SUPPLEMENTARY INFORMATION

Figure S1: Syp stabilises pros directly, not via Imp

A Staining with Elav IF (marking post-mitotic neurons), and *pros* exon and *pros* long UTR smFISH. *pros*^{long} is only expressed in Elav+ cells, and is not expressed in the NBs (white outline) or GMCs (pink outline) **B** Brains stained with Pros protein and *pros* exon smFISH. *pros* is lost in the *syp* RNAi knockdown, and in the *syp/imp* double knockdown brains. This shows that *pros* is regulated directly by Syp, not via its downregulation of Imp. RNAi constructs are driven by insc-GAL4 (Betschinger *et al.*, 2006).

Figure S2: Introducing an NMD mutation does not remove proslong

A We used CRISPR/Cas9 to make a double stranded DNA break in the upstream coding region unique to the *proslong* isoforms. Repair by non-homologous end joining resulted in a 26 bp deletion, leading to a frame shift which introduces a premature stop codon 80 bp downstream (*pros-longSTOP*). This should produce a truncated polypeptide and induce NMD of the *proslong* mRNA isoforms. The *pros-longSTOP* mutant was stained with **B** *pros long UTR* smFISH and **C** Pros protein. Neither *proslong* or Pros protein were decreased compared to *wild type*.

Figure S3: The deletion of the upstream *pros* **promoters uncovers a new isoform A** We deleted the three upstream transcription start sites, which are annotated to produce *pros^{long}.* (*prosΔprosUP*). **B** Staining the with *pros-long* intron and *pros long* UTR smFISH showed that transcription from the upstream promoters was abolished, but low levels of *pros long* UTR signal remained. **C** Staining with Pros protein additionally showed that the neuronal upregulation of Pros protein was not disrupted.

Figure S4: Insertion of an SV40 transcriptional terminator reduces, but does not abolish, *pros^{long}* expression

Staining for *pros* exon and *pros long UTR* smFISH shows a reduction in *pros*^{*long*} expression in the *pros*^{*long*}-*SV40* line compared to *wild type*. However the *pros*^{*long*} level is not reduced as much as in the *syp* mutant.

Table S1 - Differential expression analysis of wild type vs syp mutant thirdinstar larval brains

Click here to Download Table S1

Table S2: Primers for generating Northern blot probes

The above primers are used to generate radioactive Northern blot probes. ORF - Open Reading Frame of *pros* transcript; UTR Long are used to generate probes that are specific to the 15 kb *pros* 3' UTR (probe LONG); UTR Short are used to generate probe that is against region that is common to all *pros* 3' UTRs (probe ALL).

Name	Sequence (5' - 3')
ORF F1	AGAAGCGCAAGCTCTACCAG
ORF R1	GTCTTGGGTTTTAGGGGCGA
ORF F2	AAGAAACCCGGCATGGACTT
ORF R2	CGTCACCATCTCCGGTCAAA
UTR Long1 F	GACGATGGTGAACGCGAAAG
UTR Long1 R	TGTGGCTGTGTTCTTGTGGT
UTR Long2 F	ATTTCCCAATCGGCGTCCTT
UTR Long2 R	TTGCCTGTCGATTGCTCTGT
UTR Short1 F	TTGGATGGGAACACCGCTAC
UTR Short1 R	GTGCTCCAAAATCGGGCTTG
UTR Short2 F	CGCAGGCCAAAGCTAAAAGG
UTR Short2 R	ACCAACGGCGAGTACAGTTT
actin F	GGTCGCGATTTAACCGACTACCTGAT
actin R	AGCAGATGTGGATCTCGAAGCAAGAG

Table S3: Primers used for RT-qPCR for Syncrip and IgG immunoprecipitation experiments

pros and housekeeping gene *rp49* was used to assess the efficiency and specificity of Syncrip binding to *pros*.

Name	Sequence (5' - 3')		
rp49 F	GCTAAGCTGTCGCACAAA		
rp49 R	TCCGGTGGGCAGCATGTG		
pros F	TATGCACGACAAGCTGTCACC		
pros R	CGACCACGAAGCGGAAATTC		

Table S4 - Sequence used to generate Stellaris® DNA probe sets

Click here to Download Table S4

Table S5: gRNA constructs

Guide RNA constructs used to produce the *proslong* deletion lines.

<i>pros</i> deletion lines	gRNA	Use
pros-longSTOP	GTGTGACCGTTGCTGCTCGG_CGG	NMD mutant
<i>pros∆promUP</i> (upstream)	TTCCTACTAACTCATGCACA_TGG	Upstream promoter deletion, upstream cut
pros∆promUP (downstream)	GTTGGGCTACTAGAACTACA_AGG	Upstream promoter deletion, downstream cut
<i>pros∆UTR</i> (upstream)	TTTAGTGAGATGTGTGAAGG_TGG	Long UTR deletion, upstream cut. SV40 insertion site.
<i>pros∆UTR</i> (downstream)	ACTAAAAATGTGTAATGGAA_TGG	Long UTR deletion, downstream cut

Movie 1 - proslong-REDr flies exhibit defects in their activity

1-3 day old mixed sex flies were transferred to empty vials and allowed to acclimatise for two hours without disturbance. The vial on the left contains *wild type* flies and the vial on the right contains *proslong-REDr* homozygous flies. After disturbance, by tapping the vial to bring all flies to the bottom, the *wild type* flies immediately crawl up the sides of the vial. However the activity of the *proslong-REDr* flies is impaired and the flies remain at the bottom of the vial.

	IMG_4588 ~	
Wild-type (OrR)	pros-long REDr/ Df(3R)Exel7308	18
	D	1.6
52224		
● ◄())) ◀◀ :00 ┃	► ►► -00	① 31
	Diffee Desce 1715	

Movie 2 - hemizygous proslong-REDr flies phenocopy the homozygous proslong-

REDr adult activity defect

1-3 day old mixed sex flies were transferred to empty vials and allowed to acclimatise for two hours without disturbance. The vial on the left contains *wild type* flies and the vial on the right contains *proslong-REDr/Df(3R)Exel7308* flies. The deficiency (Df(3R)Exel7308) includes the entire *pros* gene region. After disturbance, by tapping the vial to bring all flies to the bottom, the *wild type* flies immediately crawl up the sides of the vial. The activity of the hemizygous *proslong-REDr* flies is impaired, similarly to the *proslong-REDr* flies in Movie S1. This result suggests that the phenotype of *proslong-REDr* is not due to a CRISPR off-target effect.