interval Median 

r 

Credible 
Interval 

2.5% 97.5% 2.5% 97.5% 
Positive Δv.go ~ Positive ΔP1 Amp. -0.06 -0.32 0.20 -0.11 -0.39 0.19 
Positive Δv.go ~ Positive ΔN2 Amp. 0.11 -0.17 0.36 0.11 -0.19 0.38 
Positive Δv.go ~ Positive ΔN170 Amp. -0.19 -0.44 0.08 -0.02 -0.30 0.27 
Positive Δv.go ~ Positive ΔP1 Latency -0.15 -0.41 0.13 0.04 -0.25 0.31 
Positive Δv.no-go ~ Positive ΔP1 Amp. 0.00 -0.30 0.30 -0.07 -0.36 0.22 
Positive Δv.no-go ~ Positive ΔN2 Amp. -0.01 -0.30 0.29 -0.20 -0.47 0.10 
Positive Δv.no-go ~ Positive ΔN170 
Amp. -0.21 -0.48 0.09 0.13 -0.16 0.42 

Positive Δv.no-go ~ Positive ΔP1 
Latency 0.00 -0.31 0.30 0.07 -0.22 0.36 

Positive Δb.go ~ Positive ΔP1 Amp. -0.03 -0.30 0.24 0.06 -0.23 0.34 
Positive Δb.go ~ Positive ΔN2 Amp. 0.25 -0.02 0.49 0.03 -0.25 0.30 
Positive Δb.go ~ Positive ΔN170 Amp. -0.14 0.39 0.13 -0.10 -0.37 0.18 
Positive Δb.go ~ Positive ΔP1 Latency -0.16 -0.41 0.12 0.02 -0.24 0.29 
Positive Δb.no-go ~ Positive ΔP1 Amp. -0.02 -0.32 0.28 0.01 -0.30 0.32 
Positive Δb.no-go ~ Positive ΔN2 Amp. 0.02 -0.28 0.32 0.00 -0.31 0.30 
Positive Δb.no-go ~ Positive ΔN170 
Amp. -0.17 -0.45 0.13 0.26 -0.06 0.53 

Positive Δb.no-go ~ Positive ΔP1 
Latency -0.12 -0.40 0.18 -0.02 -0.33 0.29 
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Table S2. Results from plausible values correlation analyses (Ly et al., 2017) testing changes in 
LBA parameters in the positive relative to the neutral condition (Positive Δ) correlate with parent 
rated ADHD symptoms and emotional traits. Median posterior values for the population 
correlation coefficient (Median r) represent the most likely value for this coefficient. Credible 
intervals represent the lower (2.5%) and upper (97.5%) bounds of the range in which there is a 
95% chance that the true r value falls. No r values in this analysis were credibly different from 0. 

 

Relationship 

Control Group ADHD Group 

Median 
r 

Credible 
Interval Median 

r 

Credible 
Interval 

2.5% 97.5% 2.5% 97.5% 
Positive Δv.go ~ Inattention 0.11 -0.17 0.36 0.10 -0.18 0.36 
Positive Δv.go ~ Hyperactivity -0.03 -0.29 0.24 -0.08 -0.34 0.19 
Positive Δv.no-go ~ Inattention -0.17 -0.44 0.14 -0.13 -0.40 0.16 
Positive Δv.no-go ~ Hyperactivity -0.12 -0.40 0.18 -0.14 -0.40 0.15 
Positive Δb.go ~ Inattention 0.12 -0.15 0.36 0.02 -0.24 0.29 
Positive Δb.go ~ Hyperactivity -0.05 -0.32 0.21 -0.02 -0.28 0.25 
Positive Δb.no-go ~ Inattention -0.07 -0.35 0.23 0.06 -0.25 0.35 
Positive Δb.no-go ~ Hyperactivity -0.05 -0.34 0.26 -0.01 -0.31 0.29 
Positive Δv.go ~ Parent Surgency -0.07 -0.32 0.20 0.03 -0.25 0.30 
Positive Δv.go ~ Parent HIP -0.05 -0.31 0.22 -0.08 -0.35 -.20 
Positive Δv.go ~ Child Surgency 0.02 -0.24 0.28 -0.22 -0.49 0.08 
Positive Δv.go ~ Child HIP 0.08 -0.19 0.34 -0.23 -0.49 0.07 
Positive Δv.no-go ~ Parent Surgency 0.11 -0.19 0.39 -0.15 -0.42 0.14 
Positive Δv.no-go ~ Parent HIP 0.01 -0.29 0.30 -0.12 -0.40 0.17 
Positive Δv.no-go ~ Child Surgency 0.02 -0.28 0.31 -0.14 -0.43 0.16 
Positive Δv.no-go ~ Child HIP -0.04 -0.33 0.26 -0.11 -0.39 0.20 
Positive Δb.go ~ Parent Surgency -0.05 -0.31 0.21 -0.19 -0.44 0.09 
Positive Δb.go ~ Parent HIP -0.06 -0.31 0.21 -0.26 -0.50 0.02 
Positive Δb.go ~ Child Surgency 0.10 -0.17 0.35 -0.26 -0.51 0.02 
Positive Δb.go ~ Child HIP 0.15 -0.11 0.40 -0.15 -0.41 0.14 
Positive Δb.no-go ~ Parent Surgency 0.13 -0.16 0.40 -0.11 -0.40 0.20 
Positive Δb.no-go ~ Parent HIP 0.04 -0.25 0.32 -0.04 -0.33 0.26 
Positive Δb.no-go ~ Child Surgency 0.07 -0.23 0.35 -0.03 -0.34 0.29 
Positive Δb.no-go ~ Child HIP 0.05 -0.24 0.34 0.00 -0.31 0.32 
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Table S3. Correlations between ERP amplitudes and parent rated ADHD symptoms and 
emotional traits. * = p < .05, **= p<.01. Hyp-Imp= Hyperactivity-Impulsivity. TMCQ= 
Temperament in Middle Childhood Questionnaire. HIP= High-intensity pleasure seeking. 

  

Parent 
Conners’ 

Inattention 

Parent 
Conners’ 
Hyp-Imp 

Parent TMCQ 
Surgency 

Parent TMCQ  
HIP 

Parent 
TMCQ 

Fear 
P1 Happy Amp. .18 -.03 -0.12 0.02  
N170 Happy Amp. .02 .27* 0.12 0.08  
LPP Happy Amp. .07 .40** 0.10 -0.02  
N2 Happy Amp. .12 .07 -0.20 -0.06  
P1 Fear Amp. -.08 -.01   0.39** 
N170 Fear Amp. .42** .16   -0.06 
LPP Fear Amp. .15 .01   0.18 
N2 Fear Amp. -.01 -.07   0.21 
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SUPPLEMENTAL FIGURES 

 

Figure S1. Topographic plots for each ERP component by task condition and group showing 
similar topography for the components across groups and conditions overall, allowing for 
selection of the same electrodes in each group and condition for comparison of effects. 
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Figure S2. Joint cumulative distribution function plots comparing the cumulative probability and 
timing of a range of RT quantiles (.1, .3, .5, .7, and .9) from different response types for 
empirical (circles) and model-predicted (Xs) data in each group and condition. Black = correct 
go trials (“hits”); Grey = incorrect no-go trials (“false alarms”). 
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Figure S3. Results from the parameter recovery study in which data was simulated with group-
level parameters comparable to those of the empirical Control and ADHD groups. Scatterplots 
display, for each simulated group, the relationship between the individual-level parameter values 
used to simulate data and the parameter estimates (medians of the individual-level posteriors) 
recovered from these data for the primary parameters of interest. The black line represents where 
points would be clustered if the relationship between simulated and recovered parameters was 
perfect. Correlation (r) values are reported in the upper left corner of each plot. 
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