
1 Supplemental Files

Movie 1 Muscle stem cells from a young animal, tracked for 25 hours during early activation. Numeric labels follow 
single cells that are confidently tracked and used for analysis.
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Movie 2 Muscle stem cells from a young animal, tracked for 25 hours during early activation. Numeric labels follow 
single cells that are confidently tracked and used for analysis.

Movie 3 Muscle stem cells from an aged animal, tracked for 25 hours during early activation. Numeric labels follow 
single cells that are confidently tracked and used for analysis.
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Movie 4 Muscle stem cells from an aged animal, tracked for 25 hours during early activation. Numeric labels follow 
single cells that are confidently tracked and used for analysis.

Movie 5 Heatmaps representing the density of phase points over time in transcriptional space during phase analysis 
simulations in young (left) and aged (right) velocity fields. Transcriptional space is represented using the first two 
principal components. Darker colors indicate higher cell densities for both color maps.
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Figure S1: Cell behavior analysis reveals aged MuSCs prefer less motile states. (A) Proportion of young and aged
MuSCs in each of three motility clusters across 3 bootstrap samples. Each bootstrap sample is representative of young
and aged proliferative history ratios and contains roughly 60% of all observed cells. Cluster 1 is the least motile, Cluster
3 is the most motile. Motility clusters were defined independently for each bootstrap sample. (B) Proportion of young
and aged MuSCs in each of three motility states across 100 bootstrap samples. (C) Mean behavior state transition
magnitudes computed across 100 bootstrap samples. Young MuSCs consistently have higher transition magnitudes than
aged MuSCs. (D) We repeated the experiment in Fig. 1 using young (3 m.o.) and aged (23 m.o.) wild-type C57Bl/6
mice. Cells were tracked for 32 hours, beginning 15 hours after plating. t-SNE projection of behavior features from a
second independent behavior experiment. Points are cells, with colors indicating Behavioral Clusters. 755 aged and 561
young cells were tracked. (E) Behavior feature centered and scaled mean values for clusters in D. Behavior Cluster 1 is
immotile, Behavior Cluster 2 is semi-motile, and Behavior Cluster 3 is highly motile. (F) Proportion of young and aged
MuSCs in each Behavioral Cluster in the second independent experiment. Young MuSCs are significantly enriched in
more motile clusters (χ2 test, p < 0.01). (G) Behavior feature centered and scaled mean values for cells of each age.
Young cells travel a larger total distance and have higher average speeds.

2 Supplementary Figures
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Figure S2: Myogenic activation engages biosynthetic transcriptional programs. (A) Proportion of variation in
transcriptomes explained by each of the 3 factors in the single cell RNA-seq experiment: Age, proliferative history
(LRC status), and Activation state (time in culture, 0 hr or 18 hr). Activation is a much greater source of variation than
aging or proliferative history. (B) Heatmap of myogenic genes and activation markers across transcriptional clusters.
Expression is mean centered and variance scaled for each gene. (C) GO enrichment analysis for genes upregulated and
downregulated in activation relative to quiescence. (D) Cell Cycle scoring demonstrating little difference in cycle state
across our population.
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Figure S3: Pax7 is lower in activated MuSCs than freshly-isolated MuSCs. (A) Expression of Pax7 in each
transcriptional cluster, ordered by pseudotime. Pax7 expression decreases in early activation (Cluster 3, 0, 1), then
increases slightly in the final activation cluster (2). (B) Data from (A), presented as violin plots. (C) Expression of
Pax7 in quiescent, freshly-isolated MuSCs and activated MuSCs after 18 hours in vitro. Considering all cells at each
timepoint, Pax7 expression is decreased in activated cells. (D) Significant differentially expressed genes within the
Pax7+ population of the activated Transcriptional Cluster 4 (q < 0.05, Wilcoxon Rank Sums). We found inhibitors of
myogenic differentiation Id1, 2, 3 and cell cycle gene Ccnd1 were enriched in Pax7+ cells.

Development: doi:10.1242/dev.183855: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



Figure S4: Pseudotemporal analysis identifies gene modules with coordinated kinetics. (A) Spline fit of Myog
expression over pseudotime. Only 25 cells in the experiment express Myog at detectable levels. (B) Gene ontology
enrichment analysis for Pseudotemporal Modules, suggesting coherent groups of co-regulated genes.
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Figure S5: MuSC behavior states are associated with myogenic transcription factor levels. (A) Pax7 and MyoG
intensities for cells with a paired cell behavior recording. Intensities are presented as the median pixel intensity inside
the cell nucleus. Pax7 and MyoG protein are rarely co-expressed, as expected. (B) MyoG protein intensity (cell median)
in each cell behavior cluster. MyoG levels decrease slighly with activation, though all clusters show low expression.
(C) Representative images of Pax7/MyoG staining in cells after timelapse imaging. Panels on the far left are the
final DIC image from the timelapse, registered and overlaid with fluorescent immunostains. Remaining panels are
fluorescence images prior to registration. Fluorescence images are equitably rescaled across cells within each channel
for presentation.
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Figure S6: Weighted gene correlation network analysis. (A) Module identification in the weighted gene correlation
network, with significant modules indicated by colored labels. (B) Heatmap of genes in the identified Quiescence
and Biosynthetic modules in quiescent and activated cells. (C) Gene ontology enrichment analysis for genes in the
identified Quiescence and Biosynthetic modules. The Quiescence module is notably enriched for stress response and
cell death regulation genes, while the Biosynthetic module is enriched for RNA and protein biosynthesis.
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Figure S7: Aged MuSCs display differential activation responses in many genes. (A) Heatmaps of differentially
expressed genes between aged and young quiescent MuSCs, and (C) activated MuSCs. As indicated by the heatmaps,
there are no individual markers with high discriminatory ability, and activation increases transcriptional differences
between aged and young MuSCs. Expression is mean centered and variance scaled for each gene. (B) Gene ontology
enrichment analysis for differentially expressed genes between aged and young quiescent MuSCs. (D) Gene ontology
enrichment analysis for differentially expressed genes between aged and young activated MuSCs. (E) Distribution of
age classification AUROC scores for individual genes in quiescent and (F) activated MuSCs. (G) Representative flow
cytometry measurements of the proportion of LRC (GFP high) and nonLRC (GFP low) MuSCs.
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Figure S8: Aging changes gene expression variation in a context dependent manner. (A) Overdispersion distri-
butions for young and aged MuSCs in both quiescent and activated conditions. Each underlying point represents
the overdispersion estimate for a single gene. Gene expression variance increases with activation in young cells, but
decreases with activation in old cells. (B) Comparison of overdispersion estimates for each gene between young and
aged cells in quiescent and (C) activated conditions in quiescent and activated cells.
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Figure S9: Confusion matrices for age classifiers trained on LRC and nonLRC populations. (A) Confusion
matrices for classification of age in activated LRCs, (B) nonLRCs, and (C) the total MuSC pool using our feature
selection pipeline and support vector machine classifier. Cell count values shown are for the held-out test set only. We
find robust classification in all conditions.
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Figure S10: LRCs and nonLRCs are discriminated by small differences in many genes. (A) Classification accuracy
for a probabilistic neural network classifier trained to discriminate young vs. aged MuSCs with either (1) equal ratios of
LRC:nonLRC (35:65) at both ages or (2) physiologically observed ratios (35:65 in young, 15:85 in aged). Classification
accuracy is equal between the two, suggesting that a change in LRC ratios is a minor contribution to the “magnitude”
of aging. Accuracies presented are the mean of a 5-fold cross-validation split. (B) Estimated Kullback-Leibler
divergence between young and aged MuSCs in random samples with either (1) equal LRC:nonLRC ratios (35:65) or
(2) physiologically observed ratios. The divergence is equal in both contexts in both directions (the KL divergence is
asymmetric) suggesting that changes in LRC proportions do not dramatically alter the magnitude of transcriptional
change with age. (C) Confusion matrices for LRC:nonLRC classifiers. Confusion is higher in the quiescent condition.
(D) GO enrichment analysis in young MuSCs for terms upregulated in LRCs and (E) downregulated in LRCs.
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Figure S11: LRCs and nonLRCs are discriminated by small differences in many genes. Heatmap presenting
differentially expressed genes between young LRCs and nonLRCs. We note that Ccnd1 is upregulated in LRCs relative
to nonLRCs. Expression is mean centered and variance scaled for each gene.
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Figure S12: Phase point simulations reveal differences in state dynamics between aged and young MuSCs. (A)
Prediction accuracy measured using Pearson’s r2 for a k-nearest neighbors regression model mapping transcriptional
principal component scores to pseudotime values. Validated with 5-fold cross-validation. Data are presented as the
mean and 95% confidence interval. (B) Visualization of the pseudotime curve in PCA space, estimated by computing a
rolling mean of PC scores across the 1D pseudotime coordinate. Colors represent transcriptional state clusters. (C)
Progression through pseudotime for young and aged phase points simulated with varying model parameters. Initial
conditions were either (1) “common,” sampled from all observed cell positions in transcriptional space, with each initial
condition simulated using aged or young velocities, or (2) “age-dependent,” where all intial conditions simulated using
young velocities were sampled exclusively from positions observed among young cells, and vice-versa. Simulations
either included Gaussian noise η scaled by the standard deviation of velocity in the local neighborhood, or no noise.
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Figure S13: Lineage regression frequency with age (A) The proportion of “regressing” cells across pseudotime in
aged and young MuSCs, revealing little age dependence. Proportions were computed by coarse-graining pseudotime
into equally sized bins. (B) Proportion of “regressing” cells across pseudotime in young LRCs and nonLRCs. nonLRCs
regress more frequently late in the activation process (χ2 test, p < 0.0001. (C) The difference in lineage regression
frequency between LRCs and nonLRCs is also present in MuSCs from aged animals (χ2 test, p < 0.0001). (D) We
computed the difference in velocity for each gene between cells moving “forward” and “backward” in the activation
trajectory. Gene Ontology enrichments suggest forward moving cells have higher velocity for protein translation and
biogenesis programs, while backward moving cells have higher velocity for mitochondrial oxidative phosphorylation
programs.
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3 Supplementary Tables

Table S1: Cell counts by condition.

Activation Age LRC Cell Count

A Aged LRC 495
A Aged nonLRC 3362
A Young LRC 3236
A Young nonLRC 3636
Q Aged LRC 1074
Q Aged nonLRC 2697
Q Young LRC 3507
Q Young nonLRC 3548

Table S2: Number of cells expressing genes of interest.

Txn Cluster Pax7 Spry1 Myf5 Myod1 Myog Myf6

1 511 436 586 313 6 13
2 1125 812 2279 3346 16 27
3 516 256 442 4979 1 2
4 2041 606 551 5039 2 16

Table S3 Gene Modules with similar kinetic behavior during activation identified by pseudotime analysis. 

Table S4 Differentially expressed genes between young and aged MuSCs.

Table S5 Differentially expressed genes between quiescent young and aged MuSCs.

Click here to Download Table S3

Click here to Download Table S4

Click here to Download Table S5
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Table S8 Differentially expressed genes between young LRCs and nonLRCs.

Table S9 Differentially expressed genes between quiescent young LRCs and nonLRCs.

Table S10 Differentially expressed genes between activated young LRCs and nonLRCs.

Table S6 Differentially expressed genes between activated young and aged MuSCs.

Table S7 Genes used by age classifiers.

Table S11 Differentially expressed genes between aged LRCs and nonLRCs.

Table S12 Differentially expressed genes between quiescent aged LRCs and nonLRCs.

Click here to Download Table S6

Click here to Download Table S8

Click here to Download Table S7

Click here to Download Table S9

Click here to Download Table S10

Click here to Download Table S11

Click here to Download Table S12
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4 Supplementary Methods

4.1 Cell Isolation

For cell isolation we used the following antibodies: anti-CD31 (Clone 390, PE-Cy7, 1:500, BD Pharmigen, 561410
AB10612003); anti-CD45 (Clone 30-F11, PE-Cy7, 1:500, BD Pharmigen, 552848 AB394489); anti-Ly6A/E (Clone D7,
APC-Cy7, 1:100, BD Pharmigen, 560654 AB1727552); anti-Vcam1 (Clone 429, PE, 1:100, Invitrogen, RMCD10604
AB255657); anti-α7-integrin (Clone R2F2, APC, 1:100, Ab Labs, 67-0010-05).

4.2 Timelapse Imaging and Cell Behavior Analysis

MuSCs were imaged in 96-well plates on an incubated microscopy platform (Oko Lab) for 48 hours. Images were
collected with DIC contrast every 6.5 minutes to track cell movement. Thirty rasterized fields-of-view at 20X
magnification were collected from each well using an Andor Zyla 4.2 camera with pixel size of 6.5 µm. Images were
segmented using a fully-convolutional DenseNet-103 neural network model, following the architecture of [1]. The
model was implemented in PyTorch and trained on manually segmented images from each experiment. Code for our
implementation is available at https://github.com/jacobkimmel/fcdensenet_pytorch. Cell tracking was performed
using a custom bipartite tracking implementation that utilizes a Kalman filter motion model. Python code for our
tracking implementation is available at https://github.com/jacobkimmel/musc_tracker.

Cell behavior was analyzed using Heteromotility, as previously described [2] and available at
https://github.com/cellgeometry/heteromotility. GNU parallel was used to parallelize multiple portions of
the analysis [7]. For the first experiment (Fig. 1), cells were tracked for 100 frames (25 hours) beginning 10 hours after
plating. For the second experiment, cells were tracked for 131 frames (32.75 hours) beginning 15 hours after plating.

We used a set of 57 motility features from Heteromotility, excluding features that focus on turning angles. Features
displayed in Fig. 1 include: “Total Distance,” a measure of the total distance a cell traveled; “Net Distance,” a measure
of the net distance a cell traveled; “Linearity,” or the r2 value of a linear regression through cell positions, “Rank
Correlation,” as computed using a Spearman coefficient; “Progressivity,” computed as the ratio of net distance to total
distance; “Mean Speed,” computed as the total distance over time; “Mean Squared Displacement,” a metric of the
distance moved by a cell relative to the starting location; “Hurst Coefficient,” a description of the self-similarity between
cell behaviors when modeled using a fractional Brownian motion process; “Non-Gaussian Coefficient,” measuring
the degree to which cell displacements do not follow a Gaussian distribution; “Kurtosis τ = 1” the kurtosis of the
displacement distribution with a time lag of 1; “Kurtosis τ = 5” the kurtosis of the displacement distribution with a
time lag of 5; “Mean Moving Speed,” the mean speed of a cell computed only during times the cell is not stationary;

Table S13 Differentially expressed genes between activated aged LRCs and nonLRCs.

Table S14 Genes used by LRC classifiers.

Table S15 Difference in velocity for each gene computed between forward and backward moving 

cells.

Click here to Download Table S13

Click here to Download Table S14

Click here to Download Table S15
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“Average Time Moving,” the proportion of time a cell spends moving; and “Autocorrelation,” a measure of self-similarity
within the displacement time series.

We defined Behavior Clusters using hierarchical clustering on motility features after standard scaling and PCA
dimensionality reduction, as previously described [2]. We tested the significance of Behavior Cluster preferences using
a χ2 test of the Age × Behavior Cluster contingency table. We additionally coded binary variables to represent the
presence of each cell in the most motile cluster (Behavior Cluster 3), or either of the more motile clusters (Behavior
Cluster 2 or 3) as defined for the full data set. We fit logistic regressions to model the likelihood of a cell being
present in these more motile Behavior Clusters as a function of age and proliferative history (LRC/nonLRC) using the
formulas “BehaviorCluster3 Age + LRC” and “BehaviorCluster2or3 Age + LRC” and the R function “glm”, where
“BehaviorCluster3” and “BehaviorCluster2or3” are the coded binary variables described above. Significance tests were
performed for each coefficient using Wald’s test. Both coding schemes returned similar results.

For the first behavior experiment (Fig. 1), we generated young and aged MuSC populations with representative
proliferative histories in silico by randomly sampling LRCs and nonLRCs to match observed physiological ratios
(35% LRC for young, 15% LRC for aged). For bootstrap resampling performed in Fig. S1A, B, we randomly
sampled 100 populations of young and aged cells with representative LRC:nonLRC ratios (35%, 15%). From these
populations, we defined Behavior Clusters and examined the relative distribution of young and aged cells across
clusters. For bootstrapping analysis in Fig. S1C, we randomly drew samples of young and aged cells with representative
LRC/nonLRC ratios as above, using only 80% of the cells in each population for each sample. We then computed
mean transition vector magnitudes for aged and young samples. We repeated this procedure 100 times to estimate the
variability in mean transition vector magnitude measurements.

4.3 Paired Immunohistochemistry and Timelapse Imaging

For paired behavior-immunocytochemistry experiments, cells were fixed in 4% paraformaldehyde for 10 minutes
immediately following the imaging timecourse. All steps were carried out at room temperature, unless otherwise
noted. Cells were washed in PBS 3X, using gentle pipette aspiration (without vacuum) to remove buffer. We found
that vacuum aspiration tends to dislodge a large number of cells. Cells were subsequently permeabilized with 0.2%
PBSX (PBS + Triton X-100) in two 5 minute washes. After permeabilization, cells were blocked in 10% goat serum in
PBSX for 60 minutes. We added primary antibodies for Pax7 (Mouse, Developmental Studies Hybridoma Bank) and
MyoG (Rabbit, Santa Cruz Biotechnology Cat sc-576 AB 2148908) at 1:100 concentrations in 10% goat serum/PBSX
overnight at 4oC. Cells were washed 4X in PBSX, then blocked a second time by incubation in 10% goat serum/PBSX
for 60 minutes. Cells were incubated with secondary antibodies anti-mouse Alexa 488 (Thermo Fischer) and anti-rabbit
Alexa 647 (Thermo Fischer) for one hour. Cells were finally washed 3X in PBSX, 5 min each, then 3X in PBS, 5 min
each, incubated with Hoescht 33342 (5 µg/mL in PBS) for 10 minutes, and washed with PBS again.

4.4 EdU Incorporation Statistical Testing

We tested the significance of differences in EdU incorporation by fitting logistic regression models of the form:
EdU ∼ Mouse + LRC and EdU ∼ Mouse + Pax3, where EdU is a binary response variable indicating the EdU status
of each cell (+/-), Mouse is a dummy-coded categorical covariate indicating the animal of origin for each cell, and
LRC,Pax3 are binary covariates indicating the LRC and Pax3 status of each cell respectively. These coefficients in
these regressions account for the specific effect of LRC and Pax3 status on EdU incorporation, controlling for animal of
origin. Regressions were fit with the glm function in R. We tested coefficient significance using Wald’s test.

4.5 Contribution of experimental factors to transcriptional variation

Linear models were fit for each gene in the form:

NormCountg(c) = β1Activation(c) + β2LRC(c) + β3Age(c)

where Activation, LRC, and Age are binary vectors indicating the activation status, LRC status, and age of each cell, c
is a cellular index, and g is a gene index. The proportion of variance attributable to each of these factors was calculated
using an analysis of variance (ANOVA).

4.6 Overdispersion Analysis

We define an overdispersion score DM as:
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DM(g) = log10(CV2)− f(g)

where g is a gene in the set of analyzed genes G and f(·) is a rolling median. We compute the rolling median on the
mean expression (log10(µ)) vs. coefficient of variation squared (log10 CV2) plot using a bin size of n = 50 genes and
a stride of s = 1 along the mean expression axis and calculating the median log10 CV2 of each bin. An additional
parameter α was computed as the proportion of cells expressing a given gene (elsewhere referred to as the “proportion
of non-zero cells”).

4.7 Estimation of LRC to nonLRC contribution to transcriptional change

We estimate the “magnitude” of transcriptional change with aging between a set of young and aged transcriptomes by
training probabalistic classifiers to estimate the density ratio between distributions of young and aged transcriptomes.
This method is commonly employed in machine learning and is known as the “Density Ratio Trick” [6, 5].

We generate populations of aged and young MuSCs by random sampling with n = 1000 cells per age. We sample
populations with either physiologically observed LRC:nonLRC ratios (35:65 young, 15:85 aged) or equal ratios for
both ages (35:65 young, 35:65 aged). The latter sampling scheme simulates a condition where LRC proportions do not
change with age. Fully-connected neural networks with 3 hidden layers, each containing 100 hidden units are trained
to output probabilities that a given transcriptome is either young or aged using a softmax activation. Networks are
trained using a crossentropy objective and the Adam optimizer with the scikit-learn implementations. Networks were
trained for a maximum of 1000 epochs using early stopping with a patience of 50 epochs using 10% of training data as
test data for model selection. Minibatch sizes of 128 transcriptomes were used. Training was performed using 5-fold
cross-validation, such that each predicted probability for a given cell was produced using a classifier that did not see
that cell during training. All training parameters were chosen empirically without hyperparameter optimization.

Once trained, these probabilistic classifiers output a probability p(x) that a given cell x comes from the distribution
of young transcriptomes, as well as a probability q(x) = 1− p(x) that the cell comes from the distribution of young
transcriptomes. The “density ratio” for each cell is simply the ratio of these two probability distributions.

r(x) =
q(x)

p(x)

log r(x) = log q(x)− log p(x)

From this ratio, the Kullback-Leibler (KL) divergence can be estimated:

DKL(p(x)||q(x)) = −
∑
x∈X

p(x) log r(x)

We use this estimate of the KL divergence as a measure of the magnitude of difference between young and aged
transcriptomes. Because the KL divergence is asymmetric, we present the divergence measures for both directions
(DKL(p(x)||q(x))) and DKL(q(x)||p(x)))). An estimate of the divergence obtained simply due to cell-cell variation
within each age is computed by training classifiers on two random samples of young cells or two random samples
of aged cells, where classification should perform poorly as both samples are drawn from the same distribution. As
expected, our estimate of the KL divergence from these null classifiers is significantly lower than the estimates we find
in classifiers trained to discriminate young from aged random samples with either physiological or equal LRC:nonLRC
ratios.

4.8 Support Vector Machine Classification

Support vector machine (SVM) classification models to discriminate cell age and LRC status were trained using scikit-
learn implementations [4]. For age classification, activated MuSCs were subsampled to match the physiologically
observed LRC:nonLRC ratio across ages (young, 35:65; aged, 15:85). The total count matrix was split by random
sampling into a 10% held out validation set and a 90% train/test set. “Chrono-variant” genes were identified based on
only the train/test set to avoid information leakage from the validation set. All genes that showed a > 0.1 fold change
on a natural log scale and were expressed in at least 3 cells were considered chrono-variant, yielding 667 genes. SVM
classification models were trained with L1 regularization to enforce sparsity. Regularization strength λ ∼ C−1 was
optimized by performing a line search using 5-fold cross-validation within the train/test set. The number of non-zero
weight coefficients in each trained, L1-regularized classifier was considered to be the number of genes utilized by that
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classifier. Validation accuracies were obtained by training a classifier on the entire train/test set with the optimized
regularization strength, and performing prediction on the held-out validation set.

4.9 RNA Velocity Analysis and Dynamical Simulations

RNA velocity was inferred using velocyto [3] with default parameters. Gene expression levels were first imputed using
a k-nearest neighbors approach, as outlined [3]. The magnitude of RNA velocity relative to pseudotime was quantified
by binning cells along the pseudotime axis and computing the magnitude of the mean RNA velocity for each bin.

A k-nearest neighbors regression model (kNN-R) was trained on PCA embeddings for experimentally measured single
cell transcriptomes and their corresponding pseudotime assignments. Using 5-fold cross validation, a range of values
for k were estimated and k = 30 was chosen to optimize the regression r2 while minimizing computational expense.
k-NNR model fit was estimated at r2 > 0.96 by 5-fold cross validation, indicating high performance for estimation.

To determine differences between aged and young velocity fields, phase point simulations were performed with
numerical methods. A set of initial positions in the 2D PCA embedding for both young and aged cells was sampled from
observed cellular positions. For these experiments, the set of initial positions was restricted to cells in the “activated” 18
hour time point to prevent simulations from encountering the low density region between quiescent and activated cells
where we have little information for velocity inference. Additionally, we restrict initial positions to observed cells with
a PC1 embedding score < −3, which corresponds to the more primitive cells in transcriptional Cluster 2.

Phase points were initiated at positions x0 and evolved for t = 5, 000 timesteps. At each timestep, phase point velocity
vt was computed as the mean velocity of the k = 100 nearest cells to the phase point in the observed cell embeddings.
For simulations in young and aged velocity fields, only young or aged cells were considered at this step, respectively.
New phase point positions xt+1 were computed as the sum of the velocity vt and current phase point position xt, plus a
noise term η:

xt+1 = xt + vt + η

where noise is drawn from a multidimensional normal distribution η ∼ N (0, σt) with a standard deviation σt computed
as the standard deviation of the velocity from the k = 100 nearest cells to the phase point. When specified, this noise
term was set to 0 for some experiments.

4.10 Change in Pseudotime Analysis

The “change in pseudotime” (∆Pseudotime) was estimated for each cell using the k-nearest neighbors regression model.
Future transcriptional states xt+1 were inferred by RNA velocity as above, and the pseudotimes for these states were
predicted using the kNN-R model. ∆Pseudotime is defined as the difference between the inferred future and measured
present pseudotime for each cell:

∆p = p̂t+1 − pt

where p̂t+1 is the inferred pseudotime using RNA velocity and the kNN-R model and pt is the observed pseudotime at
the experimental timepoint.

Cells were defined to be undergoing “lineage regression” if they displayed a ∆Pseudotime < σ, where σ is the standard
deviation of the ∆Pseudotime distribution. Code is available in http://github.com/jacobkimmel/myodyn.
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