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Supplementary Methods 

Excavation techniques 

As described in the main text, at the time of discovery the site had already been partially 

exposed by natural erosional processes. The 2009 field season focused on initial documentation 

of the exposed surface and its context, and our research team began excavating the site in 2010. 

During the 2010 field season, we swept away loose sediment that was overlying the footprint 

surface, using soft bristled brooms. No lithified sediments were removed in these initial 

excavations. Using this technique, we uncovered approximately 300 additional human footprints. 

In 2012, we returned to the site to continue our excavations, measurements, and analyses. Our 

excavations in this year included removal of additional loose sediment but also small blocks of 

the lithified mica-rich layer overlying the footprint surface (MRL). These blocks of the MRL 

were immediately overlying the footprint surface but in the midst of eroding away along the 

northern border of our excavation. The additional cleaning and exposure of the surface in 2012, 

combined with a re-examination of previously excavated areas, further increased the sample of 

exposed hominin tracks by approximately 50. From 2013 to 2017, geological work and 
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laboratory analyses continued in order to determine the age and context of the site1, however, no 

excavations were conducted after 2012. 

 

Field measurements of tracks and trackways 

 Using portable equipment, immediately after excavation we collected a variety of field 

measurements from each track and trackway (a series of sequential tracks made by the same 

individual). The length of each track was measured with a tape measure in two ways – from the 

most proximal point of the heel impression to the most distal point of the hallux impression, and 

from the most proximal point of the heel impression to the most distal point of the third toe 

impression. Widths of tracks were also measured using a tape measure both across the forefoot 

(between the lateral and medial walls of the track adjacent to the estimated locations of the first 

and fifth metatarsal head impressions) and the heel. The compass orientation of each individual 

track was measured using a Brunton international pocket transit (Brunton, Louisville, CO, USA).  

 Once all tracks were excavated, we evaluated the sizes, shapes, positions, and 

orientations of the tracks in order to link sequential tracks together and assign them to specific 

trackways (Fig. 2). After assigning tracks to trackways, stride- and step-lengths were measured 

using metric tape measures. These lengths were typically measured from heel-to-heel of 

sequential tracks, although in some cases measurements from toe-to-toe were necessary due to 

poor definition of heel impressions. The compass orientations of each trackway were also 

measured directly. A string was positioned and held taught such that it ran in between the tracks 

associated with a given trackway. The compass orientation of that string was then measured 

using a Brunton pocket transit. All track and trackway measurements are provided in 

Supplementary Data 1 and 2, respectively. 
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Digital 3D documentation of site 

During the 2010 field season, the entire exposed footprint surface was documented in 3D 

using photogrammetry, in accordance with standard protocols developed for the study of fossil 

tracks2. A Canon 5D Mark II DSLR camera, fitted with a Canon EF 50 mm prime lens, was 

mounted to an adjustable tripod with a boom arm, such that overhead photos could be taken from 

a height of approximately 2 meters. The tripod was moved across the footprint surface and 

sequential overhead photographs were taken, with approximately 2/3 overlap between adjacent 

images. The camera was remotely controlled from a laptop, such that images could be previewed 

before capture. During photographic capture, the portion of the surface that was in view of the 

camera was shaded with a portable tent, in order to provide consistent lighting. Tape measures 

and scale bars were placed across the surface prior to photography, in order to ultimately scale 

the 3-D model that would be generated from the photographs. Certain high-fidelity footprints 

were also photographed by hand from even more heights and different angles, to provide even 

higher resolution of those areas. Following the 2010 field season, images of the footprint surface 

were processed using Adam Technology 3DM Analyst software (www.adamtech.com.au), which 

stitched together all photos in order to generate a 3D photogrammetric model of the entire 

exposed footprint surface, with sub-millimeter accuracy.  

In 2012, a similar camera (Canon 5D Mark II, Canon EF 50 mm prime lens) was used to 

photograph by hand all newly exposed human and other animal footprints. Approximately 15-25 

scaled photographs were taken of each sufficiently preserved human footprint, from a variety of 

heights and angles (the number of photographs increased with the depth or topographic 

complexity of the tracks, in an attempt to ensure consistent model accuracy). In 2017, a Canon 

Powershot SX60 HS camera with adjustable lens was used to photograph and model a selection 
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of footprints, in order to monitor erosion of the footprint surface that may have occurred since its 

initial excavation3. 

 

Estimating speeds of travel 

 In order to derive predictions of velocity from the information recorded within the 

trackways, we first needed to derive an appropriate statistical model. Since taller individuals take 

longer strides than shorter individuals, we standardized all experimental and fossil trackway 

stride length measurements by the lengths of the tracks that comprise a given trackway. For our 

experimental data set, this meant that each stride length measurement was divided by the length 

of the footprint that was directly produced by that stride (i.e., relative stride lengths were 

calculated per trial). For the Engare Sero footprints, this method was less appropriate because 

each trackway included certain tracks and/or stride lengths that could not be measured due to 

differential preservation (e.g., a particular track was obliterated by an overlapping track from 

another individual, or a trackway might proceed from a right track to another right track with the 

intervening left track not preserved at all). Instead, we calculated the median stride length and 

the median track length within each trackway. Track lengths and median stride lengths are 

presented in Supplementary Data 1 and 2, respectively. 

 Using the experimental data, we constructed a simple linear regression model of velocity 

by relative stride length that included all walking and running trials. The model was built on a 

training data set that included a randomly selected 70% of the experimental observations, and the 

predictive accuracy of the model was then tested by deriving predictions for the remaining 30% 

of trials. The root mean square error (RMSE) of velocity predictions derived from that model 

was found to be 0.45 m/s. 
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 A second approach was then tested, in which we assessed whether more accurate velocity 

predictions could be obtained by first predicting gait type (walking or running) and then deriving 

numerical speed predictions from a “walk-only” or “run-only” regression of velocity by relative 

stride length. The data were divided as before, with a randomly-selected 70% of trials designated 

as the training set and the other 30% as the test set. Using the training data, a logistic regression 

model was used to model the binary outcome of gait type (walk or run) as a function of relative 

stride length. Two separate linear regression models of velocity by relative stride length were 

then constructed using data from walking and running trials. Within the test data set, the logistic 

regression model showed a gait classification accuracy rate of 97.79%. By using this model to 

first predict gait type and then analyzing those test data through the relevant linear regression 

models (“walk-only” or “run-only”, using the predicted gait types), RMSE for walking velocities 

was reduced to 0.25 m/s while that of running velocities increased to 0.61 m/s. In the latter case, 

the greater RMSE for predicting running velocities may be linked to greater between-subject 

variation in running versus walking mechanics. For example, habitually barefoot people are 

known to use a variety of foot strike patterns during running4–6. Those runners who use different 

foot strike patterns typically differ in other aspects of lower limb kinematics including stride 

frequency, which is inversely related to stride length for a given speed7. Therefore, one might 

expect greater error when predicting velocity from stride length during running bouts. Since this 

approach resulted in more accurate walking velocity predictions, and all but one of the fossil 

trackways displayed relative stride lengths that were consistent with walking speeds (see 

Results), we preferred this regression model for predicting speeds of travel. 

 Finally, because the experimental data were collected using a repeated measures study 

design (the same subjects each walked and ran multiple times), we also tested whether a mixed 



6 
 

effects model might generate more accurate predictions. Using the same training and test data 

sets described in the preceding paragraph, we constructed and then evaluated predictions from 

mixed effects models that included subject identity as a random effect on the intercept and/or 

slope. Using model selection and validation methods described by Zuur et al.8, we found that 

modeling subject identity as a random effect on the intercept and slope of the model led to a 

better model fit (evaluated via Akaike’s Information Criterion) with the training data. Predictions 

were then generated for the test data using population parameters from the mixed effects model. 

These predictions resulted in RMSE values of 0.24 m/s and 0.60 m/s for the “walk-only” and 

“run-only” regression models, respectively, slight improvements over the models that did not 

account for random effects. Population parameters from the mixed effects model were used to 

generate velocity predictions for the 23 Engare Sero trackways from which relative stride lengths 

could be measured. These statistical analyses were conducted in R9, using custom scripts in 

addition to functions available in the dplyr10, caret11, nlme12, and ROCR13 packages 

(Supplementary Data S3).  

 

Estimating body size 

To derive estimates of body size, experimental data on footprint sizes and statures were 

divided into training and test sets to evaluate error rates of predictions (70% of data were 

randomly assigned to the training set, while the other 30% were assigned to the test set). A 

multiple regression model was fit to the data, with stature as the dependent variable and three 

footprint dimensions (length from heel to hallux, forefoot breadth, and heel breadth) as 

independent variables. Following normal model selection protocols (removing non-significant 

predictors and iteratively re-evaluating model fit), the best overall model fit was provided by a 
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model that included both footprint length and forefoot breadth as independent variables. 

However, evaluations with the test data revealed that a model that used footprint length alone to 

predict stature actually generated the most accurate predictions (RMSE of 6.27 cm, compared 

with 7.66 cm or 7.68 cm respectively in models that also included forefoot breadth, or forefoot 

breadth and heel breadth). Since predictive accuracy was considered the most important 

evaluative criteria, we proceeded to predict statures from the Engare Sero trackways using the 

model that only included footprint length.   

 The same procedure was repeated to predict stature from footprints created during bouts 

of running, as different gaits might influence how particular footprint dimensions relate to 

stature. Each of the same 41 subjects also typically generated six footprints each at running 

speeds (n = 245; one observation was again excluded due to a recording error during 

experimentation). The median running footprint dimensions were extracted for each subject, and 

a multiple regression model was again fit to predict stature from the same footprint dimensions. 

Again, a randomly chosen subset (70%) was used to train the model, while the remaining data 

(30%) were held out for testing predictive accuracy. The model including both footprint length 

and forefoot breadth once again generated the best overall fit, evaluated via AIC. However, the 

model including footprint length as the sole independent variable generated yet again the most 

accurate predictions (RMSE of 7.82 cm, compared with 8.23 cm or 8.47 cm respectively in 

models that also included forefoot breadth, or forefoot breadth and heel breadth). Therefore, for 

both walking and running trackways from Engare Sero, only the median footprint lengths were 

used to predict stature. 
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Supplementary Figures 

 

Figure S1. Histogram displaying proportional differences between footprint and foot lengths 

(both measured from heel to hallux) from a modern human experimental sample. Footprints are 

more frequently longer than true foot length rather than shorter. The dashed line indicates the 

mean proportional difference of approximately 0.02. 
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Figure S2. Histograms displaying proportional differences between individual footprint lengths and the median lengths from within their respective 

trackways. The number of tracks whose lengths could be confidently measured from each trackway is provided in parentheses.
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Figure S3. Scatterplot showing cross-sectional ontogenetic sample of modern human foot 

lengths from previously published anthropometric studies14,15. Adult males are plotted in dark 

blue, adult females in dark orange, juvenile males in light blue, and juvenile females in light 

orange. Based on visual inspection of these data, cessations of growth in foot length were 

identified at roughly 14 years for females and 17.8 years for males. These ages are indicated by 

the dark orange and dark blue dashed lines, respectively. 
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Figure S4. Histograms showing the age distribution of the total sample of foot lengths obtained 

from previously published anthropometric studies14,15. Females are plotted in orange and males 

are plotted in blue. The data set is clearly biased towards individuals between roughly 18 and 34 

years of age, with a particularly large cluster of 18- to 20-year-olds. Dashed lines indicate the 

cut-off for producing a more balanced comparative sample for each iteration, such that the 

comparative samples include no more than 50 individuals from any two-year age interval. 
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Figure S5. Histograms showing the age distribution of the reduced sample of foot lengths 

obtained from previously published anthropometric studies14,15. The sample was reduced in order 

to achieve a relatively more balanced age distribution, with no more than 50 individuals falling 

in any two-year age intervals. Females are plotted in orange and males are plotted in blue. 
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Supplementary Tables 

Table S1. Summary statistics from regression models used to predict stature from walking and 

running footprint dimensions. 

Variable Effect size Standard error P-value 

Walking model (adjusted R2 = 0.62) 

Intercept 28.56 19.58 0.16 

Footprint length 5.33 0.76 1.39*10-7 

Running model (adjusted R2 = 0.80) 

Intercept 22.81 13.19 0.09 

Footprint length 5.61 0.52 1.69*10-11 
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Table S2. Probabilities of age/sex categories for each Engare Sero trackway.a 

Trackway Adult male Adult female Juvenile male Juvenile female 

A 4.07 69.93 12.37 13.63 

B 38.70 51.67 5.81 3.82 

C/G 0.94 50.17 23.35 25.54 

D 96.36 0.25 3.39 0.00 

E 90.07 4.03 5.75 0.15 

EE 3.74 68.99 13.44 13.83 

F 17.89 68.67 6.74 6.70 

FF 0.72 48.08 24.48 26.72 

H 92.56 2.23 5.13 0.08 

I/T 26.36 62.63 5.95 5.06 

J 13.69 71.25 7.86 7.20 

K/DD 1.88 61.18 18.05 18.89 

L/II 32.79 56.80 6.04 4.37 

M 17.83 69.07 6.87 6.23 

N/AA 1.07 53.30 21.65 23.98 

O/Y 82.85 10.81 5.90 0.44 
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P 0.85 51.68 22.53 24.94 

Q 10.36 72.57 8.37 8.70 

R/BB 3.76 69.76 13.20 13.28 

S/W 2.85 65.14 15.57 16.44 

TT 0.00 1.73 52.88 45.39 

U 1.05 55.46 20.72 22.77 

V/CC 5.29 71.82 10.89 12.00 

X 0.71 47.88 23.97 27.44 

Z 0.04 11.75 44.93 43.28 

aProbabilities are calculated as the percentages of classifications into the given category through 

the resampling protocol. The most probable classification for each trackway is displayed in bold 

text. Two trackways shown here (FF and TT) do not appear in Table 1 of the main text, because 

measurements of stride length and trackway orientation were not possible. 
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