S1 Appendix. Model and Predictions

We reproduce the result on π_P from [5] below and we want to highlight the concavity of the infection probability as a function of the vaccination coverage.

Proposition 1. [[5]] Given any $P \in [0,1]$, there exists a unique π_P that is strictly decreasing and concave in P until P reaches the elimination threshold P_{crit} . Furthermore, $\pi_P = 1 - \frac{1}{R_0(1-P)}$ for any $P < P_{crit}$, and $\pi_P = 0$ for any $P \geqslant P_{crit}$.

We now proceed to analyzing the game.

Let $\sigma_i \in [0,1]$ denote the probability that player i chooses vaccination. $\sigma = (\sigma_1, \dots, \sigma_n)$ denotes a mixed-strategy profile. The expected payoff for player i from randomization with σ_i can be expressed as follows:

$$EU_i(\sigma_i, \sigma_{-i}) = \frac{u(R)}{\mu} - \sigma_i C - (1 - \sigma_i) d_{R_0} L \mathbb{E}[\pi_{P(\sigma)}],$$

where $\mathbb{E}[\pi_{P(\sigma)}]$ denotes the expected infection probability given the mixed-strategy profile σ .

Definition 1. A strategy profile $\sigma^* = (\sigma_1^*, \dots, \sigma_n^*) \in [0, 1]^n$ is a totally mixed-strategy Nash equilibrium for the game \mathcal{G} if we have for any $i \in \mathcal{N}$

$$\sigma_i \in (0,1), \tag{3}$$

and for all $\sigma_i^* \in [0,1]$,

$$EU_i(\sigma_i^*, \sigma_{-i}^*) \geqslant EU_i(\sigma_i, \sigma_{-i}^*). \tag{4}$$

In what follows, we shall focus on the case in which $C \le \pi_0 d_{R_0} L$. If $C > \pi_0 d_{R_0} L$, the only equilibrium outcome is zero vaccination coverage.

Characterization of all Nash equilibria

The following proposition characterizes the set of pure-strategy equilibrium outcomes.

Proposition 2. For $k = 0, 1, ..., \nu_{crit} - 1, \nu = k + 1$ is the pure strategy equilibrium outcome for $\frac{C}{d_{R_0}L} \in (\pi_{k+1}, \pi_k]$.

Proof of Proposition 2. For any $i \in V(\boldsymbol{b})$, she has no incentive to deviate because $C \leq d_{R_0}L\pi_k$; for any $i \notin V(\boldsymbol{b})$, she has no incentive to deviate because $C > d_{R_0}L\pi_{k+1}$. $\nu < k+1$ cannot arise in pure strategy equilibrium because some $i \notin V(\boldsymbol{b})$ can always be better off by taking the vaccination. $\nu > k+1$ cannot arise in pure strategy equilibrium because some $i \in V(\boldsymbol{b})$ can always be better off by not taking the vaccination. Lastly, note that $\nu > \nu_{crit}$ cannot arise in equilibrium because the infection probability vanishes.

We now show a general characterization of all mixed-strategy equilibria. Let \mathcal{M} be the set of players using mixed strategies, and $|\mathcal{M}| = m$. The next proposition characterizes all the mixed-strategy equilibria for m > 1,

Proposition 3. Given $n > R_0$, for m > 1 and $\nu \le \min\{\nu_{crit} - 1, n - m\}$, $\langle \nu, m \rangle$ arises as a mixed strategy equilibrium outcome for $\frac{C}{d_{R_0}L} \in (\pi_{\nu+m-1}, \pi_{\nu})$ with $\sigma = \sigma^*$ and is uniquely determined by

$$\frac{C}{d_{R_0}L} = \sum_{k=0}^{m-1} \pi_{\nu+k} {m-1 \choose k} \sigma^{*k} (1 - \sigma^*)^{m-1-k}.$$
 (5)

Proof of Proposition 3. A mixed-strategy Nash equilibrium requires that every player in \mathcal{M} is indifferent between vaccination and non-vaccination, i.e.,

$$EU_i(vc, \sigma_{-i}^*) = EU_i(nv, \sigma_{-i}^*) \quad \text{for any } i \in \mathcal{M}.$$
 (6)

It follows that

$$\frac{1}{\mu}u(R) - C = \frac{1}{\mu}u(S) - d_{R_0}L\mathbb{E}[\pi_{P(\sigma)}].$$

where $\mathbb{E}[\pi_{P(\sigma)}]$ denote the expected infection probability given $\nu = k$. Note that the additional vaccination arising from mixed-strategy follows the Poisson binomial distribution with success probabilities σ_{-i} , we obtain

$$\frac{C}{d_{R_0}L} = \sum_{k=0}^{m-1} \pi_{\nu+k} \sum_{V \in \mathcal{P}(\mathcal{M}_{-i};k)} \prod_{j \in V} \sigma_j \prod_{l \in \mathcal{M}_{-i}/V} (1 - \sigma_l)$$
(7)

for any $i \in \mathcal{M}$. Consider this system of equations (characterizing the indifference conditions for the players in set \mathcal{M}) where $v \leq \min\{v_{crit} - 1, n - m\}$, we claim that for any mixed strategy equilibria with m > 1, the mixed-strategy profile σ is unique as shown by the following two lemmas.

Lemma 1. There exists a solution to (7) for $\frac{C}{d_{R_0}L} \in (\pi_{\nu+m-1}, \pi_{\nu})$ s.t. $\sigma_i = \sigma^*$ for any $i \in \mathcal{M}$.

Proof of Lemma 1. The system (7) reduces to

$$\frac{C}{d_{R_0}L} = \sum_{k=0}^{m-1} \pi_{\nu+k} \binom{m-1}{k} \sigma^{*k} (1 - \sigma^*)^{m-1-k}.$$
 (8)

By intermediate value theorem, there exists $\sigma^* \in (0,1)$ such that the above equation holds. \blacksquare

Lemma 2. (7) has at most one solution.

Proof of Lemma 2. Define vector-valued function $H: [0,1]^n \to \mathbb{R}^n$ where every

component function

$$H_i := d_{R_0} r \sigma_i \sum_{k=0}^{m-1} \pi_{\nu+k} \sum_{V \in \mathcal{P}(\mathcal{M}_{-i};k)} \prod_{j \in V} \sigma_j \prod_{l \in \mathcal{M}_{-i}/V} (1 - \sigma_l).$$

It is easy to check that H is continuously differentiable on $(0,1)^n$. The system of equations (7) is equivalent to $\sigma_i = H_i(\sigma)$ for all $i \in \mathcal{N}$. Suppose there exists two solutions σ^* and σ' such that $\|\sigma^* - \sigma'\| > 0$. By mean value inequality (Rudin, 1976), we have

$$\|\sigma^* - \sigma'\| = \|H(\sigma^*) - H(\sigma')\| \le \|DH(\xi)\| \cdot \|\sigma^* - \sigma'\|$$
(9)

where $\xi \in (0,1)^n$ and $DH(\xi)$ is the Jacobian matrix evaluated at ξ . Since the row vectors of $DH(\xi)$ are linearly dependent, $DH(\xi)$ is not invertible and thus $\|DH(\xi)\| = 0$. It follows that $\|\sigma^* - \sigma'\| \le 0$. The requires a contradiction.

Combining the two lemmas, we reach the conclusion that in any mixed strategy equilibrium with m > 1, mixing probabilities must be unique and identical across players.

Now (5) implies the best response of any $i \in \mathcal{M}$. Any $i \in V(b)$ has no incentive to deviate since her incentive constraint $C < d_{R_0} L\mathbb{E}[\pi_{k-1}]$ can be simplified using (5) as

$$\frac{C}{d_{R_0}L} < \sigma^{m-1}\pi_{\nu+m-2} + (1-\sigma)^{m-1}\pi_{\nu-1},$$

which holds under $\frac{C}{d_{R_0}L} \in (\pi_{\nu+m-1}, \pi_{\nu})$. Any $i \notin V(\boldsymbol{b})$ has no incentive to deviate since her incentive constraint $C > d_{R_0}L\mathbb{E}[\pi_{P(\sigma)}]$ can be simplified using (5) as

$$\frac{C}{d_{R_0}L} > \sigma^{m-1}\pi_{\nu+m} + (1-\sigma)^{m-1}\pi_{\nu+1},$$

which again holds under $\frac{C}{d_{R_0}L} \in (\pi_{\nu+m-1}, \pi_{\nu})$. This completes the proof.

It follows from the general proposition that there exists a unique totally mixed strategy equilibrium where m = n.

Corollary 1. There exists a unique totally mixed strategy equilibrium, where $\sigma_i^* = \sigma^*$ and is implicitly defined by

$$\frac{1}{d_{R_0}r} = \sum_{k=0}^{\nu_{crit}} \left(1 - \frac{1}{R_0} - \frac{k}{n}\right) \binom{n}{k} \sigma^{*k} (1 - \sigma^*)^{n-1-k}.$$
 (10)

Equilibrium Vaccination Coverage

Let $\mathcal{P}^*(r, R_0)$ denote the probability distribution over the vaccination coverage induced in the mixed-strategy equilibrium. The following proposition shows that an increase in the relative benefit r leads to an equilibrium distribution yielding an unambiguously higher vaccination coverage.

Proposition 4. For any $R_0 > 1$, $\mathcal{P}^*(r, R_0)$ first-order stochastically dominates (FOSD) $\mathcal{P}^*(r', R_0)$ if and only if r > r'.

Proof of Proposition 4. Let ν and ν' be the equilibrium number of vaccinated people given the relative benefit r and r' respectively. For future use, denote $F_{\nu}(x)$ as the CDF of a random variable ν . We start by working directly with σ as shown in the following lemma.

Lemma 3. ν *FOSD* ν' *if and only if* $\sigma > \sigma'$.

Proof of Lemma 3. ν FOSD ν' if and only if $F_{\nu}(x) \leq F_{\nu'}(x)$ for any $x \in \{1, ..., n\}$. Since both ν and ν' follows binomial distribution with n trials, we remain to show $\frac{dF_{\nu}(x)}{d\sigma} \leq 0$. Now consider for any x, the derivative

$$\frac{dF_{\nu}(x)}{d\sigma} = \sum_{k=1}^{x} k \binom{n}{k} \sigma^{k-1} (1-\sigma)^{n-k} - \sum_{k=0}^{x} (n-k) \binom{n}{k} \sigma^{k} (1-\sigma)^{n-k-1}
= n \left(\sum_{k=1}^{x} \binom{n-1}{k-1} \sigma^{k-1} (1-\sigma)^{n-k} - \sum_{k=0}^{x} \binom{n-1}{k} \sigma^{k} (1-\sigma)^{n-k-1} \right)
= n \left(F_{\bar{\nu}}(x-1) - F_{\bar{\nu}}(x) \right) \leq 0$$

where $\tilde{v} \sim Bin(n-1,\sigma)$.

It remains to show that σ^* is monotonically increasing in r. By implicit function theorem, taking partial derivative of the vaccine uptake likelihood $\sigma^*(r, R_0)$ with respect to r gives us

$$\frac{\partial \sigma^*}{\partial r} = 1 / \left[d_{R_0} r^2 \sum_{k=0}^{v_{crit}} ((n-1)\sigma^* - k) \left(1 - \frac{1}{R_0} - \frac{k}{n} \right) \binom{n}{k} \sigma^{*k-1} (1 - \sigma^*)^{n-2-k} \right],$$

which is positive for any $r > \frac{R_0}{(R_0 - 1)d_{R_0}}$.

Therefore, ν FOSD ν' and equivalently, $P(r, R_0)$ FOSD $P(r', R_0)$ if and only if r > r'.

The stochastic dominance presented in Proposition 4 implies that $Pr^*(P \ge P_{crit})$, the equilibrium probability for the society to achieve the vaccination coverage needed to obtain herd immunity, is monotonically increasing in r and converges to 1 as r goes to infinity. By nature of mixed-strategy equilibria, it is impossible to obtain $Pr^*(P \ge P_{crit}) = 1$ and obliterate an epidemic. However, the society can still

approximate the complete immunity via voluntary vaccination. The following corollary summarizes this discussion.

Corollary 2. $\Pr^*(P \ge P_{crit}) \to 1 \text{ as } r \to \infty.$

Proof of Corollary 2. By Proposition 4, $\Pr^*(P \ge P_{crit}) = 1 - F_{\nu}(\nu_{crit})$ is monotonically increasing in r. Furthermore, as $r \to \infty$, $\sigma^* \to 1$, and $F_{\nu}(\nu_{crit}) \to 0$.

We now investigate the role of concavity of the long-run infection probability in facilitating the elimination of an epidemic. Let $\mathcal{P}^L(r,R_0)$ be the equilibrium vaccination coverage in the linearized environment with $\pi_P^L=1-\frac{1}{R_0}-P$ for any $P< P_{crit}$, and $\pi_P^L=0$ for any $P\geqslant P_{crit}$. Then we have the following result.

Proposition 5. For any $r > \frac{R_0}{(R_0 - 1)d_{R_0}}$ and $R_0 > 1$, $\mathcal{P}^*(r, R_0)$ FOSD $\mathcal{P}^L(r, R_0)$.

Proof of Proposition 5. By Proposition 3, the totally mixed strategy equilibrium in the linearized environment $\sigma_i^L = \sigma^L$ is implicitly defined by

$$\frac{1}{d_{R_0}r} = \sum_{k=0}^{\nu_{crit}} \left(1 - \frac{1}{R_0} - \frac{k}{n}\right) \binom{n-1}{k} \sigma^{L^k} (1 - \sigma^L)^{n-1-k}. \tag{11}$$

By Pascal's rule, $\binom{n-1}{k} \leqslant \binom{n}{k}$ for any k < n and thus $\sigma^L \leqslant \sigma^*$. By lemma 3, $P^*(r, R_0)$ FOSD $P^L(r, R_0)$.

We now address a comparative static question regarding R_0 . That is, are the players more likely to reach immunity if they are faced with a more threatening epidemic? An exogenous increase in the reproduction ratio R_0 has two competing effects on how easily the society can achieve herd immunity via voluntary vaccination. On the one hand, it raises the long-run probability of infection π_P , meaning that individuals in the mixed-strategy Nash equilibrium are more likely to vaccinate. On the other hand, a higher R_0 also increases the critical level needed for herd immunity P_{crit} . Figure 1 shows that the first effect dominates the second effect so that it is easier to achieve herd immunity when R_0 is higher. This result is summarized in the following proposition.

Proposition 6. For any $r \in (\frac{R_0}{(R_0-1)d_{R_0}}, +\infty)$, $\mathcal{P}^*(r, R_0)$ FOSD $\mathcal{P}^*(r, R'_0)$ if and only if $R_0 > R'_0$.

Proof of Proposition 6. By implicit function theorem, taking partial derivative of the vaccine uptake likelihood $\sigma^*(r, R_0)$ with respect to R_0 gives us

$$\frac{\partial \sigma^*}{\partial R_0} = \frac{\sum_{k=0}^{v_{crit}} R_0^{-2} \binom{n}{k} \sigma^{*k} (1 - \sigma^*)^{n-1-k} + \frac{d_{R_0}^{\cdot}}{d_{R_0}^2 r}}{\sum_{k=0}^{v_{crit}} ((n-1)\sigma^* - k) \left(1 - \frac{1}{R_0} - \frac{k}{n}\right) \binom{n}{k} \sigma^{*k-1} (1 - \sigma^*)^{n-2-k}},$$
(12)

which is positive for $r > \frac{R_0}{(R_0 - 1)d_{R_0}}$. By lemma 3, $P^*(r, R_0)$ FOSD $P^*(r, R'_0)$ if and only if $R_0 > R'_0$.

This result implies that a more contagious disease is unambiguously easier to deal with. A higher R_0 encourages people to get vaccinated voluntarily. Hence, epidemics like Ebola, with substantially low R_0 , are particularly difficult to control based on voluntary vaccination.